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I. INTRODUCTION

The natural interest rate, the real rate of return in the natural economy with flexible prices in-

stead of sticky prices, is of great relevance to modern central banks. For example, interest rate

rules like the one proposed by Taylor (1993) suggest that a central bank sets its policy rate

equal to the natural interest rate plus the inflation rate when the inflation rate is at its target

and the output gap is closed. More generally, monetary policy is considered contractionary if

the actual real rate exceeds the natural interest rate, while it is considered expansionary if the

actual real rate is below the natural interest rate.

The caveat to these straightforward principles is that the natural interest rate is fairly difficult

to measure. Economic theory suggests that at business cycle frequency, the natural interest

rate varies over time with shocks to technology, preferences, and absorption. A number of

empirical studies show, however, that the uncertainty surrounding estimates of the natural in-

terest rate is substantial, and this uncertainty undermines the usefulness of the natural interest

rate as a practical guide to monetary policymakers.1

We show that money demand can play a role in measuring the natural interest rate and there-

fore, in the optimal monetary policy rule. To illustrate this, we revisit a basic microfounded

monetary model with a money-in-utility (MIU) specification of money demand. In this model,

we derive a transformation of the money demand that can be computed from actual data and

that we call the money gap. The money gap co-moves with the natural interest rate because it

reflects, among other things, shocks to the marginal utility of consumption. These shocks also

alter the time path of natural consumption and, therefore, the natural interest rate. The co-

movement between the money gap and the natural interest rate is independent of the specific

model used, and we extend the basic model to a quantitative model with a dynamic money

demand function to show this.

We find that the correlation between the money gap and the natural interest rate is of consid-

erable magnitude, is independent of monetary policy, and is thus, immune to the Lucas (1976)

critique. These are welcome characteristics from the perspective of a central bank that uses

the money gap to measure the natural interest rate more accurately. Based on the quantita-

tive model calibrated for the euro area, our estimate of the correlation between the money gap

and the natural interest rate is between 0.3 and 0.45. Results for the U.S., indicate a some-

what lower but still notable correlation. The correlation is immune to changes in the monetary

policy regime because, by construction, the money gap omits the variation in money demand

1See, e.g., Ferguson (2004).
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that results from the opportunity costs and the transaction volume of money demand. This in-

sulates the money gap against the direct and indirect effects of changes in the policy regime,

just like the natural interest rate.

A central bank can take advantage of the co-movement between the money gap and the nat-

ural interest rate. To demonstrate the appropriate role of the money gap for monetary pol-

icy, we suppose that the optimizing central bank selects the coefficients of a typical interest

rate rule that is modified to account for the lack of information on the side of central banks.

With full information, the interest rate rule incorporates the natural interest rate, the output

gap between the actual and the natural level of output, and the inflation rate. However, two

of these variables, the natural interest rate and the output gap, are not readily observable in

the real world. We operationalize this lack of information in the modified interest rate rule by

replacing the natural interest rate with the money gap, which can be computed from the ac-

tual data. Furthermore, we constrain the central bank to only observe the output gap conflated

with noise.

Our analytical solution of the policy problem implies that the optimizing central bank selects

a positive coefficient of the money gap in the modified interest rate rule. The principles un-

derlying the interest rate rule suggest that the central bank, provided it observes the natural

interest rate directly, varies the policy rate one-for-one with the natural interest rate to counter

the impact of the natural interest rate on aggregate demand. Selecting a positive coefficient of

the money gap helps the central bank to approximate this ideal policy if it cannot observe the

natural interest rate directly. Furthermore, we find that the optimizing central bank combines

the money gap with the observed output gap in a way that provides the best information about

the natural interest rate. The central bank considers both the money gap and the observed out-

put gap at the same time because their combination improves upon the information that each

indicator provides individually.

These results are fairly robust. We use the basic model to establish them analytically and to

develop the core findings. Then, we use the quantitative model that features a dynamic money

demand function and that can only be solved numerically to extend our analysis to more so-

phisticated policy rules. The analytical results hold up well and provide a suitable guideline

for the numerical results. We also show that, in the quantitative model, lags of the money gap

(rather than leads) co-move tightly with the contemporaneous natural interest rate. Conse-

quently, in the optimal policy rule, the lagged money gap performs better as an indicator of

the natural interest rate. We trace the pronounced lead-lag structure between the money gap

and the natural interest rate back to the habit formation in consumption, which alters the time
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profile of the natural interest rate. Furthermore, while in the real world the information con-

tent of the money gap may change over time, our numerical results suggest that, as a rule, the

central bank will be better off taking the money gap into account instead of not appropriately

responding to the movements in the natural interest rate that the money gap indicates.

It is worth mentioning that our approach considers only a narrow (non-interest bearing) con-

cept of money. However, while there are multiple concepts of money, broadening the model

along this dimension would only add to the number of monetary indicator variables that the

central bank would combine optimally according to their informational content. Here we fo-

cus on only one of possibly many money gaps to portray a link between money demand and

the natural interest rate that the literature has not explored so far.

Our study is related to two branches in the literature. The first branch emphasizes that the nat-

ural interest rate is of great relevance to central banks and attempts to measure it using the

information contained in the money demand. Our study differs from this branch in that we

explore a new link between the money demand and the natural interest rate that is comple-

mentary to the link that has been explored so far. Furthermore, in contrast to the literature, we

derive the consequences of the new link for the optimal monetary policy rule.

Andres, Lopez-Salido, and Nelson (2009) build upon Andres, Lopez-Salido, and Valles (2006)

and belong to the first branch of the literature. They show that the money demand contains in-

formation about the natural interest rate if the money demand serves as a summary index of

unobserved yields and, therefore, is forward looking.2 Arestis, Chortareas, and Tsoukalas

(2010) measure the natural rate of output, which is related to the natural interest rate, also us-

ing the information contained in the forward-looking money demand and obtain an estimate

of the natural output that is fairly precise. In contrast, Laubach and Williams (2003), Meson-

nier and Renne (2007), and Edge, Kiley, and Laforte (2008) measure the natural interest rate

without using the information contained in the money demand and find estimates of the natu-

ral interest rate that are fairly imprecise and subject to substantial measurement error.

The second branch of the related literature studies the indicator role of money demand when

monetary policymakers lack information about the state of the economy (Dotsey and Horn-

stein (2003), Coenen, Levin, and Wieland (2005), Lippi and Neri (2007), Beck and Wieland

(2007), Beck and Wieland (2008), Scharnagl, Gerberding, and Seitz (2010), Unsal, Portillo,

2 Andres, Lopez-Salido, and Nelson (2009) suggest that optimal monetary policy in a model with dynamic

money demand would be an important topic for future research. Our paper can be considered to be following up

on this suggestion.
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and Berg (2010)).3 A common feature of this literature is that it treats the money demand

residual as mutually independent of all other structural shocks in the economy. In the typical

microfounded model that we use, however, the money demand residual contains one compo-

nent that also drives the natural interest rate and, therefore, is not mutually independent of all

other shocks. A number of authors have mentioned this characteristic of the money demand

residual (see, e.g., McCallum and Nelson (1999), Neiss and Nelson (2001), Nelson (2002),

Woodford (2003), Favara and Giordani (2009), and Sargent and Surico (2011)), but the impli-

cations for the indicator role of money demand have remained largely unexplored.

In the next section, we briefly recap the MIU specification of money demand and isolate

the link between the money demand and the natural interest rate that we explore. Section

III describes our transformation of money demand, which we call the money gap, and de-

rives the correlation between the money gap and the natural interest rate. In Section IV, we

demonstrate the usefulness of the money gap for the optimal monetary policy rule in the basic

model. Section V contains the quantitative analysis of the link between the money gap and

the natural interest rate and of the consequences for the optimal policy rule in the quantitative

model with a dynamic money demand function, and Section VII concludes.

II. BASIC MODEL

We start by examining the link between the money demand and the natural interest rate in a

basic New Keynesian model (see Woodford (2003), Gali (2008), or Walsh (2010)), which al-

lows us to present analytical results with closed-form solutions. The basic model constitutes

the core of the quantitative model with dynamic money demand and more endogenous ampli-

fication of shocks than in the basic model, for which we present numerical results below.

The basic model comprises three types of agents: the representative household, infinitely

many firms, and the government. Firms produce intermediate products using labor as the sole

input to production and using a technology that is subject to aggregate productivity shocks.

Firms sell their product in a monopolistically competitive market, and they optimally adjust

their product prices infrequently as in Calvo (1983). The representative household demands

intermediate products and aggregate them to the composite consumption good Ct . The gov-

ernment implements monetary policy using a policy rule for the short-term nominal interest

rate, which we describe below. Appendix A contains further model details.

3See Berger, Harjes, and Stavrev (2010) for a recent survey.
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A. The household and the MIU specification of money demand

The representative household demands money because holding money facilitates transactions.

The MIU specification captures this idea of money demand by incorporating real money bal-

ances directly into the household’s utility function. A general representation of the expected

discounted lifetime utility function of the household is

E0

∞

∑
t=0

β t [u(Ct ,ψt)+q(Mt/Pt ,εm
t )−h(Nt)] , 0 < β < 1 , (1)

where E0 is the expectation operator conditional on information at time zero, Ct denotes com-

posite consumption, Mt/Pt denotes end-of-period real money balances, and Nt denotes labor.

The functions u and q and h fulfill standard regularity conditions.4

The utility function contains two types of preference shocks. The shock ψt affects the utility

of consumption and thereby, will alter the time path of consumption and the real rate of re-

turn. The shock εm
t affects the utility of holding real money balances and can be interpreted,

among other things, as reflecting exogenous changes in the velocity of money demand. We

omit a shock to the disutility from labor, since it would be isomorphic to the aggregate pro-

ductivity shock. Further below we also consider shocks to the household’s discount rate β .

The utility function is additively separable such that real money demand does not influence

the utility of consumption directly. We adopt additively separable utility (as do McCallum

(2001), Woodford (2003), Ireland (2004), Andres, Lopez-Salido, and Valles (2006), and An-

dres, Lopez-Salido, and Nelson (2009)) to clearly distinguish the link between the money de-

mand and the natural interest rate that we explore from other links involving money demand

examined elsewhere.

The household maximizes its discounted lifetime utility subject to the flow budget constraint

PtCt +Bt +Mt ≥ (1+ it−1)Bt−1 +Mt−1 +(1− τ)WtNt +Dt −Tt .

This constraint ensures that the sum of the expenditures for consumption, PtCt , and for the

financial portfolio, which comprises money and government bonds Bt , does not exceed total

4The function u(·,ψ) is twice continuously differentiable, increasing, and concave in its argument for each

value of the shock ψ . The function q(·,εm) is increasing and concave in its argument for each value of the shock

εm. The function q has a finite satiation level ms > 0 such that, in the steady state, qm(ms,εm) = 0, with m =
M/P and qm(m,εm) = ∂q(m,εm)/∂m. The limiting value of qmm is finite and negative when m approaches ms

from below (see Woodford (2003), Assumption 6.1, for a discussion). The function h(·) is twice continuously

differentiable, increasing, and convex in its argument.
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income. Income accrues from the financial portfolio in the previous period (1+ it−1)Bt−1 +

Mt−1, the labor income net of taxes, (1− τ)WtNt , the profits Dt from firm ownership, and the

lump-sum transfer Tt . it denotes the nominal interest rate on government bonds.

B. The money demand and the natural interest rate

Money demand co-moves with the natural interest rate because both variables depend on the

marginal utility of consumption. Deriving the first-order conditions of the utility maximiza-

tion problem with respect to Ct ,Mt , and Bt and rearranging them yields the money demand

function
qm(Mt/Pt ,εm

t )

uc(Yt −Gt ,ψt)
=

it
1+ it

, (2)

where we substituted income Yt for consumption Ct using the identity Yt =Ct +Gt . We use Gt

to denote autonomous aggregate demand, including the demand for credit goods and foreign

demand.

Real money demand Mt/Pt depends on the opportunity costs of holding money rather than

bonds it/(1+ it), the velocity shock εm
t , and the marginal rate of substitution between money

and consumption qm/uc. Importantly, the money demand function (2) also depends on the

two shocks Gt and ψt , which affect the relationship between income and the marginal utility

of consumption because movements in Gt and ψt alter the household’s level of consumption

and, through the marginal rate of substitution, the household’s money demand. Jointly, these

two shocks constitute the link between the money demand and the natural interest rate.

To show this, we define the natural interest rate rn
t as the real rate of return that prevails in the

natural economy with fully flexible prices. The natural economy constitutes a useful reference

for policymakers by indicating the direction in which monetary policy will have to adjust to

overcome the inefficient adjustment to shocks under sticky prices.5 The natural interest rate

derives from the Euler equation, which is part of the household’s optimality conditions and

therefore unaffected by assumptions regarding how firms set prices:

βEt

(
uc(Y n

t+1 −Gt+1,ψt+1)

uc(Y n
t −Gt ,ψt)

(1+ rn
t )

)
= 1 , (3)

5The natural interest rate also corresponds to the interest rate in the efficient economy. There are two remaining

inefficiencies in the natural economy with flexible prices. First, output is inefficiently low as a result of monop-

olistically competitive product markets. Second, a non-negative price for money liquidity prevents the economy

from reaching money satiation. We assume that the inefficiency from monopolistic competition is offset by an

appropriate tax τ on labor income. Moreover, any inefficiency from incomplete money satiation does not affect

the natural interest rate because utility is additively separable in consumption and money.
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where Y n
t denotes the level of output in the natural economy. Natural output is a function of

the two shocks ψt and Gt and of the productivity shock, and this function is determined by

the production side of the natural economy. Equation (3) shows that the natural interest rate

varies with the two shocks Gt and ψt (and their expected future values), which also affect

money demand (2). Both the money demand Mt/Pt and the natural interest rate rn
t are affected

by these shocks because they depend on the marginal utility of consumption.

This link between money demand and the natural interest rate does not rely on using the ad-

ditively separable utility function. Instead, if we were to use a utility function that is non-

separable in consumption and the money demand, the natural interest rate additionally de-

pends on velocity shocks (see Chapter 3.2 in Woodford (2003)), while the composition of

money demand in terms of shocks does not change. In this case, the money demand holds

additional information about the natural interest rate because both variables depend on ve-

locity shocks. Therefore, our approach of using the additively separable instead of a non-

separable utility function is likely to downplay the role of the money demand for monetary

policy. However, the quantitative implications of non-separable utility often turn out to be

small.

C. Linearized model

To further illustrate the link between the money demand and the natural interest rate, we cal-

culate the basic model accurately to the first order at the flexible-price steady state with zero

inflation and with real money balances close to satiation (see Appendix A). This yields

mt = ηy(Yt −gt)−ηiit + εm
t , (4)

rn
t =−Et(1−L−1)(at − ω

1+ω gt) , (5)

xt = Etxt+1 − (it −Etπt+1)+ rn
t , (6)

πt = βEtπt+1 +μxt +ut . (7)

In what follows, we express variables as percentage deviations from steady state. Equation

(4) is the linearized version of money demand (2), with mt denoting the percentage deviation

of real money from its steady state. ηy > 0 denotes the elasticity of money demand with re-

spect to income, and ηi > 0 denotes the semi-elasticity of money demand with respect to the

nominal interest rate. The shock gt , which we refer to as the IS shock, summarizes the two

shocks Gt and ψt and constitutes the link between the money demand and the natural interest

rate. This shock is an important source of fluctuations in the natural interest rate in estimated
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DSGE models such as Andres, Lopez-Salido, and Nelson (2009) or Arestis, Chortareas, and

Tsoukalas (2010).

Equation (5) defines the natural interest rate and is derived from the linearized version of the

Euler equation (3) after substituting for natural output and imposing log utility of consump-

tion. The natural interest rate varies with the IS shock gt , which also perturbs money demand,

and with the productivity shock at to the technology of intermediate firms. As indicated by

the lead operator L−1, the natural interest rate also depends on the expected value of these

shocks. Natural output, Y n
t = at +

1
1+ω gt , depends on the same shocks as the natural interest

rate. Shocks at ,ut ,gt , and εm
t are AR(1) processes with the uniform AR coefficient 0 ≤ ρ < 1,

and the residuals of these shocks are mutually independent.6 The parameter ω > 0 summa-

rizes the properties of the production side of the economy (see Appendix A).

Equation (6) is the intertemporal IS equation. To obtain this equation, we linearized the Eu-

ler equation in the actual economy and subtracted from it the Euler equation (3) in the natural

economy. The IS equation relates the output gap, defined as actual output minus natural out-

put, xt = Yt −Y n
t , to the real interest rate gap. The real interest rate gap is the actual real rate,

it −Etπt+1, minus the natural interest rate. If monetary policy moves the actual real rate one-

for-one with the natural interest rate, the output gap is perfectly insulated from disturbances

in the natural interest rate. If, however, monetary policy cannot establish a one-for-one co-

movement, the output gap will contain at least some information about the natural interest

rate.

Equation (7) is the New Keynesian Phillips curve (NKPC), and μ denotes its slope with re-

spect to the output gap. The slope is a function of structural parameters (see Appendix A).

Following convention, we add the ad hoc cost-push shock ut to the NKPC. As a consequence

of our MIU specification with additive separability, money demand does not appear in the

NKPC or the IS equation and, as long as monetary policy does not respond to money demand,

remains irrelevant for computing the equilibrium values of inflation and the output gap.

III. MONEY DEMAND AS AN INDICATOR OF THE NATURAL INTEREST RATE

While the natural interest rate is difficult to measure, money demand can play a role in iden-

tifying it. A convenient way to extract information about the natural interest rate from money

6 We impose the uniform AR coefficient to obtain a policy problem of the central bank that we can handle ana-

lytically. In our quantitative analysis below, we use numerical methods and consider various AR coefficients.
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demand is to compute the money gap mg
t defined as the difference between the money de-

mand that is predicted by the endogenous determinants of money demand and the actual

money demand,

mg
t = ηyYt −ηiit −mt , (8)

where ηyYt −ηiit are the endogenous determinants of money demand. The money gap resem-

bles a generalized measure of money velocity that is adjusted for short-term nominal interest

rates.

The money gap has a number of useful properties for policymakers. One is that it can be read-

ily computed from actual data without the need to identify IS shocks gt and velocity shocks

εm
t separately, because standard assumptions about gt and εm

t allow the money demand elas-

ticities ηy and ηi to be recovered from simple quantity regression of actual money demand mt

on income Yt and the nominal interest rate it (e.g., Teles and Uhlig (2010)).

Another useful property of the money gap is that it remains independent of changes in the

monetary policy regime. We show this by substituting money demand (4) for mt into the

money gap (8):

mg
t = ηygt − εm

t . (9)

The money gap remains independent of changes in the monetary policy regime because the

money gap is composed only of exogenous shocks.

Importantly, the money gap also co-moves positively with the natural interest rate. To demon-

strate this, we combine equations (5) and (9) and derive the unconditional and contempora-

neous correlation between the money gap and the natural interest rate, assuming the uniform

AR coefficient across shocks,7

cor(mg
t ,r

n
t ) =

ωηy(
η2

y +σ2
m/σ2

g
) 1

2
(
ω2 +(1+ω)2 σ2

a/σ2
g
) 1

2

. (10)

The correlation is positive as long as both the standard deviation of velocity shocks σm and

the standard deviation of productivity shocks σa remain finite relative to the standard devia-

tion of IS shocks σg.

7The correlation is independent of ρ for the following reasons. Recall that the natural interest rate depends on

the expected growth rate of shocks, while the money gap depends on the current value of shocks. Assuming

AR(1) processes for the shocks implies that the expected growth rate of a shock is proportional to the current

value of this shock. Further assuming the uniform AR coefficient ρ implies that the factor of proportionality is

the same across shocks.
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Figure 1. The figure shows the correlation between money gap mg
t and natural interest rate rn

t for different

values of the relative standard deviation of velocity shocks σm/σg and of productivity shocks σa/σg.

Changes in the monetary policy regime do not affect the correlation (10) because, by con-

struction, the money gap and the natural interest rate are independent of monetary policy.

This implies that the correlation will not change once monetary policy starts exploiting it,

and this is another useful property of the money gap from the perspective of monetary policy-

makers. These findings constitute our first main result.

Result 1: The unconditional and contemporaneous correlation between the money gap and

the natural interest rate is positive and independent of the monetary policy regime.

Figure 1 contains the correlation for different values of the ratios σm/σg and σa/σg, and with

ηy and ω set to unity (Section V.C describes the calibration). The correlation between the

money gap and the natural interest rate is large when the IS shock is volatile, because the IS

shock drives both the money gap and the natural interest rate. In contrast, the correlation is

small when the velocity shock is volatile, and this fits well with the conventional view that

exogenous movements in velocity are a central impediment to money demand being a useful

indicator variable for monetary policy. This conventional view reemerges in our setup be-



14

cause velocity shocks disturb the information that the money gap contains about the natural

interest rate. Nevertheless, the correlation exceeds 0.15 even if we consider extremely volatile

velocity shocks, and it is of the order 0.30 to 0.40 if we consider less extreme values for the

standard deviations of velocity and productivity shocks.

IV. MONETARY POLICY

What use will a welfare-maximizing central bank make of the money gap? To answer this

question, we consider a standard setup in which the central bank objective is to stabilize the

variation in inflation and in the output gap. The central bank’s loss function weighs these sta-

bilization objectives according to the relative preference λx > 0,

var(πt)+λxvar(xt) , (11)

denoting the unconditional variance of the generic variable zt as var(zt). As shown by Wood-

ford (2003), this loss function is best understood as reflecting the central bank’s desire to ad-

just the actual economy with sticky prices to the outcome represented by the state of the natu-

ral economy with flexible prices.

In the model described by equations (4) to (7), the central bank attempts to stabilize two types

of disturbances: shocks to the natural interest rate and cost shocks. A policy rule that ensures

that the policy rate it will follow closely to the natural interest rate rn
t stabilizes inflation and

the output gap perfectly with respect to shocks to the natural interest rate (Woodford (2003)).

In contrast, cost shocks induce a tradeoff between stabilizing inflation versus the output gap,

and the central bank’s policy rule must be flexible enough to resolve this tradeoff optimally

according to the preference λx.

Interest rate rules like the one proposed by Taylor (1993) condense this fairly broad optimal

policy rule into a simple feedback rule of the form

it = rn
t +φxxt +φππt . (12)

This rule prescribes that the policy rate it should respond one-for-one to the natural interest

rate rn
t . Thus, the central bank stabilizes inflation and the output gap perfectly with respect to

shocks to the natural interest rate. In addition, the policy rate responds to both inflation and

the output gap and therefore allows the central bank to resolve the tradeoff following cost

shocks in the optimal fashion. Simple interest rules like equation (12) are interesting in their
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own right but also have been shown to replicate the fully optimal monetary policy, which is

typically considerably more complicated, reasonably well in a wide array of models.

A main caveat to the interest rate rule (12) is, however, that both the natural interest rate and

the output gap are difficult to measure. As a consequence, practical applications of this inter-

est rate rule often replace the time varying natural interest rate by a constant intercept term.8

Along similar lines, the output gap is often estimated using statistical filters of the actual level

of output instead of using information about natural output. While such a statistical approach

to the output gap likely contains some useful information, this information will be conflated

with considerable measurement error, or noise.

Our setup allows us to explore whether an optimizing central bank will exploit the correla-

tion between money gap and natural interest rate to cope with the difficulty of measuring the

natural interest rate and the output gap. We confine our analysis to a simple policy rule of the

form

it = φmmg
t +φxx̃t +φππt , (13)

or slight modifications thereof, and operationalize the information barriers of real-world cen-

tral banks as follows. First, the central bank does not observe the natural interest rate. How-

ever, instead of replacing the time-varying natural interest rate by a constant intercept, the

central bank can respond to the money gap mg
t . If the central bank finds the money gap a use-

ful indicator variable, it will select a non-zero policy coefficient φm. Second, the central bank

does not observe the output gap. Rather, it observes the measure x̃t that conflates the output

gap with a noise shock, x̃t = Yt −Y n
t +ξt . The noise shock ξt is exogenous, serially correlated

with coefficient ρ , and mutually independent of all other shocks. Finally, the central bank ob-

serves inflation without any error.

A. Optimal policy coefficients and their interpretation

The policy problem of the central bank is to select the policy coefficients φm,φx, and φπ of the

simple rule (13) that minimize the loss (11) subject to the model’s rational expectation equi-

librium. This equilibrium is derived from the IS equation (6), the NKPC (7), the money gap

(9), and the policy rule (13). In what follows, we set ω = 1 and, without loss of generality,

normalize the standard deviation of IS shocks σg to unity. To simplify, the baseline model as-

8Economic theory predicts that the natural interest rate varies with shocks to preferences, technology, and ab-

sorption. Estimates of these shocks obtained from DSGE models are fairly volatile. Therefore, we consider it

inadequate to replace the natural interest rate by a constant intercept term.
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sumes no productivity shocks, σa = 0, and no serially correlated shocks, ρ = 0. We disregard

these and other assumptions later on when we consider several model extensions.

The policy problem yields the optimal coefficients (see Appendix B)

φ�
m =

1

2

ηy

η2
y +σ2

m
, φ�

x =
1

4

σ2
m

σ2
ξ (η

2
y +σ2

m)
, φ�

π =
μ
λx

(
σ2

ξ (μ
2 +λx)

σ2
u

φ�
x +φ�

x +1

)
. (14)

We discuss the optimal coefficient of the money gap φ �
m first. This coefficient is positive if the

income elasticity of money demand ηy is finite and positive and if velocity shocks have finite

standard deviation σm. To summarize:

Result 2: The optimal policy coefficient of the money gap φ�
m is positive.

The central bank incorporates the money gap into its simple rule because the money gap

indicates the natural interest rate, and knowing the natural interest rate allows the central bank

to better stabilize inflation and the output gap. To see this, consider for a moment the model

without velocity shocks, σm = 0. Combining the money gap (9) and the natural interest rate

(5) shows that the money gap is proportional to the natural interest rate, mg
t = 2ηyrn

t . Further-

more, without velocity shocks, the coefficient of the money gap reduces to φ�
m = 1/(2ηy) such

that φ�
mmg

t = rn
t . The two remaining policy coefficients are φ�

x = 0 and φ�
π = μ/λx. Substituting

all this into the policy rule (13) yields

it = rn
t +(μ/λx)πt .

The positive coefficient φ�
m implies that, effectively, the central bank moves the policy rate

one-for-one with the natural interest rate. Assuming white-noise shocks, the IS equation re-

duces to xt =−it + rn
t and illustrates that moving it one-for-one with rn

t perfectly insulates the

output gap, and therefore inflation, from shocks to the natural interest rate.

In the presence of velocity shocks, σm > 0, the coefficient φ�
m in (14) declines to below its

value without velocity shocks. In this case, the coefficient actually corresponds to the OLS

estimate of the regression rn
t = φmmg

t + et , with et denoting the projection error:9

φ�
m = cov(mg

t ,r
n
t )/var(mg

t ) .

9 To see that φ �
m = φ ols

m , depart from φ ols
m = cov(mg

t ,rn
t )/var(mg

t ). Use the money gap (9) and the natural in-

terest rate (5) to obtain cov(mg
t ,rn

t ) = ηyσ2
g /2 and var(mg

t ) = η2
y σ2

g +σ2
m. Thus, φ ols

m = φ �
m = 1

2 ηy/(η2
y +σ2

m)
normalizing σg = 1.
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The central bank reacts strongly to the money gap when money gap and natural interest rate

co-move tightly. However, velocity shocks disturb the useful information contained in the

money gap by reducing the co-movement and increasing var(mg
t ). Therefore, if the central

bank reacts to the money gap, the velocity shocks will distort inflation and the output gap,

and this is detrimental to welfare. While the central bank accounts for these factors by scaling

down its response to the money gap, it continues to select a positive φ�
m.

The remaining two coefficients φ�
x and φ�

π govern, among other things, the optimal policy re-

sponse to cost shocks ut . A positive cost shock pushes inflation up and the output gap down

and creates a tradeoff for the central bank. The optimal resolution of this tradeoff determines

the magnitude of φ�
π relative to φ�

x , which is evident from the coefficients in (14). However,

cost shocks leave the central bank with a degree of freedom because they do not determine

the magnitude of φ�
x . Our next result explains how the central bank uses this degree of free-

dom optimally.

Result 3: The optimizing central bank combines the money gap and the observed output gap

in a way that yields the strongest signal about the natural interest rate.

In other words, a central bank interested in the natural interest rate selects the coefficient

φ�
x to supplement the information that the money gap holds about the natural interest rate.

There are two aspects to this result. First, to see how the observed output gap can help at

all, consider the IS equation. Adding the noise shock to both sides of this equation yields

x̃t = −it + rn
t + ξt . Clearly, the observed output gap co-moves with the natural interest rate

as long as the policy rate does not move one-for-one with the natural interest rate.

Second, the magnitude of φ�
x is determined by the information that the observed output gap

holds about the natural interest rate in addition to the information that the money gap holds

about the natural interest rate. Consider, for illustrative purposes, a modified version of the

policy problem in which the central bank’s only objective is to stabilize the output gap. The

informational assumptions are the same as in the original policy problem. Further, let the cen-

tral bank employ a policy rule with only the money gap and the observed output gap. The

modified policy problem is to

min
φm,φx

var(xt) subject to it = φmmg
t +φxx̃t , (15)

and subject to the model’s rational expectation equilibrium derived from the IS equation (6)

and the money gap (9). It is easy to verify that the modified and the original policy problem

yield exactly the same optimal coefficients φ�
m and φ�

x .
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The modified policy problem admits interpreting the coefficient φ�
x along the lines of a signal

extraction problem using two indicators for the natural interest rate: the money gap and the

observed output gap. To rewrite the central bank objective var(xt), substitute it = φmmg
t +φxx̃t

for the policy rate into the IS equation and use the definition x̃t = xt +ξt and the independence

of the noise shock ξt , which yields

var(xt) =

(
1

1+φx

)2

var
(
rn
t −φmmg

t
)
+

(
φx

1+φx

)2

var(ξt) . (16)

This way of writing the central bank objective recovers the OLS interpretation of the money

gap coefficient, since minimizing var(xt) requires minimizing var
(
rn
t −φmmg

t
)

with respect to

φm, and this yields the OLS estimator.

In addition to the money gap, however, the central bank uses the observed output gap as an

indicator of the natural interest rate. The coefficient φ�
x that minimizes var(xt) determines the

relative weight attached to each indicator, depending on the particular indicator’s usefulness:

φ�
x = var(rn

t −φmmg
t )/var(ξt) .

The observed output gap is a useful indicator when it contains only a small amount of noise.

In this case, var(ξt) is small and the central bank selects a high value of φ�
x . Conversely, the

central bank selects a low value of φ�
x if var

(
rn
t −φ�

mmg
t
)

is small relative to var(ξt) because

small errors et = rn
t − φ�

mmg
t make the money gap a useful indicator. Generally, the central

bank considers both indicators at the same time by selecting some intermediate value for φ�
x .

Thereby, it improves upon the signal that each indicator can provide individually, because the

projection error et and the noise ξt are independent of each other.10

The ratio of policy coefficients provides a compact summary of the relative usefulness of the

money gap and the observed output gap as indicators of the natural interest rate:

φ�
m/φ�

x = 2ηy
(
σξ/σm

)2
. (17)

When the noise in the observed output gap is volatile relative to velocity shocks, the central

bank attaches a relatively large weight to the money gap. Conversely, when velocity shocks

10Unless et and ξt are perfectly positively correlated, the central bank is always better off considering both the

money gap and the observed output gap to extract the strongest signal about the natural interest rate.
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and, thereby, projection errors are volatile, the money gap is uninformative about the natural

rate, and the central bank attaches a relatively small weight to the money gap.11

The related literature has focused mainly on whether or not money demand contains useful

information about the current level of output and about the output gap. In contrast, our central

finding is that money demand contains useful information about a different variable, namely,

the natural interest rate.12 Interestingly, we also find that the central bank utilizes the output

gap, which it measures with error, as yet another indicator of the natural interest rate. Both of

these findings are consistent with the view that the natural interest rate, but less so the output

gap, constitutes the crucial variable for policymakers in New Keynesian models. Intuitively,

in these models, a central bank that pursues a simple interest rate rule does not need to know

the output gap in order to stabilize it.

B. Extensions of the basic model

Extending the basic model by adding serially correlated shocks or a central bank preference

for stabilizing the nominal interest rate leaves our results intact. Moreover, while adding pro-

ductivity shocks tends to reduce the money gap’s relative usefulness without eliminating it,

allowing for shocks to the household’s discount rate could add to the relative usefulness of the

money gap or reduce it.

1. Serially correlated shocks

A more general model allows for serially correlated shocks. Assuming a uniform AR coeffi-

cient ρ ∈ (0,1), the optimal policy coefficient of the money gap becomes

φ�
m =

1

2
(1−ρ)

ηy

η2
y +σ2

m
.

When the velocity shock εm
t is serially correlated, σ2

m denotes the variance of the residual to

εm
t instead of the variance of εm

t itself, and the same holds true for the other shocks.

11The mapping between the variances of projection errors and velocity shocks is σ2
e = 1

4 σ2
m/(η2

y +σ2
m). We

obtain it by plugging the money gap (9) and the natural interest rate (5) into et = rn
t − φ �

mmg
t and computing

variances.

12We sidestep the role that the money demand plays in informing about the output by eliminating the transaction

motive of money demand from the money gap. We do this because the literature has largely concluded that this

role is minor.
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The optimizing central bank continues to select a positive coefficient φ�
m of the money gap,

and Result 2 generalizes to the case of serially correlated shocks. Quantitatively, φ�
m decreases

the more serially correlated the shocks are. This happens because the household anticipates

that serially correlated shocks impact current as well as future consumption and smoothes its

consumption path. Thus, there is less need for the natural interest rate to respond to, say, IS

shocks. Unlike the natural interest rate, however, the money gap’s response to IS shocks does

not depend on the serial correlation of shocks, and the central bank reduces its reaction to the

money gap to avoid overreaction. Nevertheless, serially correlated shocks do not reduce the

information that the money gap holds about the natural interest rate, because the composition

of the money gap in terms of IS and velocity shocks remains unchanged.

The same logic applies to the coefficient φ�
x of the observed output gap. Accordingly, despite

serially correlated shocks, the ratio of policy coefficients φ�
m/φ�

x still corresponds to equa-

tion (17), and Result 3, which pertains to the relative usefulness of the money gap and the

observed output gap, extends to the model with serially correlated shocks.

2. Interest rate stabilization

A more general model also allows for a central bank preference for stable nominal interest

rates. This extension is one way to capture that, at times, the natural interest rate can be too

volatile for the nominal interest rate to follow it.13 The central bank may then have to relax

the otherwise tight co-movement between the nominal interest rate and the natural interest

rate, and this may affect the usefulness of the money gap as an indicator of the natural rate.

We analyze this issue by introducing the preference for stable nominal interest rates into the

central bank objective function,14

var(πt)+λxvar(xt)+λivar(it) , λi > 0 . (18)

Solving the policy problem of the central bank with λi > 0 (maintaining ρ = 0) yields the

optimal policy coefficient of the money gap:

φ�
m =

1

2

λxηy

(λx +λi)(η2
y +σ2

m)+0.25λiσ2
m[μ2/σ2

u +1/σ2
ξ ]

.

13One reason for this is the zero lower bound on nominal interest rates.

14Alternatively, we could capture the preference for stable interest rates by introducing the lagged nominal inter-

est rate into the policy rule. We pursue this approach in the quantitative model below to save having to deal with

the additional state variable in our analytical solutions.
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This coefficient is still positive, and thus extends Result 2, which pertains to the indicator role

of the money gap, to the more general case of a central bank that prefers stable nominal inter-

est rates. Quantitatively, φ�
m decreases in λi, because the denominator increases in λi. This re-

lationship reflects that the central bank moves the nominal interest rate less than one-for-one

with the natural interest rate when it prefers stable nominal interest rates. Moreover, dividing

the money gap coefficient by the output gap coefficient for the case λi > 0 yields exactly the

same ratio as before, showing that Result 3 also applies to this model extension.

3. Productivity shocks

Yet another way to extend the model is to allow for productivity shocks. As Figure 1 illus-

trates, the correlation between the money gap and the natural interest rate drops in the pres-

ence of productivity shocks. This reflects the fact that these shocks affect the natural interest

rate but not the money gap. The question is whether and how this changes the usefulness of

the money gap for monetary policy.

The optimal policy coefficients of the money gap and the observed output gap for the case

σa > 0 (maintaining λi = ρ = 0) are

φ �
m =

1

2

ηy

η2
y +σ2

m
, φ�

x =
1

4

σ2
m

σ2
ξ
(
η2

y +σ2
m
) + σ2

a

σ2
ξ
. (19)

Productivity shocks leave the money gap coefficient untouched, generalizing Result 2 to the

model with productivity shocks. To see the reason for this, consider again the modified policy

problem (15). As shown above, the central bank sets the coefficient φm to the OLS estimate of

the regression rn
t = φmmg

t + et . While productivity shocks inject additional variation into rn
t ,

this variation is orthogonal to the money gap and, therefore, does not alter the optimal money

gap coefficient. Instead, productivity shocks are absorbed into the error et and increase its

variance.15

The increase in the error variance matters for the central bank’s choice of φx, however. The

increased var(et) tilts the central bank’s response towards the observed output gap, as the

variance of the noise ξt associated with the output gap remains unchanged. Accordingly, φ�
x

increases with the variance of productivity shocks, as shown in (19) and illustrated by the ra-

15It is straightforward to show using φ �
x = σ2

e /σ2
ξ that σ2

e = 1
4 σ2

m/(η2
y +σ2

m)+σ2
a .
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tio

φ�
m

φ�
x
= 2ηy

σ2
ξ

σ2
m +4σ2

a (η2
y +σ2

m)
.

In words, the central bank puts relatively less weight on the money gap when productivity

shocks are volatile. Result 3 still holds in this extension of the model, but the relative useful-

ness of the money gap diminishes as gyrations in productivity become larger.

4. Discount factor shocks

The last extension of the basic model we consider is a stochastic discount factor, namely a

shock to the discount rate β of the household. This shock makes the household discount the

expected future utility at a different rate, at least temporarily. In equilibrium, this shock will

affect the natural interest rate and, therefore, the indicator role of the money gap. Depending

on the magnitudes, allowing for a discount factor shock could add to the usefulness of the

money gap for policymakers or reduce it.

A convenient approach to model the discount factor (DF) shock is to introduce co-movement

among the IS shock gt , the velocity shock εm
t , and the productivity shock at . This co-movement

reflects that the discount rate β , and hence the DF shock, affects all terms of the period utility

function uniformly.16 We include the productivity shock because it is isomorphic to a shock

to the disutility from work h(Nt) that expands the labor supply. The new parameter b ∈ [0,1]

governs the amount of the co-movement among these shocks (see Appendix B). A value of

b equal to unity transforms the IS shock gt into the DF shock, with any movement in gt uni-

formly affecting all terms of the period utility function, while both the velocity shock and the

productivity shock also vary independently of gt . Intermediate values of b make gt a weighted

average of the IS shock and the DF shock, and b equal to zero recovers the original IS shock.

Solving the policy problem of the central bank with b ∈ [0,1] (maintaining σa > 0 and λi =

ρ = 0) yields the optimal policy coefficients for the money gap and the observed output gap,

φ �
m =

1

2

ηy(1−b)(1+b)
η2

y (1−b)2 +σ2
m

, φ�
x =

1

4

σ2
m(1+b)2

σ2
ξ
[
η2

y (1−b)2 +σ2
m
] + σ2

a

σ2
ξ
.

These coefficients depend on the new parameter b, but are otherwise very similar to the policy

coefficients that we obtained for the case of including productivity shocks.

16Alternatively, we could introduce a completely new shock to the discount rate β , but this would yield a less

parsimonious representation of the basic model than our approach.
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Figure 2. Panel A shows the optimal policy coefficient of the money gap in the basic model with a discount
factor shock as a function of b. Panel B shows the ratio of the money gap and the observed output gap coef-
ficient as a function of b. The calibration is ηy = 1, σm = 1

2 , σa = 1
2 , and σξ = 2

3 , normalizing σg to unity. For
more details on the calibration, see the Section V.C.

The Panel A of Figure 2 shows that the money gap coefficient increases for small to interme-

diate values of b and decreases for extremely large values of b. To understand this pattern,

note that the OLS interpretation of the money gap coefficient in the basic model still applies,

φ�
m = cov(mg

t ,rn
t )/var(mg

t ), but now both the covariance and the variance depend on b and de-

cline by raising b (see Appendix B). The money gap coefficient increases for the intermediate

values of b, because the covariance declines more slowly than the variance.

The declining variance of the money gap is related to the money demand (2). While the IS

shock affects the money demand through the marginal utility of consumption, the DF shock

does not. Accordingly, transforming the IS shock gradually into the DF shock reduces the

impact of gt on the money demand, and this reduces the variance of the money gap. The co-

variance cov(mg
t ,rn

t ) declines more slowly than the variance of the money gap because raising

b increases the impact of gt on the natural interest rate. Raising b transforms the IS shock that

operates along both the intratemporal and the intertemporal margin into the DF shock that op-

erates only along the intertemporal margin, and the intertemporal DF shock turns out to affect

the natural interest rate more.

The Panel B of Figure 2 shows the ratio φ�
m/φ�

x of policy coefficients, as a measure of the rel-

ative usefulness of the money gap versus the observed output gap. The central bank tends to
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respond more to the observed output gap for large values of b because in this case the money

gap turns into a more noise indicator of the natural interest rate. However, raising b from

small to intermediate values, the central bank actually finds the money gap increasingly use-

ful relative to the observed output gap. Overall, we conclude that the money gap will remain a

useful indicator for policymakers under plausible extensions of the basic model.

V. A CALIBRATED QUANTITATIVE MODEL

With a number of factors influencing the indicator role of the money gap for monetary policy,

the question becomes how relevant the money gap would be in a model that represents real

world economies more realistically. To this end, we consider a quantitative model with richer

dynamics and calibrate it for the euro area and the U.S.

A. Quantitative model

The quantitative model enriches the basic model by adding habit persistence and price index-

ation. Firms index prices to the rate of inflation in the previous period if they cannot adjust

their prices optimally. This yields a hybrid NKPC that relates a polynomial with leads and

lags in the inflation rate to the output gap and cost shocks. Similarly, habit formation in con-

sumption yields a hybrid intertemporal IS equation that relates a polynomial with leads and

lags in the output gap to the actual real rate and the natural interest rate. We consider the same

shocks as in the basic model, including productivity shocks, and allow for various serial cor-

relation across shocks. The Appendix A contains further details about the quantitative model.

A final and especially important generalized feature of the quantitative model is habit forma-

tion in the household’s stock of real money demand. Habit formation in real money demand

works exactly like habit formation in consumption and extends the static money demand

function used earlier to a dynamic money demand function.17 A dynamic money demand

function matters greatly from an empirical point of view because the literature emphasizes

the strong partial adjustment component of estimated money demand functions.

17We take the MIU specification of dynamic money demand using habit formation from Weber (2008). Two

alternative specifications of dynamic money demand are money adjustment costs and the assumption that adjust-

ing money balances creates disutility. Goldfeld (1973) and Laidler (1990) use the adjustment cost specification,

whereas Chari, Christiano, and Eichenbaum (1995), Christiano and Gust (1999), Nelson (2002), and Andres,

Lopez-Salido, and Nelson (2009) use the disutility specification.
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B. Dynamic money demand function and the money gap

Calculated to the first order, the dynamic money demand function contains leads and lags in

real money demand and relates them to the nominal interest rate and to a measure of income:

mt −φmt−1 − εm
t = φβEt [mt+1 −φmt − εm

t+1]+θyI(Yt ,gt)−θiit . (20)

The degree of habit formation φ ∈ [0,1) in the money demand, which can differ from habit

formation in consumption η ∈ [0,1), governs the dynamics of money demand. The short-run

elasticities of the money demand are θk = (1−φ)(1−φβ )ηk, with k = y, i, and thus are pro-

portional to the long-run elasticities ηk. As before, εm
t denotes velocity shocks. Habit forma-

tion in the money demand gives expected future money demand a role in the money demand

function. Expected future money demand matters because the household anticipates that to-

day’s money demand will become tomorrow’s habit. The measure of income that determines

money demand (20) is equal to I(Yt ,gt) = Et(1−ηβL−1)[(1−ηL)Yt −gt ]/((1−ηβ )(1−η)).

It is a two-sided filter of output and the IS shock, which derives from assuming habit forma-

tion in consumption.

We proceed along the same lines as before to extract the money gap as the difference between

the predicted money demand and the actual money demand. This time, however, we incorpo-

rate the dynamic money demand function. Iterating equation (20) forward yields a represen-

tation of the money demand function that emphasizes the partial adjustment (see Appendix

C),

mt = φmt−1 +(1−φ)mp
t −mg

t . (21)

Actual money demand mt partially adjusts at rate φ from past money holdings mt−1 to pre-

dicted money demand mp
t . The remaining part of actual money demand is the money gap mg

t .

The predicted money demand is an infinite weighted sum over current and expected future

endogenous determinants of the money demand, with weights decaying at rate φβ ,

mp
t = (1−φβ )Et

∞

∑
s=0

(φβ )s[ηyI(Yt+s,0)−ηiit+s] . (22)

As in the basic model, the measure of income I(Yt ,0) in mp
t omits the IS shock gt . Likewise,

ignoring habit formation in consumption and in money demand, φ = η = 0, the predicted

money demand mp
t contains only contemporaneous variables because all forward-looking

variables vanish. In general, however, the predicted money demand refers to the infinite hori-
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zon and therefore, aligns well with the quantity theory of money demand, which prevails on

average and over long periods of time.

Combining the partial adjustment representation (21) and the predicted money demand (22)

yields the money gap in the quantitative model (see Appendix C):

mg
t = ηy Et

(
(1−φ)(1−φβ )

1−φβL−1

)(
1−ηβL−1

(1−η)(1−ηβ )

)
gt − εm

t . (23)

As before, the money gap is composed of IS and velocity shocks. With the money gap com-

posed only of shocks, it continues to remain unperturbed by shifts in the monetary policy

regime and is thus, immune to the Lucas critique.

The main difference between the money gap in the basic model and the money gap in the

quantitative model is that IS shocks enter the money gap in the quantitative model in a much

richer fashion. Both the dynamics in money demand φ and the habit formation in consump-

tion η affect the composition of the money gap in terms of shocks, except for the case η = φ
when these parameters exactly offset each other.

Evidently, φ and η are crucial parameters to determine the relevance of the money gap for

monetary policymakers in the enriched model. For instance, in the extreme case in which φ is

near unity and η is equal to zero, the money gap attaches only a small weight to IS shocks. In

this case, the household determines the money demand mostly by the force of habit and only

to a very small degree by transaction and opportunity cost motives. Consequently, the money

demand elasticities with respect to I(Yt ,gt) and it are minuscule, and the money demand (20)

is basically self referential. Conversely, when η is near unity and φ is equal to zero, IS shocks

are the predominant driving force of the money gap.

C. Calibration

Our approach explores a plausible support range for the key parameters that matter most

for the indicator role of the money gap, while holding other parameters fixed at reasonable

point estimates. Specifically, the degree of dynamics in the money demand is in the range

φ ∈ [0.3,0.7]. This range comprises estimates obtained from DSGE models with MIU spec-

ifications of dynamic money demand and from reduced-form time series models estimated

with macro and micro data (see Appendix D). Onatski and Williams (2004) and Smets and

Wouters (2003) estimate a degree of habit formation in consumption of 0.4 and 0.57, respec-
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tively, using euro area data from Fagan, Henry, and Mestre (2005), and we center the range

for η around 0.5, η ∈ [0.3,0.7].

Furthermore, we consider a wide range of values for the relative standard deviation of veloc-

ity shocks, σm/σg ∈ [1
4 ,2], to capture an important distinction in the data for the U.S. and the

euro area. Whereas velocity shocks in the U.S. tend to be considerably more volatile than IS

shocks, velocity shocks in the euro area tend to be considerably less volatile than IS shocks

(see Appendix D). We return to this observation below. Finally, the range for the relative stan-

dard deviation of noise shocks is σξ/σg ∈ [1
3 ,1] (see Appendix D).

The other parameters are calibrated to reasonable point estimates. A subjective discount rate

β of 0.99 implies an annual real interest rate of close to three percent. The long-run income

elasticity of money demand ηy is unity. The (absolute) long-run interest rate semi-elasticity of

money demand ηi is 10, following Dotsey and Hornstein (2003). We use 0.32 for the degree

of price indexation κ ∈ [0,1) and 0.46 for the household’s relative risk aversion σ . Both val-

ues are from Onatski and Williams (2004). The slope of the hybrid NKPC is equal to 0.114,

which we computed from the deep parameters reported in Appendix D.

The standard deviation of productivity shocks σa is equal to 1
2σg, while the standard devi-

ation of cost shocks σu is equal to 1
3σg. These values are broadly consistent with empirical

evidence for both the U.S. and the euro area. We set σg to 0.01, though the exact value does

not matter for our results. As a benchmark calibration, all shocks except cost shocks ut are

serially correlated with AR coefficient equal to 0.9, but we check for the robustness of our

results using various AR coefficients. Cost shocks are often estimated with considerably less

serial correlation than the other shocks, and therefore we set the AR coefficient of cost shocks

to 0.2.

VI. QUANTITATIVE RESULTS

The results of the calibrated quantitative model confirm that the money gap co-moves with

the natural interest rate and suggest that the money gap matters for monetary policy, but there

are a number of unexpected twists. Our calibration approach yields a large correlation be-

tween the money gap and the natural interest rate. Interestingly, lags of the money gap co-

move most strongly with the natural interest rate because the money gap tends to lead the

natural interest rate by several quarters. Similarly, the role of the money gap as an indicator in

monetary policy is substantial, and this role is more pronounced in an economy closer to the
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euro area than the U.S. This is due to the fact that money demand in the euro area tends to be

less subject to shocks in velocity. As a consequence, the information contained in the money

gap tends to be of higher quality in the euro area than in the U.S.

A. Correlation between the money gap and the natural interest rate

The money gap and the natural interest rate co-move independently of the monetary policy

regime, even in the quantitative model. This happens because the money gap (23) still con-

sists only of shocks though its dynamics in terms of these shocks are richer in the quantitative

model than in the basic model. Likewise, the natural interest rate consists only of shocks be-

cause monetary policy still cannot influence the natural economy with flexible prices in the

quantitative model.

At the same time, the richer dynamics in the quantitative model suggest that the money gap

and the natural interest rate co-move also in terms of their leads and lags. We account for this

possibility and compute the dynamic correlation cor(mg
t+s,r

n
t ) using s= · · ·−1,0,1, · · · , where

s = 0 yields the contemporaneous correlation. We explore the correlation over the full sup-

port range for the key parameters φ ,η , and σm, which we calibrated in Section V.C, using a

sampling procedure that randomly draws from uniform distributions with parameter-specific

support.18 We then report the median correlation and the 10% and 90% quantile at each s for

a large number of such draws.

Figure 3 plots the dynamic correlation between the money gap and the natural interest rate

for the calibration with σm ≤ σg, which resembles the euro area. The median value of the

contemporaneous correlation is 0.1. As in the basic model, this correlation emerges from IS

shocks, which affect both the money gap and the natural interest rate through the marginal

utility of consumption. However, more striking than the magnitude of the contemporaneous

correlation is the pronounced lead and lag pattern. The lagged money gap co-moves con-

siderably stronger with the contemporaneous natural interest rate than the contemporaneous

money gap or its leads. For example, the money gap lagged by two, three, or four quarters

has a correlation with the contemporaneous natural interest rate of around 0.40. Thus, in the

quantitative model, the money gap leads the natural interest rate pronouncedly.

18The standard deviation σξ of the noise ξt in the output gap that the central bank observes does not affect the

correlation because the correlation is independent of monetary policy.
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Figure 3. Median dynamic correlation between money gap and natural interest rate jointly with the 10% and
90% quantile, at each s. We draw parameters φ ,η , and σm/σg independently from uniform distributions with
support range [0.3,0.7], [0.3,0.7], and [1/4,1], respectively. Quantiles are computed from 1,000 draws. All
other parameters are calibrated as described in Section V.C.

The reason for this is that the peak response of the money gap to the IS shock occurs on im-

pact, while the peak response of the natural interest rate occurs with a delay. With habit for-

mation in consumption, the household attempts to smooth both the level and the (quasi) change

in consumption such that these variables will respond only gradually to the IS shock. This

leads to a hump-shaped response in the natural interest rate, and the hump shape delays the

peak response of the natural interest rate. As a result, the money gap leads the natural interest

rate.

Figure 3 also indicates that the ranges that we calibrate for the key parameters φ ,η , and σm

create considerable variation around the median correlation, reading off cor(mg
t+s,r

n
t ) at each

lead or lag. We gauge the impact of the different parametrizations from the 10% and 90%

quantiles surrounding the median correlation. The correlation between the lagged money gap
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and the natural interest rate is significant and large, and this finding is robust across parametriza-

tions.

B. Optimal simple policy rules with money demand

Following the by now familar pattern, we ask what coefficients a welfare-maximizing cen-

tral bank would select in the quantitative model for a simple interest rule that incorporates the

money gap. We adopt the same informational assumptions as in Section IV. The central bank

minimizes a quadratic loss function obtained from expanding the lifetime utility of the rep-

resentative household in the quantitative model accurately to the second order (see Appendix

A).19 The loss penalizes variation in the (quasi) change of inflation and the output gap,

L = (1−β )E0

∞

∑
t=0

β t{(πt −κπt−1)
2 +λx(xt −δxt−1)

2 +λii2t } , (24)

where δ is a function of η , i.e., the habit formation in consumption, and other deep parame-

ters. The preference weight λx is also a function of deep parameters and equals 0.019 in our

calibration. With λi > 0, the central bank prefers stable nominal interest rates. Following

Woodford (2003), we set λi to five times the value for the weight λx, which yields 0.095.

To capture the dynamic characteristics of the money gap, the central bank optimizes a policy

rule that encompasses either the contemporaneous or lagged money gap, the observed output

gap, and inflation:

it = φm, jm
g
t− j +φxx̃t +φππt , j ≥ 0. (25)

As before, x̃t denotes the observed output gap that is equal to the actual output gap xt con-

flated with noise ξt . The central bank selects the policy coefficients φm, j,φx, and φπ to min-

imize the loss function (24) conditional on the rational expectation equilibrium of the quan-

titative model. While this policy problem is of exactly the same form as the one analyzed in

Section IV, we now resort to numerical optimization because of the more complicated struc-

ture of the quantitative model.

19Weber (2008) shows that loss function (24) is proportional to the utility-based loss function in the quantitative

model only after adding the term λm(mt −φmt−1 −εm
t )2. Here, we impose λm = 0 but our quantitative results are

insensitive to working with the utility-based weight λm > 0, which is a function of deep parameters.
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Table 1. Optimal policy coefficients (annualized) for euro area calibration.

σξ/σg φ�
m,0 φ�

m,1 φ�
x φ�

π % change in L

1/3 0.329 0.354 1.613 −5.644

2/3 0.327 0.083 1.659 −6.687

1 0.327 0.037 1.667 −6.883

1/3 0.295 0.341 1.611 −5.799

2/3 0.294 0.080 1.657 −6.865

1 0.294 0.035 1.665 −7.066

Notes: The policy rule with annualized nominal interest rate and annualized inflation rate is 4it = [4φm, j]m
g
t− j +

[4φx]x̃t + [φπ ]4πt , and reported coefficients are those in square brackets. The last column reports the percentage

change in L relative to the case with a zero coefficient for the money gap. For reference, the zero coefficient of the

money gap yields the optimized policy rule 4it = 0.185x̃t +1.914(4πt) using σξ/σg =
2
3 .

C. Quantifying the optimal policy coefficients

Following up on our analytical results, we explore the magnitude of the optimal coefficient

φ�
m, j for the money gap and its relation to the coefficient φ�

x for the observed output gap. To

avoid numerical overflow, we set the key parameters φ ,η ,σm, and σξ to specific values rather

than drawing them from distributions, and check for robustness in the next section. Both the

degree of dynamics in the money demand φ and the degree of habit formation in consumption

η are equal to 0.5. In this case, the money gap (23) remains a contemporaneous function of

shocks, as in the basic model. The relative standard deviation of velocity shocks σm/σg is
1
2 , which is a conservative choice given that estimates obtained from euro area data put the

ratio closer to 1
3 (see Appendix D). Finally, we consider three values for the relative standard

deviation of noise shocks σξ/σg, namely 1
3 , 2

3 , and unity, to shed light on how sensitive the

money gap coefficient reacts to changing the indicator quality of the observed output gap.

Table 1 reports the coefficients optimized for the policy rule (25). The second column shows

that the optimal coefficient φ�
m,0 of the rule with the contemporaneous money gap ( j = 0) is

positive, in line with our analytical results, and around 0.33. The money gap coefficient falls

to a value close to zero when we incorporate the natural interest rate in addition to the money

gap into the policy rule (not shown in the table). This finding confirms that the money gap

serves as an indicator variable of the natural interest rate also in the quantitative model. The

last column of Table 1 shows that using a policy rule that incorporates the money gap reduces
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the welfare loss from incomplete stabilization by about six percent, relative to using a policy

rule that is optimized for the case without the money gap.20

The optimal coefficients of the money gap and the observed output gap of the rule with the

contemporaneous money gap ( j = 0) react as expected to increasing the amount of noise

σξ/σg in the observed output gap. Table 1 shows that when the output gap is measured less

accurately, the money gap coefficient changes only marginally. However, the output gap co-

efficient decreases substantially from 0.35 to 0.04 because the central bank tilts its response

towards the best available indicator of the natural interest rate. These results also mirror those

by Smets (2002) and Rudebusch (2001), namely that output gap uncertainty reduces the re-

sponse to the output gap when the central bank pursues a simple but optimal rule.21

Figure 4 plots the coefficient φ�
m,0 and the ratio φ�

m,0/φ�
x for different values of the standard

deviation of velocity shocks relative to noise shocks, σm/σξ , and for various degrees of dy-

namics φ in the money demand (scales are inverted for reasons of display). The coefficient

φ�
m,0 in Panel A is positive and increases when the relative variability of velocity shocks falls,

confirming Result 2 earlier. Varying the dynamics in the money demand has ambiguous ef-

fects on the money gap coefficient depending on the values of σm/σξ , but the quantitative

impact of φ seems limited overall. In Panel B, the ratio φ�
m,0/φ�

x is higher, the more informa-

tive the money gap is relative to the output gap, i.e., the smaller σm/σξ is. This panel extends

the rationale underlying equation (17) to the quantitative model and reaffirms Result 3. Again,

changing the dynamics in the money demand φ has ambiguous but quantitatively small ef-

fects on the ratio of optimal policy coefficients.

D. The quantitative role of money demand in the U.S.

The results for the euro area extend to a calibration representing the U.S., even though the

more unstable money demand there makes the money gap a somewhat less attractive indicator

20To assess the welfare consequences of the money gap further, we compute the equivalent reduction in

steady state consumption that makes the household indifferent between the steady state and the economy with

shocks and a particular monetary policy. Adding the money gap to the policy rule closes 12.2 percent of the

consumption-equivalent gap between the best attainable monetary policy, i.e., the fully optimal policy under

commitment, which we obtain from Weber (2008), and the optimal policy rule that excludes the money gap.

21More generally, Swanson (2000) shows that certainty equivalence of policy coefficients does not apply to re-

stricted simple policy rules. Rather, policymakers should attenuate their reaction to the variable about which un-

certainty has increased, while they should respond more aggressively to those variables about which uncertainty

has not changed.
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Figure 4. Panel A shows the optimal money gap coefficient of the rule with the contemporaneous money gap
as a function of dynamics in money demand φ and the standard deviation of velocity shocks relative to noise
shocks. Panel B shows the ratio of the optimal policy coefficients φ �

m,0/φ �
x as a function of the same factors.

We vary σm/σξ by fixing σξ at 2
3 σg and varying σm accordingly.

of the natural interest rate. Our model treats changes in money velocity as exogenous and

attributes them to velocity shocks. Accordingly, for the U.S., we calibrate a large standard

deviation for velocity shocks using σm > σg.

Figure 5 plots the median dynamic correlation between the money gap and the natural inter-

est rate for the U.S. calibration (dashed line) and the euro area calibration (solid line). As in

Figure 3, we draw σm/σg from a uniform distribution with range [1,2] for the U.S. calibra-

tion, as opposed to the range [1/4,1] for the euro area calibration. Both correlations in the

figure are positive, but the euro area correlation is almost twice as large as the U.S. correla-

tion, which has a peak value of about 0.25 rather than the 0.4 for the euro area. Our model

assigns a lower correlation to the U.S. because more volatile velocity shocks disturb the in-

formation that the money gap holds about the natural interest rate. However, the pronounced
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lead-lag pattern, by which the money gap leads the natural interest rate over several quarters,

prevails also for the U.S. calibration.
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Figure 5. Median dynamic correlation between the money gap and the natural interest rate for the U.S. cal-
ibration with σm/σg ∈ [1,2] and for the euro area calibration with σm/σg ∈ [1/4,1]. For each calibration, the
median correlation is computed from 1,000 draws. We draw parameters φ and η independently from uniform
distributions with support range [0.3,0.7]. All other parameters are calibrated as described in Section V.C.

Table 2 reports the optimized coefficients for policy rule (25), and these coefficients come

from repeating the quantitative policy analysis using the U.S. calibration with σm = 1.5σg

rather than σm = 1
2σg. The contemporaneous money gap coefficient is positive, even though

it is smaller than for the euro area. The smaller response of the optimizing central bank to

the money gap reflects that the money gap holds less information about the natural interest

rate. In contrast, the coefficient of the observed output gap increases relative to the euro area

calibration. The central bank puts more weight on the observed output gap because the output
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Table 2. Optimal policy coefficients (annualized) for U.S. calibration.

σξ/σg φ�
m,0 φ�

m,1 φ�
x φ�

π % change in L

1/3 0.127 0.648 1.759 −1.776

2/3 0.126 0.148 1.835 −2.189

1 0.126 0.065 1.845 −2.267

1/3 0.113 0.641 1.759 −1.812

2/3 0.113 0.146 1.835 −2.246

1 0.113 0.064 1.845 −2.328

Notes: See Table 1 and the main text for explanation.

gap is an indicator of the natural interest rate whose quality improved relative to the quality of

the money gap.

E. Robustness checks

As a first check, we examine the policy rule (25) when we incorporate the money gap with

a lag of one quarter, j = 1. This is an interesting check because the natural interest rate co-

moves more with the lagged money gap than with the contemporaneous money gap. The cal-

ibration is for the euro area, but results for the U.S. are similar. Also, considering longer lags

does not change the results significantly.

The main difference between the policy rule with the contemporaneous money gap and the

policy rule with the lagged money gap is that the optimal coefficient of the lagged money gap

is below the optimal coefficient of the contemporaneous money gap (see the bottom panel of

Table 1 for the euro area calibration and of Table 2 for the U.S. calibration). Likewise, the op-

timal coefficient of the observed output gap in the policy rule with j = 1 is below the optimal

coefficient of the observed output gap in the policy rule with j = 0, and the analog is true for

the inflation coefficient (the ambiguities in Table 2 arise from rounding the exact coefficients).

This follows from the central bank preference for stable nominal interest rates. Compared to

the contemporaneous money gap, the better indicator quality of the lagged money gap im-

proves the central bank’s stabilization of inflation and the output gap with respect to distur-

bances in the natural interest rate, as is evident from the greater reduction in the loss function

L (see last column in Table 1 and 2). The central bank defers some of this improved stabiliza-

tion of inflation and the output gap to stabilize nominal interest rates more, and it achieves
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this by reacting less to the lagged money gap.22 Furthermore, the central bank reacts less to

the observed output gap because this variable depreciates as an indicator of the natural inter-

est rate, relative to the lagged money gap. Consequently, the inflation coefficient must fall to

ensure that the central bank continues to react optimally to cost shocks.

As a second robustness check, we examine a policy rule that incorporates the lagged nominal

interest rate in addition to the money gap, the observed output gap, and inflation. Optimizing

the coefficients of this rule for the case of σξ/σg =
2
3 yields

it = 1.135 it−1 +0.008 mg
t +0.004 x̃t +0.406 πt .

The result is a superinertial policy rule with the coefficient of the lagged interest rate exceed-

ing unity, as in Rotemberg and Woodford (1999). Superinertial policy behavior implies that,

for all bounded paths of mg
t , x̃t , and πt , the nominal interest rate will become infinitely large

(Woodford (1999)). However, given the central bank’s commitment to its policy rule, the pri-

vate sector adjusts to a stable equilibrium and the central bank achieves better stabilization

outcomes than without superinertia. With interest rate smoothing, the central bank engineers a

relatively large response to inflation. At the same time, it responds about twice as much to the

money gap than to the observed output gap, confirming that the money gap remains a useful

indicator variable for the central bank.

Our last robustness checks concern the sensitivity of the policy coefficients with respect to the

properties of shocks. First, when we vary the amount of serial correlation ρm of the velocity

shock between 0.75 and 0.999, while keeping the variance of the velocity shock constant, the

money gap coefficient varies between 0.3 and 0.4 and thus remains fairly constant.

Second, when we vary the amount of serial correlation ρg of the IS shock, the money gap

coefficient gradually increases for values of ρg below 0.9, while it gradually decreases for val-

ues of ρg above 0.9. In the limit of ρg towards unity, the natural interest rate ceases to depend

on the IS shock and the money gap coefficient approaches zero. However, this case does not

22 Without a preference for stable nominal interest rates, i.e., using λi = 0 instead of λi > 0, the coefficient φ �
m,1

equals 0.168 and does exceed the coefficient φ �
m,0, which is equal to 0.121. These numbers are for the euro area

calibration and with σξ/σg equal to 2
3 . Another difference between the policy rule with j = 0 and the policy

rule with j = 1 is that the latter rule is history dependent, while the former rule is not history dependent. The

impact of history dependence is difficult to isolate from the improved indicator quality of the lagged money gap.

However, for the case of λi = 0, the OLS estimate from running the simple regression rn
t = φm,1mg

t−1 + et is

very close to φ �
m,1. Thus, history dependence considerations do not seem to push φ �

m,1 far away from what the

indicator role of the lagged money gap would suggest.
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seem of practical relevance because the IS shock is an important driving force of the natural

interest rate in estimated DSGE models.

Finally, when we gradually transform the IS shock into the DF shock by raising b from zero

to unity, the money gap coefficient increases for small to intermediate values of b, much like

in the Panel A of Figure 2 for the basic model. To sum up, the usefulness of the money gap

appears reasonably insensitive to changing important dimensions of our quantitative model

and of the monetary policy rule.

VII. CONCLUSION

The natural interest rate is an important landmark of the stance of monetary policy, but it is

difficult to measure. Employing a conventional microfounded monetary model with a money-

in-utility specification of money demand, we show that the natural interest rate co-moves with

a transformation of the money demand, which we call the money gap.

The money gap has a number of interesting characteristics from the perspective of policymak-

ers. Unlike the natural interest rate, the money gap can be readily computed from the actual

data. Furthermore, the correlation between the money gap and the natural interest rate is of

considerable magnitude, and the money gap tends to lead the natural interest rate by several

quarters. Finally, the link between the money gap and the natural interest rate is independent

of the monetary policy regime. These characteristics do not depend on the specific model

used and are also the same using a quantitative model with a dynamic money demand func-

tion.

Our main result is that a central bank that optimizes a simple interest rule without observing

the natural interest rate will incorporate the money gap in addition to the observed output gap

and inflation. The information contained in the money gap about the natural interest rate al-

lows the nominal interest rate to adjust and stabilize the economy. Another result is that in

the view of policymakers, the money gap augments the information contained in the observed

output gap, and the weight attached to either reflects the relative quality of the money gap as

an indicator of the natural interest rate.

These results support the view that money demand can play a relevant informational role in

aiding monetary policymakers, even though the mechanism through which money demand

becomes relevant does not rely on the more conventional notion of a longer-term correlation

between money growth and inflation. An interesting extension to the approach we use here
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would be to pursue a joint approach, following Svensson and Woodford (2003), to the central

bank’s signal extraction and optimal monetary policy problem.
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APPENDIX A. BASIC MODEL AND QUANTITATIVE MODEL

We briefly recap the main features of the quantitative model, which we take from Giannoni

and Woodford (2005) and Weber (2008). Then, we provide its equations, calculated to the

first order, and parameters. Finally, we show how to obtain the basic model as a special case

of the quantitative model.

Description of quantitative model

The model comprises three types of agents: infinitely many firms, a representative household,

and a government. The firm indexed by j uses technology Yjt = At f (Njt) to produce quan-

tity Yjt with Njt hours of labor, and f (.) is increasing and concave. Productivity shock At > 0

is exogenous and has a positive mean. The firm sells its product in a monopolistically com-

petitive market and thus has pricing power. It can adjust its price Pjt only infrequently with

probability α , as in Calvo (1983). When the firm cannot adjust its price, it indexes its price to

inflation in the previous period, Pjt = Pjt−1πκ
t−1, where κ denotes the degree of indexation.

The representative household and the government demand the products of the firms and ag-

gregate them according to the Dixit-Stiglitz aggregator with a constant elasticity of substi-

tution between products equal to θ > 1. Aggregate household consumption and aggregate

autonomous consumption are denoted Ct and Gt , respectively. The household derives utility

from holding money and from consumption, maintains a financial portfolio that comprises

money and bonds, and supplies labor. The expected lifetime utility function of the household

exhibits habit formation in consumption and in the real money demand,

E0

∞

∑
t=0

β t [u(Ct −ηCt−1,ψt)+q(Mt/Pt −φMt−1/Pt−1,εm
t )−h(Nt)] . (26)

The government implements monetary policy using a policy rule for the short-term nominal

interest rate, which we describe in the main text. Moreover, the government levies lump sum

taxes, a labor income tax, and issues bonds.

The model’s equilibrium is inefficient for three reasons. First, output is inefficiently low as a

result of monopolistically competitive product markets. Second, the constraint on firms’ price

setting drives a wedge between the firms’ desired price and the firms’ constrained optimal

price, and this wedge distorts allocation. Third, despite the fact that money is supplied at zero
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social costs, a non-negative price of money liquidity prevents the economy from reaching

money holdings satiation.

Quantitative model equations

We calculate the quantitative model to the first order around the zero inflation steady state

with money holdings close to satiation. We subtract the linearized model with flexible prices

from the linearized model with sticky prices. The model with flexible prices corresponds to

the natural economy. Quantitative model equations are, apart from the policy rule, as follows:

x̄t = Etx̄t+1 − (1−ηβ )σ(it −Etπt+1 − rn
t )

x̄t = (xt −ηxt−1)−ηβEt(xt+1 −ηxt)

πt −κπt−1 = μ[(xt −δxt−1)−δβEt(xt+1 −δxt)]+βEt(πt+1 −κπt)+ut

mt −φmt−1 − εm
t = φβEt [mt+1 −φmt − εm

t+1]+θyI(Yt ,gt)−θiit

I(Yt ,gt) = Et(1−ηβL−1)[(1−ηL)Yt −gt ]/((1−ηβ )(1−η))

rn
t = −ϕEt [(1−L−1)(1−ηβL−1){(1−ηL)Y n

t −gt}]
Et [ϕ(1−ηβL−1)(1−ηL)+ω ]Y n

t = ϕEt(1−ηβL−1)gt +(1+ω)at

xt = Yt −Y n
t .

The first two equations represent the intertemporal IS equation using habit formation in con-

sumption and subtracting the intertemporal IS equation for the natural economy. We subsume

the preference shock ψt and the autonomous demand shock Gt as the IS shock gt .
23 The third

equation is the NKPC with price indexation, habit formation in consumption, and amended

ad hoc cost shocks ut . The fourth and fifths equations represent the dynamic money demand

function, which is described in the main text. The last three equations define the natural in-

terest rate, the natural level of output, and the output gap as the difference between actual and

natural output, respectively.

23The autonomous demand shock has a zero mean such that Y =C in steady state.
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As in Chapter 3 and 5 of Woodford (2003) and as in Giannoni and Woodford (2005), we de-

fine the parameters as

σ =− uc
Yucc

> 0 , ϕ−1 = (1−ηβ )σ ,

ν = hNNN̄
hN

, χ = f
N̄ f ′ , ωp =− Ȳ f ′′

( f ′)2 , ωw = νχ , ω = ωp +ωw .

ωp reflects by how much higher output increases prices conditional on wages, while ωw re-

flects by how much higher output increases wages conditional on prices. The parameters that

determine the slope of the NKPC μ are

χ̆ = ω+ϕ(1+η2β )
βϕ , ϑ = β

2

(
χ̆ +

√
χ̆2 −4η2β−1

)
, δ = ηϑ−1 , Ξp =

(1−αβ )(1−α)
α (1+θωp)

−1

and μ = ϕη
δ Ξp. The short-run money demand elasticities are θk = (1− φ)(1− φβ )ηk, with

k = y, i. The long-run money demand elasticities are ηy =
(1−ηβ )(1−η)Yucc(1−β )

(1−φβ )(1−φ)mqmm
> 0 and ηi =

− (1−ηβ )ucβ
(1−φβ )(1−φ)mqmm

> 0, using ucc < 0 and qmm < 0.

Central bank loss function

Giannoni and Woodford (2005) derive the welfare-based loss function for the New Keyne-

sian model with habit formation in consumption and price indexation, like in our quantitative

model, and Weber (2008) extends this loss function to the case of habit formation in money

demand. The welfare-based weight attached to stabilizing the output gap is λx = δ0Ξp/θ ,

using δ0 = ϑϕ . Furthermore, the weight attached to stabilizing nominal interest rates λi is re-

lated to the central bank’s concern with the zero lower bound on nominal interest rates. While

a linear-quadratic policy problem of the form we consider does not allow a nonlinear con-

straint, such as the zero lower bound, to be imposed directly, Woodford (2003) imposes a zero

lower bound indirectly by imposing the alternative constraint that the likelihood of the nomi-

nal interest rate taking values below zero is small. In our setup, the central bank’s preference

for stable nominal interest rates also implies this alternative constraint.

Basic model as special case of quantitative model

The basic model constitutes the core of the quantitative model without habit formation in con-

sumption and in real money demand and without price indexation. Accordingly, the equations

(4) to (7) of the basic model in the main text can be recovered as the special case η = φ =

κ = 0 of the quantitative model in Appendix A. The restriction η = 0 also implies δ = 0.
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Thus, the slope of the NKPC μ in the basic model reduces to

μ =
(1−αβ )(1−α)

α

(
ω +σ−1

1+θωp

)
,

because η
δ = ω+ϕ

ϕ = ω+σ−1

σ−1 computing the limit with η = 0 and δ = 0. Furthermore, in the

basic model, we impose the restriction σ = 1, which corresponds to log utility of consump-

tion.

APPENDIX B. EQUILIBRIUM AND POLICY COEFFICIENTS IN THE BASIC MODEL

We proceed in two steps. First, we solve the basic model’s rational expectation equilibrium

conditional on the central bank’s policy rule. Second, we minimize the central bank’s loss

function by choosing the coefficients of the policy rule conditional on the solution for the

rational expectation equilibrium.

Solving the rational expectation equilibrium

We rearrange the equations (4) to (7) and the policy rule (13) in the main text by substituting

for rn
t and Y n

t in terms of shocks and by using the definition x̃t = xt +ξt :

Etxt+1 +Etπt+1 = xt + it +(1−ρ)at − (1−ρ) ω
1+ω gt

βEtπt+1 = πt −μxt −ut

0 = −it +φmmg
t +φxxt +φππt +φxξt

0 = −mg
t +ηygt − εm

t .

Then we express the model in matrix notation,

⎡
⎢⎢⎢⎢⎣

1 1 0 0

0 β 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

Etxt+1

Etπt+1

Etit+1

Etm
g
t+1

⎞
⎟⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

1 0 1 0

−μ 1 0 0

φx φπ −1 φm

0 0 0 −1

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

xt

πt

it
mg

t

⎞
⎟⎟⎟⎟⎠+

⎡
⎢⎢⎢⎢⎣

1−ρ 0 − (1−ρ)ω
1+ω 0 0

0 −1 0 0 0

0 0 0 0 φx

0 0 ηy −1 0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

at

ut

gt

εm
t

ξt

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and summarize it as AEtyt+1 = Byt +Cst . Matrix B depends on the policy coefficients φm,φx,

and φπ . Shocks st evolve according to st = Dst−1 +Fvt , using D = ρIn, where In denotes the

identity matrix with dimension n equal to number of shocks. Matrix F = diag(σa,σu,σg,σm,σξ )
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contains non-negative diagonal elements. Vector vt contains the shock residuals, which are

mutually independent and serially uncorrelated, with zero mean and unit variance.

To solve for the vector of endogenous variables yt as a function of shocks, we postulate a so-

lution of the form yt = Γst and solve for Γ using the method of undetermined coefficients. We

then plug the postulated solution into the model AEtyt+1 = Byt +Cst and compute the con-

ditional expectation Etst+1 to obtain ρAΓst = BΓst +Cst . Imposing st = 1 and solving for Γ
yields

Γ(φm,φx,φπ) = (ρA−B)−1C ,

provided (ρA−B) is invertible. Matrix Γ depends on the policy coefficients φm,φx, and φπ

because B and C depend on them.

Solving for policy coefficients

The central bank solves a linear-quadratic policy problem by choosing the policy coefficients

to minimize its quadratic loss function subject to the linear equilibrium constraints. Formally,

the policy problem is

min
φm,φx,φπ

var(πt)+λxvar(xt)+λivar(it), subject to

yt = Γ(φm,φx,φπ)st

st = Dst−1 +Fvt , s−1 given.

Here, λx > 0 and λi ≥ 0. We rearrange this problem as follows. First, we rearrange the loss

function as L = var(πt)+λxvar(xt)+λivar(it) = E[y′tWyt ], using the weighting matrix W =

diag(λx,1,λi,0) and denoting the unconditional expectation as E. We then use yt = Γst to

rearrange the scalar L according to

L = E[s′tΓ
′WΓst ] = E[trace(s′tΓ

′WΓst)] = trace(Γ′WΓE[sts′t ]) ,

and obtain E[sts′t ] = (1−ρ2)−1FF ′ from the recursive law of motion of shocks. Thus,

L(φm,φx,φπ) = (1−ρ2)−1trace(Γ′WΓFF ′) .

L depends on the policy coefficients φm,φx, and φπ because Γ depends on them. Finally, we

compute the derivatives of L with respect to the policy coefficients using Matlab’s symbolic

toolbox.
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Modeling discount factor shocks

We model the co-movement among the IS shock gt , the velocity shock εm
t , and the productiv-

ity shock at by augmenting the impact matrix F of the shock process st = Dst−1 +Fvt by the

two off-diagonal elements F13 = −bσg/(1+ω) and F43 = bηyσg. The new elements imply

that any movement in the residual vgt to the gt shock also affects the productivity shock and

the velocity shock. The scaling of the new elements implies that gt affects all terms in the pe-

riod utility function uniformly. For the case ρ = 0, the covariance matrix E(sts′t) = FF ′ of the

shocks st is

E(sts′t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b2

(1+ω)2 σ2
g +σ2

a 0 − b
1+ω σ2

g − ηyb2

1+ω σ2
g 0

0 σ2
u 0 0 0

− b
1+ω σ2

g 0 σ2
g ηybσ2

g 0

− ηyb2

1+ω σ2
g 0 ηybσ2

g η2
y b2σ2

g +σ2
m 0

0 0 0 0 σ2
ξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We derive the OLS interpretation of the money gap coefficient by computing the covariance

between the money gap and the natural interest rate and by computing the variance of the

money gap in the model with the DF shock. The covariance is

cov(mg
t ,r

n
t ) = E[mg

t rn
t ] = E[(ηygt − εm

t )( 1
1+ω gt −at)]

= E[ ηy
1+ω g2

t − 1
1+ω gtεm

t −ηygtat +atεm
t ] =

ηy
1+ω (1−b)(1+b)σ2

g .

In the last setp we use the fact that all second moments in the second to last step are in the

covariance matrix E(sts′t). The variance of the money gap is equal to

var(mg
t ) = E[(ηygt − εm

t )2] = E[η2
y g2

t −2ηygtεm
t +(εm

t )2] = η2
y (1−b)2σ2

g +σ2
m .

In the last step we again use the fact that all second moments are in E(sts′t). Dividing cov(mg
t ,rn

t )

by var(mg
t ) yields φ�

m.

APPENDIX C. THE MONEY GAP WITH A DYNAMIC MONEY DEMAND FUNCTION

To derive the money gap in equation (23) in the main text, we iterate the dynamic money de-

mand function (20) forward and obtain

mt −φmt−1 − εm
t = Et

∞

∑
s=0

(φβ )s [θyI(Yt+s,gt+s)−θiit+s] .
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We plug in I(Yt+s,gt+s) = Et(1−ηβL−1)[(1−ηL)Yt+s − gt+s]/((1−ηβ )(1−η)) and re-

arrange,

mt −φmt−1−εm
t =Et

∞

∑
s=0

(φβ )s[θy
(1−ηβL−1)(1−ηL)

(1−ηβ )(1−η)
Yt+s−θiit+s−θy

(
1−ηβL−1

(1−ηβ )(1−η)

)
gt+s

]
.

The first term in square brackets corresponds to the income measure I(Yt+s,0), which does

not refer to the IS shock, multiplied by θy. Replacing this measure and substituting for the

money demand elasticities θy and θi, we obtain

mt −φmt−1−εm
t =(1−φ)(1−φβ )Et

∞

∑
s=0

(φβ )s[ηyI(Yt+s,0)−ηiit+s−ηy

(
1−ηβL−1

(1−ηβ )(1−η)

)
gt+s

]
.

Plugging in the definition (22) of mp
t from the main text and rearranging, we then obtain

mt = φmt−1 +(1−φ)mp
t −
[
ηy(1−φ)(1−φβ )Et

∞

∑
s=0

(φβ )s
(

1−ηβL−1

(1−ηβ )(1−η)

)
gt+s − εm

t
]
.

Using the partial adjustment representation of the money demand function (21) shows that the

term in square brackets corresponds to the money gap. Rewriting the infinite sum in square

brackets as the inverted lead polynomial (1− φβL−1)−1 yields the money gap in equation

(23) in the main text.

APPENDIX D. CALIBRATION

This appendix refers to further literature to support our calibration and put it into a larger per-

spective. It also provides our calibration of the deep parameters required to compute the slope

of the NKPC.

Degree of dynamics in the money demand φ

Andres, Lopez-Salido, and Nelson (2009) estimate coefficients of lagged money demand

in their money demand function between 0.4 and 0.5. They consider a DSGE model with

the MIU specification of money demand and use U.S. and euro area data. Others arrive at

higher estimates. Nelson (2002), for example, calibrates a value of 0.7 in a DSGE model with

the MIU specification of money demand, using time-series evidence. Ball (2002) estimates

0.8 using a time-series model for U.S. data for M1, while Stracca (2003) estimates 0.92 us-

ing a time-series model for euro area data for M1. Heller and Khan (1979) obtain estimates
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between 0.7 and 0.8 using a time-series model for U.S. data for M2, and Coenen and Vega

(2001) estimate 0.87 using a time-series model for euro area data for M3. Tin (1999) again

arrives at much lower estimates between 0.25 and 0.45 using U.S. micro data for monetary

assets.

Standard deviation of velocity shocks σm

Andres, Lopez-Salido, and Valles (2006) and Andres, Lopez-Salido, and Nelson (2009) esti-

mate a relative standard deviation of velocity shocks σm ≈ 1
3σg in their DSGE models with

dynamic money demand and using euro are data. When they use U.S. data, however, An-

dres, Lopez-Salido, and Nelson (2009) obtain a much larger estimate, σm ≈ 2σg. Arestis,

Chortareas, and Tsoukalas (2010) use U.S. data and obtain σm ≈ 1.4σg. McCallum and Nel-

son (1999) also use U.S. data and obtain σm ≈ 1.3σg.24 Ireland (2004) estimates a DSGE

model with a static instead of a dynamic money demand function using U.S. data. However,

he obtains σm ≈ 1
2σg, an estimate that is more in line with the euro area evidence than with

the U.S. evidence.

Standard deviation of noise shocks σξ

Orphanides (2003), Coenen, Levin, and Wieland (2005) and Scharnagl, Gerberding, and Seitz

(2010) examine the amount of noise in the observed output gap for U.S., euro area, and Ger-

man data, respectively. They report estimates for σξ very close to but below 0.01. Further-

more, Ireland (2004), Andres, Lopez-Salido, and Valles (2006), and Andres, Lopez-Salido,

and Nelson (2009) estimate σg as 0.019, 0.012, and 0.015 respectively. Based on these num-

bers, a reasonable estimate of the relative standard deviation of noise shocks is σξ ≈ 2
3σg, and

we center our interval around this value.

Slope of NKPC μ

As is evident from Appendix A, a number of deep parameters determine slope μ of the NKPC

in the basic and quantitative model (see Appendix A for the basic model). We calibrate these

parameters as follows. The mean duration of price contracts is four quarters using α equal to

0.75. The steady state markup is 20% using θ equal to 6, and the labor supply elasticity with

24We disentangle their money demand residual, which comprises IS and velocity shocks, into its components.
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respect to real wages ν is 0.2. Moreover, a Cobb–Douglas technology f (.) with a labor co-

efficient of 2/3 implies that ωw is equal to 0.3 and ωp is equal to 0.5. These two numbers are

comparable to numbers in Giannoni and Woodford (2005). They imply that ω = ωw +ωp is

equal to 0.8.




