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I. Introduction

This paper discusses several popular methods to estimate the ‘output gap’ using available
macroeconomic data, provides a unified, natural concept for the analysis, and demonstrates
how to decompose the output gap into contributions of observed data on output, inflation,
unemployment, and other variables. A simple bar-chart of contributing factors, in the case
of multi-variable methods, sharpens the intuition behind the estimates and ultimately shows
‘what is in your output gap.’ The paper demonstrates how to interpret effects of data revisions
and new data releases for output gap estimates (news effects) and how to obtain more insight
into real-time properties of estimators.

The unifying approach is the theory of linear filters. I demonstrate that most methods for out-
put gap estimation can be represented as a moving average of observed data – as a linear fil-
ter. Such a representation provides insight into which variables contribute to the estimate of
the unobserved variables, and at what frequencies. Knowing this provides a better understand-
ing of the estimate and of its revision properties.

Which output gap estimation approaches can be analyzed as linear filters? As demonstrated
below, these range from (i) univariate or multivariate statistical filters to (ii) simple multivariate-
filters with some economic theory (Phillips curve/IS curve), including also a (ii) production
function approach, and even (iv) state-of-the-art DSGE (dynamic stochastic general equilib-
rium) models with tight theory restrictions.1

One thing that this paper does not intend to discuss is what method for output gap estima-
tion is the most sensible, or the optimal one. It needs to be understood that the concept of the
output gap is meaningful only when properly defined, before being embedded into an empir-
ical model. Nevertheless, the importance of the output gap as a concept in economic policy
requires a thorough understanding of model-based estimates, when used for monetary or fis-
cal policy.

Example To frame the discussion below, consider a very simplified, stylised example that
illustrates a decomposition into observables. The multivariate model of the ‘extended Hodrick-
Prescott’ filter, as in principle suggested in the paper by Laxton and Tetlow (1992), features a
simple aggregate demand determination of the output gap, xt, and a backward-looking Phillips

1Calculations and analysis analogous to this paper have been used since 2007 together with the Czech
National Bank DSGE core projection model, see Andrle and others (2009b).
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curve to determine the deviation of inflation from the target, π̂t. Aggregate output, yt, is com-
posed of the output gap and the potential output, τ. For simplicity, I assume that potential out-
put growth follows a driftless random walk.

The state-space form of the simple model is as follows:

yt = xt +τt (1)

τt −τt−1 = τt−1−τt−2 +ετt (2)

xt = ρxt−1− κπ̂t +εx
t (3)

π̂t = λπ̂t−1 + θxt +επt . (4)

Given observed data for {yt, π̂t} the problem is to estimate the decomposition of output into
its unobserved components, {xt, τt}. For a state-space form the estimates are easily available
using the well-known algorithms for the Kalman filter and smoother.

Equivalently, the implied penalized least squares formulation is

min
{τ}T0

T∑
t=0

1
σ2

x
[εx

t ]2 +
1
σ2
τ

[ετt ]2 +
1
σ2
τ

[επt ]2. (5)

The goal of the analysis is, however, the implied moving average representation of the model,
i.e. linear filter representation, given as follows:

xt|∞ = A(L)yt + B(L)π̂ =

∞∑
i=−∞

Aiyt+i +

∞∑
i=−∞

Biπ̂t+i, (6)

where A(L),B(L) are two-sided linear filters and L is a linear operator, such that L jxt := xt− j.

The weights of these filters are completely determined by the structure of the economic model
and its parameters.2

Under rather general conditions, estimates using the state-space form (1)–(4), penalized least-
squares (5), and filter specification (6) are equivalent. Simply put, the unifying approach
makes use of equivalence between the methods of (i) Penalized Least-Squares, (ii) Wiener-

Kolmogorov filtering and (iii) Kalman filter associated with these model representations.
See e.g. Gomez (1999) for a lucid discussion. Each of the three approaches (least-squares,
Wiener-Kolmogorov or Kalman filters) has its benefits and limitations.

2see Appendix C for details
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The key ingredient for obtaining flexible decompositions of unobservables in terms of observed

data, and for the analysis of revision properties, is the linear filter representation (6). For the
model above, expression (6) clearly indicates what portion of the output gap is identified due
to observations on output, yt, and due to deviation of inflation from the inflation target, π̂.
Expression (6) assumes a doubly-infinite sample and is a starting point for the analysis of
finite sample implementation. Extending the sample size will lead to revised estimates, to a
well-known ‘end-point’ problems or ‘news effect’. The example provides the general result
that is analysed in greater detail in the rest of the paper.

Despite the extensive literature on output gap/potential output estimation using multivariate
filters, beginning with the aforementioned contribution of Laxton and Tetlow (1992), to my
knowledge, analysis in terms of decomposition into observables and filter analysis of output
gaps has not been presented before. Also, the idea of putting most of the estimation method
into a common framework of linear filters has not been explored explicitly before and is a
novel approach for comparing estimates obtained by different methods.

The roadmap of the paper is as follows. The Introduction motivated a filter representation for
output gap estimation and its decomposition into observables, showing ‘what is in your out-
put gap’. The Methods section demonstrates how to formulate output gap estimation methods
as linear filters, decompose the output gap into observables, and demonstrates the benefits of
the filter representation for understanding the revision properties of real-time estimates. The
subsequent Application section gives a simple extension of the Hodrick-Prescott filter, which
proves useful for multivariate models, and illustrates the main ideas of the paper using a semi-
structural and fully structural DSGE model for output gap estimation.

II. Methods

This section focuses on formulating output gap estimation methods as linear filters and decom-
posing it into observables. State-space models, univariate statistical filters, structural vector
auto-regressions, and a production function approach are considered. Subsequently, the revi-
sion properties of real-time estimates of output gap are discussed exploiting a filter represen-
tation.

Before delving into details of various estimation methods and calculations, it is crucial to
understand that the goal of obtaining a linear filter representation serves practical purposes.
It allows analysts to understand the weighting scheme behind the estimate, chart the output



7

gap as a function of underlying data and quantify the sources of revised estimates when the
sample is extended or revised. A formalized analysis lowers the burden of excessive experi-
menting.

The benefits of the filter representation are numerous and this section focuses on a small sub-
set only. In particular, an explicit frequency domain analysis is omitted. It is important though
that the knowledge of the filter transfer function allows to design structural economic models
as optimal filters.

Output gap estimates using methods discussed below can be expressed as a (multivariate)
linear filter representation,

xt|T =

T∑
i=t0

w1,ty1,t−i + · · ·+

T∑
i=t0

wn,tyn,t−i =

n∑
k=1

ξk, (7)

where a particular unobservable variable xt|T —the output gap in this case–is expressed as a
weighted average of an observed sample, yt, finite or infinite, when t0→−∞,T →∞. yi. Here
i = 1 . . .n and thus xt|T is decomposed into contribution of n factors, ξ j.

A multivariate version of the moving average, in case of multiple unobservables, with a doubly-
infinite sample, takes the form

Xt =

∞∑
i=−∞

WiYt−i = B(L)Yt, (8)

which is a starting point for a theoretical analysis. Practical calculations, however, are not
restricted to an infinite amount of data, nor to time-invariant weights.

The model-implied multivariate moving average, afilter B(L) =
∑

i Bizi, can be analyzed in
time- or frequency-domain, as is the case for univariate filters, in terms of their gain, coher-
ence or phase-shifts between variables and, the overall frequency-response function charac-
teristics.

The subsequent subsections provide a detailed treatment of output gap estimation methods
and their conversion to a filter representation analogous to (7) or (8), which answers the ques-
tion, ‘what is in the output gap’. Although the estimation methods are different, the principle
is always the same, which allows for a direct comparison of the results.



8

A. Formulating Potential Output Estimates as Linear Filters

1. State-Space Forms – Semi-structural and DSGE Models

Formulating potential output estimators in a state-space form as linear filters is surprisingly
simple. This is the case since the celebrated Kalman filter, see e.g. Kalman (1960) or Whittle
(1983), originates from the Wiener filtering theory and deals with an important special class
of stochastic processes.

The state-space formulation of the potential output estimation became very popular, partly
due to its flexibility, see e.g. Kuttner (1994), Laubach and Williams (2003), inter alios. The
state-space model is easy to formulate and modify, easily handles missing data or non-stationary
dynamics, and is a natural representation for linearized recursive dynamic economic models.

The missing piece in the literature on the multivariate model analysis is the explicit acknowl-
edgement and use of the fact that the Kalman filter and smoother3 are actually just that –
filters. As demonstrated above, an explicit linear filter formulation is useful for obtaining a
decomposition into observables. The formulation of the state-space model as a linear filter,
the filter weights, and a very practical implementation of decomposition into observables for
state-space models, follow.

Filter representation For the purpose of analysis, it is assumed that the model takes the
following state-space form:

Xt = TXt−1 + Gεt (9)

Yt = ZXt + Hεt, . (10)

Here ε∼ N(0,Σε), Σε = I and thus structural shocks are not correlated with measurement error
shocks, with no loss of generality. The vector of transition, or state, variables is denoted by
Xt, whereas observed variables are denoted by Yt. By imposing a restriction that GΣεH′ = 0,
it is guaranteed that measurement errors and structural shocks are uncorrelated.

The state-space model (9)–(10) can be used to estimate the unobserved states and shocks
{Xt, εt} from the available observables {Yt}. The output gap is one of the elements in Xt. I

3 The Kalman filter is a one-sided, causal estimate of the state xt based on information up to the period
[t0, . . . , t]. The Kalman smoother is a two-sided, non-causal filter that uses all available information to estimate
the state xt|T based on [t0, . . . ,T ].
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shall focus mainly on the ‘smoothing’ case, i.e. when estimates of Xt are based on observa-
tions available for t = 0, . . .T , using the notation E[Xt|YT , . . . ,Y0] = Xt|T .

In the case of multivariate models with multiple observables, the possibilities for analysis
are richer than in the case of univariate models. If meaningful, the exploration of impulse-
response and transfer functions provides insights regarding the model properties, together
with the popular structural shock decomposition. In other words, if the shocks have some
structural interpretations, one can express the observed data (and unobserved states) as cumu-
lative effects of past structural shocks,

Yt = [ZA(L) + H] ε̂t, Xt|∞ = A(L)ε̂t =

∞∑
j=0

T jGε̂t− j, (11)

where A(L) = (I−TL)−1G and ε̂t, Xt|∞ denote a mean squared (Kalman smoother) estimate of
the structural shocks, ε, and state variables X.4 Expression (11) is frequently used in a DSGE
analysis for storytelling and interpretation of macroeconomic data.

Now is the time to reverse the logic and ask the question, “What observed data drive each
particular unobserved structural shock and state variables?" That is the purpose of this paper –
to draw a closer attention to a presentation of the unobserved state estimates as a function of
the observed data. In the case of a doubly-infinite sample the model can be expressed as

Xt|∞ = Ω(L)Yt =

∞∑
i=−∞

ΩiYt+i. (12)

In real world applications, where the sample is always finite, the optimal finite sample imple-
mentation of (12) leads –or at least should lead– to a multivariate linear filter with time vary-

ing weights,

Xt|T =

T∑
τ=t0

Ωτ,tYτ+Ω0,tX0. (13)

Here the weight sequence varies with every time period t. That is because the Kalman smoother
carries out an optimal mean-square approximation of the infinite filter Ω(z) =

∑∞
i=−∞Ω jz j

with a finite length filter Ωt(z) =
∑T

i=t0 Ω j,tz j, so as to minimize the distance ||Xt|∞ −Xt|T ||
2. It

operates under the assumption that the model (9)–(10) is the data generating process for the
data. More on this in a discussion of real-time properties of output gap estimates below.

4Semi-infinite sample size is assumed for simplicity only, finite sample analysis is trivial.
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To decompose the output gap into observables and to analyze data revisions using (13), it
remains to either calculate the time varying weights of the filter or to reformulate the prob-
lem such that one can avoid the computation of weights. Luckily, both options are readily
available and their description follows.

Weights of the Filter Weights of the filter Ω(L) are not data-dependent and are a func-
tion of the model specification only.5 In the case of the doubly-infinite sample, the Wiener-
Kolmogorov formula, see Whittle (1983), implies that Ω(z) = ΓXY(z)ΓY(z)−1. Here ΓY(z) and
ΓXY(z) stand for auto-covariance and cross-covariance generating functions of the model:

ΓXY(z) = (I−Tz)−1GΣεG′(I−T′z−1)−1Z′ (14)

ΓYY(z) = Z(I−Tz)−1GΣεG′(I−T′z−1)−1Z′+ HΣεH′. (15)

The transfer function of the model, Ω(z), is the key ingredient for a frequency-domain analy-
sis of the filter. In the Applications section below, I explore transfer function gains for a semi-
structural model of the output gap, which indicates the most relevant frequencies of observed
time series for the output gap estimate. The core of the analysis is in time domain and thus the
weights are needed.

For all but very simple and small models, it is difficult to get an analytical description of the
weights in (12) using the transfer function of the model. The weights can, however, always
be obtained numerically. An inefficient, but operational way would also be to compute the
inverse Fourier transform of (12). Koopman and Harvey (2003) provide a recursive way to
calculate time-varying weights in (13) for general state-space models and a lucid paper by
Gomez (2006) provides time-domain formulas to calculate weights in (12).

In particular, Gomez (2006) shows that for the model (9)–(10) the weights Ω j, adjusted to
model notation above, follow as

Ω0 = P(Z′Σ−1
−LR|∞K) (16)

Ω j = (I−PR|∞)L− j−1K j < 0 (17)

Ω j = PL′ j(Z′Σ−1
−L′R|∞K) j > 0, (18)

where L ≡ T−KZ, K denotes the steady-state Kalman gain and P is the steady-state solu-
tion for the state error covariance given by a standard discrete time algebraic Ricatti equa-

5When the parameters of the model are estimated using the data, the weights become, indirectly, a function
of a particular dataset.
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tion (DARE) associated with a steady-state solution of the Kalman filter. R|∞ is a solution
to the Lyapounov equation, R|∞ = L′R|∞L + Z(ZPZ′ + HΣεH′)−1Z′, associated with the
steady-state Kalman smoother solution. R|∞ is the steady-state variance of the process, rt|∞,
in the backward recursion, Xt|∞ = Xt|t−1 + Prt|∞, where in finite-data smoothing rt−1 is a
weighted sum of those innovations (prediction errors) coming after period t − 1. Finally,
Σ = Z(ZPZ′+ HΣεH′).6

The relationship between the time-invariant weights of the filter and the time-varying weights,
used in the case of the finite sample implementation by the Kalman smoother, is unique and is
discussed below in the section devoted to real-time properties and news effects. The intuition
behind the re-weighting is simple, though. The Kalman smoother implementation implic-
itly provides optimal linear forecasts and backcasts of the sample and applies the convergent
time-invariant weights.

Practical Implementation of the Decomposition into Observables To compute the observ-
able decomposition one can always calculate the weights using Koopman and Harvey (2003)
recursions and implement the moving average calculations. That requires calculating and
storing large objects, pre-programmed tools, or a little bit of advanced knowledge of state-
space modeling. Sometimes, time constraints might prevent analysts from using these tools.
Having a shortcut is thus beneficial.

A particularly simple and accurate way is to view the Kalman smoother as a linear function
of multiple inputs, denoted by X = F (Y), where X and Y are (T × n) and (T ×m) matrices.
The great thing about that function is that it is linear. For stationary processes, the Kalman
smoother provides the least squares estimates of the form X = Ω̂Y, where Ω̂ is the matrix
of time-varying filter coefficients. Trivially, for two different sets of observables, {YA,YB},
one obtains XA −XB = Ω̂(YA −YB). By appropriate non-overlapping grouping of differences
in inputs, one can easily obtain the effects of the change of measurements on all estimated
unobservables and carry out the decomposition analysis. This method works for any model
with two different sets of observables and a common initial state, unless the change in the
initial state is treated as well. There is no need to know the values in Ω̂; the whole decompo-
sition of the deviations in the two estimates can be obtained by successive runs of the Kalman
smoother with different inputs.

6The question of non-stationary models is more difficult, but for detectable and stabilizable models the
Kalman filter/smoother converges to steady-state since, despite the infinite variance of states, the distance of
the state to the estimate is stationary with finite variance. In the case of Wiener-Kolmogorov filter, the formulas
apply if interpreted as a limit of minimimum mean square estimator, see Gomez (2006) or Bell (1984).
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The two data input structures can bear many forms. The only requirement is that the structure

of observations in both datasets must be identical. This setup is very feasible in the case of
data revision analysis and exploration of the effects of new observations, as shown below. The
counter-factual dataset can also take form of a steady-state (balanced growth path), uncondi-
tional forecasts, etc. – depending on the goals of the analysis. Decomposition into observables
in this paper is consistent with a dataset featuring missing observations and direct observa-
tions implementation of linear restrictions, often used for imposing the ‘expert judgement’.

2. Univariate filters – Band-Pass, Hodrick-Prescott, etc.

True, decomposition into observables in a univariate setting is not an issue, as the only vari-
able that enters the output gap estimation is the output itself. The analysis of their real-time
properties and news effects, however, follows the same principles as in the case of multivari-
ate filters. A proper understanding of frequently used univariate filters, such as band-pass fil-
ters or the Hodrick-Prescott filter, is important, as these often form parts of multivariate mod-
els.

Univariate filters are specified either directly in terms of their weights in time domain, directly
in terms of their transfer function in frequency domain, as a state-space model, or as a penal-
ized least squares problem – e.g. the Hodrick-Prescott filter or exponential smoothing filter.
Being specified in any of these ways, they have a time domain filter representation as

xt = F(L)yt =

∞∑
i=−∞

wiyt+i, (19)

where wi are the weights of the filter. This fact is well know and is restated just for clarity and
completeness. Univariate filters are usually discussed in terms of their spectral properties,
implied by F(z), but the weights of the filter are sometimes discussed as well, see Harvey and
Trimbur (2008), among others.

Most contributions to the literature focused on designing or testing the univariate filters. They
are concerned with (i) approximation of the ideal band-pass filter or (ii) revision properties of
the filters for increasing sample size. The ideal band-pass filter with a perfectly rectangular
gain function is often considered as a natural benchmark to judge univariate statistical fil-
ters against in terms of their ‘sharpness’ – i.e. leakage, strength of the Gibbs effect, or ease of
finite-sample implementation.
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The class of linear filters is large, including a variety of bandpass and highpass filters. Apart
from the Hodrick-Prescot/Leser filter, Butterworth filters analyzed in Gomez (2001), rational
square wave filters suggested by Pollock (2000), or even multiresolution Haar scaling filters
fit the representation (19).

Given a possibly infinite filter F(z), the revision properties depend on the quality of it’s finite
sample approximation, which is crucially dependent on the data generating process of the
data, see Christiano and Fitzgerald (2003) or Schleicher (2003). Discussion of the revision
properties and optimal finite sample implementation is discussed below, since univariate fil-
ters are often part of semi-structural multivariate models or production function approach
estimates of the output gap.

3. Structural VARs

Structural VARs have a natural moving average, linear filter representation. It seems there-
fore very desirable to express the potential output and the output gap as a linear combina-
tion of data inputs. A thorough analysis of the contributions of observed series and the SVAR
estimates frequency transfer function is crucial as these often are outliers in comparison with
other methods, see McNellis and Bagsic (2007), Cayen and van Norden (2005) or Scott (2000),
among others. Although SVAR models may seem to be used less frequently for output gap
estimation, they certainly belong in the toolbox of many central banks and applied econo-
mists.

Assume that an estimated reduced form VAR model of order p is available, that is,

A(L)Yt =

I− p∑
j=1

A j

Yt = ε, E[εεT ] = Σ, (20)

where residuals, εt (reduced-form shocks) are linked to ‘structural’ shocks ηt via an invert-
ible transformation εt = Qηt. I assume that the dimension of Yt is n. The identification often
imposes long-run restrictions following Blanchard and Quah (1989) to tell apart transitory
and permanent component of output, see e.g. Claus (1999). The structural VAR model is then
expressed as Yt = B(L)QQ−1εt = S(L)ηt.

Assume that the j-th component of the data vector, Yt, is the GDP growth,Y j,t = ∆yt, then

∆yt = S11(L)η1,t + S12(L)η2,t + · · ·+ S1n(L)ηn,t (21)
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and the output gap, xt, is the part of the GDP not affected by permanent shocks

xt = S12(L)η2,t + · · ·+ S1n(L)ηn,t, (22)

assuming
∑∞

k=0 S12(k)η2,t−k + · · ·+
∑∞

k=0 S1n(k)ηn,t−k = 0. The structural shocks are estimated
from the reduced form VAR residuals using ηt = Q−1εt = Q−1A(L)Yt. One can thus recover
the estimated output gap as a function of observations.

The identification scheme itself can be very case-specific, yet it is clear that for SVAR esti-
mates of the output gap their concurrent estimates and final estimates coincide, unless an
extended sample is used for paramter re-estimation. Investigating the spectral properties of
S(z) is advisable, since ex-ante it is not clear which frequencies of observed series are used
for estimation and SVAR estimates often stand out as outliers. The decomposition of the out-
put gap into observables can be done using the expressions above, where the output gap is a
function of structural shocks, which themselves are a function of observed data.

4. Production Function Approach

Even a production function (PF) approach can often be expressed as a filtering scheme. The
real-time revision properties then crucially depend on the filter representation, as in the case
of other methods. Many practitioners are, perhaps, aware of the production function approach
being very much dependent on the underlying filters used in various steps of the method. This
section provides an explicit formulation of the production function output gap estimate as a
linear filter, along with its structure and decomposition into observables.

Assume that the value added is produced using the Cobb-Douglas production function. Denot-
ing the logarithms of individual variables by lower-case letters, one gets

yt = at + (1−α)kt +αlt. (23)

Here at is the ‘Solow residual’ and kt and lt denote the actual levels of the capital stock and
hours worked in the economy. It is common that a trend total factor productivity, a∗t , is identi-
fied from the Solow residual using some smoothing procedure, often a variant of the Hodrick-
Prescott or an other symmetric moving average filter. Denoting the smoothing filter as A(L), it
is clear that

a∗t = A(L)at = A(L)yt − (1−α)A(L)kt −αA(L)lt. (24)
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The next step is usually a determination of an ‘equilibrium’ or a trend level of hours-worked,
or employment, and of the capital stock. I will consider only the estimate of the equilibrium
employment, which is often cast as a filtering problem for the NAIRU, frequently in terms of
inflation, capacity utilization, or other variables. Importantly, the sub-problem is most often a
linear filter.

With only little loss of generality, I assume that the equilibrium employment is given by the
trend component of the employment, obtained using the univariate filter as l∗t = E(L)lt. The
output gap, xt, can then be expressed then as

xt = yt −y
∗
t = yt − (a∗t + (1−α)k∗t +αl∗t ) (25)

= (1−A(L))yt − (1−α)(1−A(L))kt −α(E(L)−A(L))lt (26)

=

∞∑
i=−∞

wy,iyt+i +

∞∑
i=−∞

wl,ilt+i +

∞∑
i=−∞

wk,ikt+i, (27)

which is a version of a multivariate linear filter with three observables, or signals.7 It is inter-
esting that in this simple case, if the trend component of the Solow residual and of the employ-
ment are obtained using the same procedure, then E(L) = A(L) and the contribution of observed
employment data gets eliminated. Further, given the fact that the capital stock usually has lit-
tle variance at business cycle frequencies–as a slow moving variable– its ‘gaps’ tend to be
small. The smaller they become, the more the production function approach to output gap
estimation approaches a simple univariate filter estimation of the output gap.8

In the case where A(L) and K(L) are transfer functions of the Hodrick-Prescott filter, which is
quite usual, the production function approach results tend to be quite similar to HP filter esti-
mates and suffer from most of the problems usually associated with the HP filter approach.
See Epstein and Macciarelli (2010) as an example.

When the production function approach estimate can feasibly be expressed as a linear func-
tion of its inputs (e.g. output, labor, capital stock, etc.), providing such a decomposition is
highly desirable. A finite-sample version of (25) is easy to obtain as long the process is lin-
ear. The production function estimates are often decomposed into the contributions of the

7In the case of an optimal finite sample implementation of the filter, it will be time varying, e.g. A(z) = A(z)t.
A decomposition into observables in a finite sample is equally simple.

8 One can consider more involved procedures, but the principle remains the same. I can assume that the
employment is determined by a working-age population, participation rate and a employment rate as lt = popt +

prt + ert. If an ‘equilibrium’ levels of the employment rate, that is (1 − nairut) and the participation rate are
determined by a time invariant filter I can express the equilibrium employment as l∗t = popt + P(L)prt + E(L)ert,
and I can proceed by substituting these expressions to the production function as in the simpler case.
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total factor productivity, equilibrium employment, and capital stock, which are not all directly
observable.

Incorporating any non-causal filter into the production function approach calculations impacts
its real-time, revision properties. The linear filter analysis for revision properties and news
effects thus relates also to the production function approach to potential output estimation.

B. Analyzing Revision Properties – Data Revisions and News Effects

Revision properties of output gap estimators are often among the crucial criteria for the eval-
uation of a particular method. Policymakers need accurate information for their decisions and
the revisions of output gap estimates increase the uncertainty associated with policy imple-
mentation. Output gap estimates get revised due to (i) historical data revisions and (ii) new

information – new data that becomes available and affects interpretation of the past estimates.
Revisions of the output gap may not be a bad thing, per se, but excessively unreliable real-
time estimates may lead to large policy errors or render the concept of the output gap irrele-
vant.

There are many contributions to the literature pointing out the real-time unreliability of many
output gap estimation methods and offering various remedies to the problem, see e.g. Cayen
and van Norden (2005) or Orphanides and van Norden (2002). The contribution of this sec-
tion is both a conceptual and a practical one. Conceptually, it is crucial to thoroughly under-
stand the sources of revisions and real-time unreliability. Here the linear filter framework is
the most natural approach. From a practical point of view, a decomposition of the revisions
into contributions of the new data is a useful analytical result, which allows researchers to
asses the informativeness of available observations.

The linear filter representation allows an analysis of revisions in a very tractable way for all
estimators considered. Recall that in the case of a proper finite sample implementation of fil-
ters, the method of penalized least squares, Kalman filter/smoother, or Wiener-Kolmogorov
filtering yield equivalent results.

The present analysis can be used both for (i) data revisions and (i) news effects – arrival of
new information. It should not come as a surprise that the key concept for the analysis is

Xt|T =

T∑
j=t0

Ω j|tY j, (28)
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a finite sample implementation of Ω(z). Data revisions are discussed first, followed by a dis-
cussion of news effect, where the characteristics of the process Yt are crucial for optimal
finite sample implementation of Ω(z).

1. Decomposing Effects of Data Revision

By data revisions, only the revision of past data releases should be understood; most often
these concern GDP data. The treatment of data revisions is very simple as long as the filtering
problem is applied to the same sample and number of observed data series – revised and old,
say YA,YB. The revision and its decomposition into factors is then given by

Rt|T = XA
t|T −XB

t|T =

T∑
τ=t0

Ωt|τ[YA
τ −YB

τ ]. (29)

Again, it is quite useful to think of (29) in a stacked form. For the Kalman filter, which is
a solution to the least square problem, one has that X = Ω̂Y and thus trivially XA −XB =

Ω̂(YA −YB). The only requirement is to keep the structure of Ω̂ fixed, for which an identical
structure of observations (cross-section and time) is needed. This stacked, matrix represen-
tation of the filter is also useful for investigating news effects, treatment of missing variables
and filter tunes (linear constraints) after a simple modification, see below.

The data revision decomposition is useful not just for the output gap estimates but also for
understanding the revised estimates of technology, preference, and other structural shocks
in a forecasting framework based on a DSGE model, see Andrle and others (2009b). For
instance, the interpretation of inflationary pressures in the economy changes when the domes-
tic absorption is revised, in the context of unchanged estimates of the CPI inflation.

2. News Effects and End-Point Bias

Implementation of a doubly-infinite, non-causal filter Ω(z) is problematic, since all economic
applications feature finite samples. Newly available data lead to some revision of past esti-
mates of the output gap or other unobserved variables. Even in the case of an optimal finite
sample approximation of the infinite filter, increasing the sample size leads to revisions.

All non-causal filters suffer the from finite-sample problem and saying that state-space mod-
els do not would not be correct. State-space models using the Kalman smoother are no excep-
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tion to the rule. The statement by Proietti and Musso (2007) that their state-space signal extrac-
tion techniques ‘do not suffer from what is often referred to as end-of-sample bias’ is thus
incorrect.

Still, the double-infinite sample size formulation of the problem is the best starting point for
the analysis of news effects, restated here for convenience:

Xt|∞ =

∞∑
i=−∞

ΩiYt+i. (30)

The revision due to availability of new observations after period T , chronologically only, is
then obviously

Nt|T =

∞∑
j=T

Ω j
(
Y j−Y j|T

)
, (31)

which is just a weighted average of prediction errors, conditioned on the information set to
period T , given the constant weights filter. See Pierce (1980) for a discussion of revision vari-
ance in time series models. Population revision variance can be computed given the filter and
the data-generating process for the data, determining the prediction errors.

Intuitively, (i) the smaller the weight on future observations and (ii) the better the predictions
of the future values, the smaller the revision variance. The discussion below conditions on a
model as given and does not put forth advice on how to design a better filter with different
weights.

All output gap estimation methods considered in the paper adopt a solution to the infinite-
sample problem, either an explicit or an implicit one. Implicitly, all provide forecasts and
backcasts for the actual sample, if needed. A simple truncation of the filter weights can be
interpreted as zero-mean forecasts, which would be suitable only for an uncorrelated zero-
mean stationary process. The optimal finite sample implementation of the filter is a solution
to the following approximation problem:

min
Ω̂t, j, j∈[t0,...,T ]

||Xt|∞−Xt|T ||
2 (32)

= ‖

−∞∑
j=−∞

Ω jY j−

−T∑
j=−t0

Ω̂ j|tY j‖
2 (33)

=

∫ π

−π
‖Ω(e−iω)− Ω̂t(e−iω)‖2SY(ω)dω, (34)
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see Koopmans (1974), Christiano and Fitzgerald (2003), or Schleicher (2003) for details. The
solution delivers a sequence of filters Ω̂t(z) that, based on position in the sample, t, are the
weights of the time invariant filter Ωt(z), adjusted by a factor derived from the auto-covariance
function of the data.9

Importantly, the solution to a problem in (32) is equivalent to the one where the time invariant
infinite filter is applied on the available sample padded with forecasts and backcasts by the j-
step ahead, with j chosen such that the filter converges. The forecast is uniquely pinned down
by the auto-covariance function of the data generating process. Hence, a heuristic solution

adopted by practitioners is actually the optimal one.10

State-space models with the Kalman smoother and Penalized Least-Squares formulations
provide implicitly the optimal finite sample approximation to Ω(z) by re-weighting the time-
invariant weights. This is equivalent to providing backcasts and forecasts and padding the
sample. The crucial point is that the forecasts are based exclusively on the covariance gener-
ating function of the underlying model, which may not always represent well the covariance
structure of the data generating process. The mismatch between the model and the data results
in poor forecasting properties. When the weights of the filter are spread out to many periods,
poor forecasting properties translate into revision variance and the so called end-point bias.

It is often the case that the filter puts a large weight on observations at the end of the sample.
This is simply a consequence of the fact that for most models their forecasting formula puts
larger weight on the most recent observations. When a doubly-infinite filter is applied to a
padded sample, the end sample observations are implicitly counted many times due to the
chain rule of projections, receiving effectively a larger weight.

Example Consider the Hodrick-Prescott/Leser filter as an example. The filter is often men-
tioned for its poor revision properties, or its large ‘end-point’ bias. Unless one provides a fac-
torization of the filter representation, like Kaiser and Maravall (1999), the filter takes many

9It is a projection problem, matching the auto-covariance of the Xt|T and Xt|∞ as closely as possible. For sta-
tionary processes, the Toeplitz structure of the autocovariance generating matrix allows for an efficient recursive
implementation. The system of equations is not specified in full, as the paper focuses on the equivalence with the
forecast and backcasts.

10 Sometimes there are ways how to make the implementation more robust. For instance, Kaiser and Mar-
avall (1999) factor the filter Ω(z) = A(z)A(z−1) and use the Burnman-Wilson algorithm to implement a two-pass
estimate of the HP filter, which requires only four periods of back/fore-casts to implement the infinite-order fil-
ter, using an ARIMA model for time series at hand. The same principle is the element of X12-ARIMA seasonal
adjustment procedure, for instance. By lowering the number of prediction the process can be simplified and
robust.
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periods to converge – more than 20 data points on both sides, see Fig. 1. Viewing the HP/Leser
filter as a desirable filter, a smooth transition low-pass filter, the optimal finite sample imple-
mentation then suggests re-weighting the filter weights by the auto-covariance function of
the data or, equivalently, extending the sample with best linear backcasts and forecasts. View-
ing the HP/Leser filter as a model, it is clear that output is assumed to be an ARIMA(0,2,2)
model, where the output gap is uncorrelated white noise and the potential output growth
follows a random walk. Such a model is highly implausible based on economic theory and
econometric analysis to be a data generating process for any country’s data. Yet, this is exactly
the model that a state-space model (via the Kalman smoother) and the penalized least-squares
formulation would use, yielding equivalent results.

Practical News Effect Decomposition for State-Space Models New observations create
‘news effects’ only if they carry some new information, information not predictable from the
past data. The representation (31) gives a simple and practical way of calculating and decom-
posing news effects into components of newly observed data.

The unavailable (or missing) data estimates are simply expected values conditional on the
original information set. Padding (filling in) the sample data with these estimates does not
change anything, since the information set is identical and there is no new information.

The problem of different sample sizes is easy to convert into a problem of identical sample
sizes by padding the data with a model-based forecast and using (29) to carry out the decom-
position simply by successive runs of the Kalman smoother.11 The easiest way to see that
‘padding’ the data with conditional expectations or projections does not change the estimates
is to realize the structure of the Kalman filter updating step: Xt+1|t+1 = TXt|t +K(Yt+1−Yt+1|t).
In the case of data padded by forecast, the prediction error (information) is zero. The informa-
tion sets of the original and padded data sets are identical.

This simple and practical approach enables the analyst to investigate a judgement-free fore-
cast of the model and contrast it to actual data. The prediction error is then distributed into the
revision of the past unobserved shocks, see e.g. Andrle and others (2009b) for examples using

11 The implementation is simple, requires very little coding and allows the analyst to use a standard, existing
Kalman filter routine. In comparison with computing weights explicitly, the approach is also usually faster and it
is easy to code the decompositions for flexible grouping of variables, etc. In the case of non-stationary models,
the situation is a little bit more involved, depending on the treatment of initial conditions, though the main prin-
ciples introduced above hold. Further, using explicit time-varying weights, as in Koopman and Harvey (2003),
works in every case when the Kalman smoother is applicable.
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a DSGE model. The decomposition easily accounts for judgement imposed on the filter using
a dummy-observations approach.

III. Applications – Decomposition into Observables & News Effects

This sections demonstrates applications of methods discussed in the first part of the paper. A
simple extension of the Hodrick-Prescott/Leser filter is followed by an illustration of how to
decompose the output gap into observables using semi-structural and structural DSGE mod-
els. Both applications thus use a state-space representation of the model.

A. Variants of Hodrick-Prescott/Leser Filter and Local Linear Trend Models

The Hodrick-Prescott/Leser filter, see Leser (1961) and Hodrick and Prescott (1997), is an
undeniably popular method to estimate the output gap. Most economists either love it or hate
it. Due to its important role in the applied work and in the development of many multivariate

models, the I discuss the filter in a little bit more detail, despite its univariate nature. How-
ever, the focus will be mostly on things not dealt with in the literature and relevant for issues
analyzed in the paper – most importantly an assumption of steady-state growth of output.12

(a) Hodrick-Prescott Filter/Leser An often used specification of the Hodrick-Prescott fil-
ter13 is a penalized least squares (PLS) form

min
{ȳt}
∞
t=−∞

∞∑
t=−∞

(yt − ȳt)2 +

∞∑
t=−∞

λ
[
(ȳt − ȳt−1)− (ȳt−1− ȳt−2)

]2 . (35)

It is easy to see, e.g. King and Rebelo (1993), that the doubly-infinite sample model (35)
implies a reduced form ARIMA(0,2,2) model for yt.

12This paper only scratches the surface of all properties of the HP filter, see Kaiser and Maravall (2001) for
many details from a frequency domain and filtering point of view.

13See the original paper by Leser (1961) for exactly the same idea. Ideas of variants of the filter have been
around in the engineering community since 1940s.
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The output gap estimate, xt, can be then formulated as a linear time-invariant filter with a
transfer function C(L) and weights wx,k, given by

xt = C(L)yt =
λ(1−L)2(1−L−1)2

1 +λ(1−L)2(1−L−1)
yt =

∞∑
k=−∞

wx,kyt−k (36)

recall L denotes a ‘lag operator’, Lyt = yt−1. For details, see King and Rebelo (1993), inter
alios.

In terms of unobserved components (UC) models, as also mentioned in Hodrick and Prescott
(1997), the infinite-sample version of the Hodrick-Prescott filter can be rewritten intuitively
as

yt = ȳt + xt (37)

xt = εx
t εx

t ∼ N(0,σ2
x) (38)

ȳt − ȳt−1 = ȳt−1− ȳt−2 +ε
g
t ε

g
t ∼ N(0,σ2

g), (39)

which clearly provides a model-based interpretation for the HP filter. The output gap is assumed
to be a non-persistent random noise and the potential output growth is assumed to follow a
random walk. As it is well known,

√
λ = σg/σx is the signal-to-noise ratio.

State-space representation of the HP filter or its modifications and extensions can easily be
written in a stationary form, where only the growth rates of the output are observed. One
simply defines ∆yt = ∆xt +gt, where gt = gt−1 +ε

g
t is coupled with a simple identity xt− xt−1 =

∆xt. A stationary state-space form is easily initialized with the unconditional mean and vari-
ance of the model, avoiding the need to deal with many ways to initialize non-stationary mod-
els, using variants of a diffuse Kalman filter/smoother. The weights of the HP filter that oper-
ates on growth rates of GDP can be obtained using the integration filter transfer function to
obtain xt = [C(L)/(1−L)]∆yt in terms of (36).

(b) Modified Hodrick-Prescott Filter A simple but useful modification of the HP filter is
the incorporation of more realistic processes for the output gap and for the potential output.
The literature is rich in these extensions, see e.g. Proietti (2009).

I will consider only a simple extension useful for better understanding the frequent treatment
of the potential output in semi-structural models used for policy analysis, e.g. multivariate-
filters of Benes and N’Diaye (2004) and Benes and others (2010) or semi-structural forward-
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looking models of Carabenciov and others (2008) or Andrle and others (2009a). This repre-
sentation is a common building block of more complex multivariate filters.14

The least complex model assumes that the output gap is a simple AR(1) stationary process
and that the potential output is subject to (i) level and (ii) growth rate shocks. Importantly,
potential output growth is a mean-reverting, persistent process – not a random-walk.

For many economies the assumption of mean reverting potential output growth is quite a
plausible one and it is this feature of the model that stands behind its improved revision prop-

erties. This is an important aspect of the estimates, though most statistical or econometric
literature, e.g. Proietti (2009), does not work with explicit steady-states. Steady-states are
neither used in SVAR literature nor early literature on multivariate filters, e.g. Laxton and Tet-
low (1992) or Conway and Hunt (1997), but are present in Benes and N’Diaye (2004), for
instance.

The model, then, is as follows:

yt = ȳt + xt (40)

xt = ρxxt−1 +εx
t εx

t ∼ N(0,σx) (41)

ȳt = ȳt−1 +gt +ε
ȳ
t εx

t ∼ N(0,σȳ) (42)

gt = ρggt−1 + (1−ρg)gss +ε
g
t εx

t ∼ N(0,σg). (43)

Given this data-generating process for the GDP of a particular country, it is obviously possi-
ble –if of interest– to design a parametrization of a modified Hodrick-Prescott filter that keeps
its gain function as close to HP as possible, but lowers revision variance.

(c) Example: US output gap and revision properties As a simple example, I parametrize
the modified HP as ρ1 = 0.70, ρg = 0.95, σȳ = 0, σx = 1/(1− ρ1) and σg =

√
(1/λ)× [1/(1−

ρg)], λ = 1600 and apply this simple heuristic model to US output gap with sample 1967:1–
2010:3. The steady-state growth of potential output is assumed to be 2 %. Fig. 1 demonstrates
the difference between the output gaps estimated and the time invariant weights implied by
these two filters. There cannot be any claim of optimality of this filter; far from that, it is only

14 I work mainly with a state-space representation but, as explained above, penalized least squares, state-
space, and linear filters methods are equivalent. The early literature on multivariate filters for output gap estima-
tion, e.g. Laxton and Tetlow (1992), Conway and Hunt (1997) or de Brouwer (1998) somehow seems to contrast
penalized least squares problems and ‘unobserved component’ as different methods, comparing often markedly
different model specification, e.g. white noise versus AR(2) process for the output gap.
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a demonstration. Revision properties are judged by the standard deviation of the difference
of the final output gap estimate versus the real time estimates. For the standard HP filter, the
standard deviation of the revision process is 1.489, whereas for the modified filter it is 0.858,
which is essentially only 57.6% of the revision standard deviation. In this case, both the filter
weights and the forecasting properties contribute to the result.

As is well known, the standard Hodrick-Prescott/Leser filter, without any priors or modifi-
cations, is an extremely infeasible model for real-time estimation of the output gap or any
cyclical features of the data, due to its very poor revision properties. This is well known, but
the reason is often poorly understood.

Figure 1. HP filter vs. Modified HP filter – estimate & weights
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B. Output Gap Estimation using a Multivariate Semi-Structural Filter

This part of the paper discusses the results of a state-of-the-art multivariate model (filter) for
the output gap estimation, for the US economy, developed by Benes and others (2010).15 This

15The replication materials are publicly available and can be freely downloaded from
www.douglaslaxton.com
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particular model structure has been and is being used in policy analysis in many instances,
see Cheng (2011), Scott and Weber (2011) or Babihuga (2011), among others. This paper
suggests some additional angles of viewing the model properties that practitioners could use
to gain more insight into the model as a filtering device, along its economic structure.

I analyze how the application of the model for the US economy makes use of the observed
data and I provide an elementary frequency domain analysis of the implied filter. The model
features an exceptionally small revision variance, together with very good forecasting proper-
ties, see Benes and others (2010), hence these will not be discussed in detail.

The model is specified by equations (44)–(55). The authors formulate a simple backward-
looking output gap equation, the Phillips curve, Okun’s law, and also use the capacity utiliza-
tion series as an additional measurement of the cyclical signal in the economy. A deviation
of the year-over-year inflation from long-term inflation expectations contributes to the output
gap negatively, as a supply shock and an implicit tightening of the monetary policy stance. On
the other hand, a positive output gap increases the inflation due to excess demand pressures.

The output gap, yt, is linked to capacity utilisation gap, ct, unemployment gap, ut, via simple
measurement relationship and the Okun’s law, unlike a bit more structural output gap and
Phillips curve relationship. Capacity utilisation, unemployment, and GDP feature the trend-
component specification essentially identical to (40)–(43). An interesting aspect of the model
is that a year-over-year inflation, π4

t , follows a unit root process, though it is anchored by
long-term inflation expectations process, π4LT E

t .16 The authors consider the model to be a
simple and pragmatic way to obtain a measure of the output gap, which has outstanding revi-
sion properties and is thus suitable for real-time policy making.17

16 The specification of inflation in year-over-year terms also has structural implications. First, a year-over-
year filter (1− L4) attenuates high and seasonal frequencies, as a high frequency noise is hardly expected to be
related to the output gap. Second, the filter implies a phase delay of around 5.5 months, since it essentially is a
one-sided geometric moving average. Inflation developments thus propagate only very gradually to output gap.

17Authors also suggest that more complex, forward-looking models are the subject of their further research.
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The model is as follows:

yt = Yt − Ȳt ct = Ct − C̄t ut = Ūt −Ut (44)

yt = ρyt−1− ρ̃2(π4
t−1−π

4LT E
t−1 ) +εy (45)

π4
t = π4

t−1 +βyt +Ω(yt −yt−1) +επ4
t (46)

ut = φ1ut−1 +φ2yt +εu
t (47)

ct = κ1ut−1 + κ2yt +εc
t (48)

π4LT E
t = π4LT E

t +επ4LT E
t (49)

Ȳt = Ȳt−1 +GȲ
t /4 + θ(Ū − Ūt−1)− (1− θ)(Ū − Ūt−20)/19 +εȲ

t (50)

GȲ
t = τGȲ

S S + (1−τ)GȲ
t−1 +εGȲ

t (51)

Ūt = Ūt−1 +GŪ
t − ω̃yt−1− λ̃(Ūt−1−US S ) +εŪ

t (52)

GŪ
t = (1−α)GŪ

t−1 +εGŪ

t (53)

C̄t = C̄t−1 +GC̄
t +εC̄

t (54)

GC̄
t = (1−δ)GC̄

t−1 +εGC̄

t , (55)

where all innovation processes εi
t are uncorrelated and follow the Gaussian distribution with

a zero mean and variance specified in Benes and others (2010). Obviously, the standard devia-
tions of all innovations are a crucial part of the model’s transfer function, although the impulse-
response function remains unaffected.

In terms of shock decomposition, the model’s output gap can be function of its own output
gap innovations and innovations to inflation or inflation expectations and thus is not very
interesting, though it cannot be omitted from the analysis. A more interesting and non-standard
analysis uses the filter representation and provides the decomposition into observables. Such
analysis is given below.

1. Decomposition into Observables

An interesting question is how individual observables (GDP, y/y inflation, capacity utiliza-
tion, or unemployment) contribute to the final estimate of the output gap. This is easily answered
by carrying out the decomposition into observables of the model’s state-space form. This
complements the analysis in Benes and others (2010) and provides the example use of the
methods discussed above.

Contribution of all observables to the output gap is depicted at the Fig. 2. The first thing to
notice is that the contribution of the GDP growth to the ‘Great Recession’ estimates started in
2007 and is smaller than in the case of the largest recession within the sample (in terms of the
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Figure 2. Output-Gap Observable Decomposition of Benes et al. (2010) model
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output gap) in 1980–1985, whereas the contribution of the unemployment series is the great-
est ever. Second, the information extracted from observing the inflation data is rather lim-
ited. The fact that the parameterization of the model attributes a negligible role for inflation
in identification of the output gap could be controversial. It may also undermine any potential
interpretation of the output gap with respect to non-accelerating inflation or New Keynesian
theories.

The contribution of unemployment is large and more persistent than the contribution of GDP
and capacity utilization. That is quite consistent with the jobless recovery that the US econ-
omy has been experiencing since the 1990s, where the GDP and capacity utilization recover
faster than the unemployment rate and the inflation expectations are well anchored. The model
is parametrized to imply that NAIRU takes more time to change than potential output. Both
NAIRU and potential output growth vary less than most models based on definition of cycle
with frequency 6–32 periods, which contributes to realistic and interpretable magnitudes of
the output gap.
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Empirically, the unemployment lags output at business cycle frequencies, with lower ampli-
tude and high coherence. This is one of the most robust stylised facts across most developed
economies. Fig. 10 depicts output, capacity utilisation and unemployment (shift to lead by
one quarter) after applying a low-pass filter (HP filter, λ = 1600 for simplicity18) and scaled
to output gap volatility, with a phase-shift. The tight co-movement is important for a robust
signal extraction and lower revision variance of the model, see the Appendix for details.

These results complement the analysis in Benes and others (2010). The low role for inflation
signal can be easily understood by looking at parameter estimates. Importantly, the loading
coefficient of the ‘inflation gap’ to the output gap is only ρ̃2 = 0.005 and also the parameters
determining output gap effect on inflation β,Ω are small.

Figure 3. Transfer function gains, Beneš et al. (2010) model
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18There is nothing magical about the value of 1600, arguments can be found as to why such a value is inap-
propriate when the recovered cycle should be used as an output gap concept.
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Figure 4. Univariate approximation using unemployment
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Figure 5. News Effects Decomposition
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The most influential observable in the model turns out to be the unemployment. This can be
easily seen at Fig. 6, where the output gap estimates using all observables and the unemploy-
ment as the only input are contrasted. Adding the capacity utilization series brings the model
closer to the final estimates, but the series all alone performs worse in after 1990’s. Using the
GDP growth observations alongside the unemployment and capacity utilisation modifies the
estimates just a tiny bit, inflation and the inflation expectations bear close to no information in
the model framework.

Figure 6. Output-Gap Estimates from the Beneš et al. (2010) model
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Analysis of the transfer function of the model As in the case of univariate filters it is fea-
sible to analyze the transfer function of the model in the frequency domain. Fig. 3 presents
the gain of the model’s transfer function for the output gap, Y , and four key observables in the
model – GDP growth, inflation, unemployment, and first change in the capacity utilisation.

The interpretation of the gain is standard, as in the univariate filters analysis. It demonstrates
which frequencies of the observed variables spill into the output gap estimate. One can see
that the gain from the inflation is rather flat across the whole spectrum and does not distin-
guish between business cycle and high frequency dynamics. It is also very small. Looking at
the gain of output with respect to the GDP growth and changes in the capacity utilization,
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indicates that the filter places large weight at lower frequencies, some weight at business
cycle frequencies (6-32 quarters) and little weight at high frequencies. One has to take into
account, however, that the first difference filter itself boosts high frequencies. The analysis
of the output gain for the level of the observed variables requires a straightforward applica-
tion of the integration filter, the inverse of the first difference filter with the transfer function
1/(2−2cos(ω)).

The gain profile going from the level of unemployment to the output gap is of great interest,
following the result on the importance of unemployment observations for determination of
the gap in the model. The weight on low frequencies and only a gradual decline of the gain
with an increase in the periodicity suggest rather large spillover of longer cycles into the out-
put gap. This is also clear from the spectral density of the output gap implied by the model.

To frame the discussion within a time domain, one can search for specification of the simple
Hodrick-Prescott filter or a frequency cutoff of Christiano and Fitzerald’s band pass filter that
would minimize the distance to the output gap estimated by the model. The model draws
more cyclical information from the unemployment series rather from the GDP. Unemploy-
ment is used to back out the output gap so as to match the model’s estimate. Fig. 4 demon-
strates that a univariate approximation using the HP filter with a large value of the smooth-
ing parameter λ, i.e. smooth trend, is quite successful. The results are not surprising, as the
importance of unemployment series and weight on lower frequencies (longer cycles) was
explained.

2. News Effects Decomposition

Despite its excellent revision properties, the model can be used to illustrate the news effect
and a decomposition of output gap revisions into relevant observables. The illustration focuses
2007Q2 and 2009Q1, both being interesting periods with respect to the ‘Great Recession’.
The results are depicted in Fig. 5. As can be seen, the revision properties of the model are
quite favourable. A news effect is defined as a projection error, and thus it can be easily quan-
tified and decomposed into components.

The data arriving in 2009Q1 resulted into a further deepening of the output gap estimate. The
drop in the output gap was a complete news, as the model dynamics would imply a start of a
recovery and closing of the gap. The largest contribution to the news is due to new data obser-
vation for the GDP growth, followed by capacity utilization, and unemployment numbers.
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Consistently with above findings observed data on inflation or inflation expectations contrib-
ute only modestly and revise the estimate in a persistent way.

Clearly, to properly interpret the contribution graph in Fig. 5 it is important to understand
not only the derivative of the filter to the new data, but also the differential, i.e. the difference
between forecast of observables and the actual outcome. In the case of the example using the
2009Q1 the GDP growth, capacity utilization, and unemployment were both lower than the
model would predict. The more complex is the model, the bigger is the value of a formal and
automatized approach.

C. Natural Output Gap in a DSGE Model

This section decomposes the ’flexible-price equilibrium output gap’ into observables using
the model of Smets and Wouters (2007). The model is an estimated model of the US econ-
omy.19 The model is a medium-sized DSGE model that uses the output gap concept consis-
tent with a theoretical definition of the ‘natural rate of output’ in the absence of nominal wage
and price rigidities and with no ‘mark-up’ shocks to wages and prices.

The output gap in the model is defined as a deviation of the ‘natural rate of output’ from the
actual output. Despite a very different definition and modeling framework from most empiri-
cal measures of the output gap, all tools discussed in the paper continue to apply. The decom-
position of the flexible-price output gap is depicted in Fig. 7

In a closed economy model, the output gap is usually analyzed only in terms of the shock
decomposition, which provides a structural interpretation of the historical developments. The
decomposition into observables is essentially a reverse process, indicating which observables
are bing used by the structure of the model to identify latent variables – technology, prefer-
ence, and other shocks. One can observe that some variables are important at high and busi-
ness cycle frequencies (hours worked, consumption, and output), whereas inflation or interest
rates contribute mainly to low frequency dynamics of the output gap in this case. The model
thus extracts the information about the natural rate of output without placing much weight on
the observed inflation data, similarly to a semi-structural model above. The small weight on
inflation would be easy to explain if the observations of real wages would contribute signifi-
cantly to business cycle dynamics of the output gap, yet that is not the case.

19I would like to thank to authors for making available the codes for replicating their work. As I have moved
the codes from Dynare, I retain the blame for any errors.
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Figure 7. Output Gap Observable Decomposition from a DSGE Model
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IV. Conclusions

This paper suggests a simple and useful method for exploring ‘what is in the output gap.’ A
decomposition of the unobservable output gap in terms of observed inputs, e.g. output, infla-
tion, or unemployment rate is provided. The procedure answers the question of what observed
variables and at which periodicity contribute to the estimate of an unobservable quantity – the
output gap. Importantly, the decomposition into observables also allows researches to quan-
tify the ‘news effects’ caused by new available data, generating revisions of the output gap
estimates. A better understanding of the role that new data play for a change in the estimate is
easier to obtain using the decomposition into observables.

The paper demonstrates that the most frequently used methods for potential output estimation
can be cast in terms of a linear filter theory. This enables both a frequency- and time-domain
analysis and provides insights into the nature of revisions of the unobserved variables esti-
mates. The analysis in the paper applies to simple multivariate filters, semi-structural models,
production function method estimates, and fully articulated DSGE models.

The method is illustrated using a semi-structural multivariate filter and a fully articulated
DSGE model. Using the multivariate filter for potential output estimation, the paper demon-
strates that new insight is obtained due to the decomposition into observables. Both models
considered attribute very low weight to observed data on inflation when identifying the output
gap.

Revision properties and the ‘end-point bias’ of individual approaches can be better under-
stood as properties of the two-sided moving average, or, the filter representation. The more
spread out the weights and the worse the forecasting properties of the filter-implied model,
the larger the real-time revision variance of the estimate. For a particular data-generating
process a population or analytical exploration of revision error stationary stochastic process
can be easily performed.

The paper also shows that, a priori, there is no reason to expect that multivariate filters, expressed
in a state-space form, should feature better revision properties than univariate filters. The key
is the structure of the model, providing the link between the economic theory and optimal
signal extraction principles.
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Appendix A. Parameter Estiates from Beneš et al. (2010)

The model by Benes and others (2010), as specified by equations (44)–(55) is econometri-
cally estimated using United States data for period 1967:1–2010:2. The approach is a Bayesian-
likelihood, more specifically a ‘regularized maximum likelihood’ – a method popular in engi-
neering. The method is equivalent to a likelihood estimation with an independent joint prior
on parameters coming from truncated-Normal distribution, as upper and lower bound for
parameter are estimated.
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Table 1. Estimated parameters for Beneš et al. (2010)

Parameter Prior Posterior
Mode Dispersion Mode Dispersion

GȲ
S S 2.140 0.300 2.143 0.041

US S 5.800 0.300 5.801 0.042
θ 0.700 0.030 0.700 0.004
α 0.900 0.150 0.895 0.022
β 0.400 0.300 0.176 0.024
Ω 0.500 0.300 0.265 0.038
ρ 0.800 0.150 0.821 0.019
100ρ̃2 5.000 3.000 5.145 0.418
κ1 0.100 0.600 0.353 0.037
κ2 1.500 1.500 1.421 0.070
φ1 0.800 0.150 0.729 0.018
φ2 0.300 0.150 0.241 0.014
τ 0.100 0.150 0.113 0.021
δ 0.500 0.150 0.496 0.021
100ω̃ 3.000 1.500 2.796 0.207
λ 2.000 3.000 2.078 0.371
σY 1.000 0.300 0.888 0.039
σG 1.000 0.300 0.921 0.042
σu 0.500 0.300 0.198 0.024
σŪ 0.100 0.150 0.079 0.018
σGŪ

0.100 0.150 0.087 0.017
σu 0.400 0.300 0.482 0.033
σc 0.250 0.150 0.288 0.021
σGC̄

0.075 0.030 0.076 0.004
σπ4 0.500 0.300 0.554 0.030
σπ4LT E 0.300 0.300 0.081 0.008
σȲ 0.250 0.100 0.217 0.013
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Appendix B. Not for publication: Difference
between two representations of the HP filter

The HP filter state-space form is often represented in the following form:

yt = ȳt + xt (56)

xt = εx
t εx

t ∼ N(0,σ2
x) (57)

ȳt = ȳt−1 +βt−1 (58)

βt = βt−1 +ε
g
t ε

g
t ∼ N(0,σ2

g), (59)

which is equivalent the the HP filter state-space representation included in the text and the
results from both state-space implementations are identical. Moreover, these state-space rep-
resentations are identical to a standard matrix formulas of HP filter implementations.

Appendix C. Example: SimpleMultivariate Filter – Three Representations

In this section I provide a simple example, beyond univariate HP filter, of a semi-structural
multivariate filters represented as a (i) state-space model, (ii) Wiener-Kolmogorov filter and
(iii) penalized least squares.

The state-space form of the model is

yt = xt +τt (60)

τt −τt−1 = τt−1−τt−2 +ετt (61)

xt = ρxt−1− κπ
gap
t +εx

t (62)

π
gap
t = λπ

gap
t−1 + θxt +επt (63)

and can be casted in a penalized least squares problem

min
{τ}T0

T∑
t=0

1
σ2

x
[εx

t ]2 +
1
σ2
τ

[ετt ]2 +
1
σ2
τ

[επt ]2, (64)

which is in a form of ‘multivariate Hodrick-Prescott filter’, as suggested by Laxton and Tet-
low (1992) and for ρ = κ = θ = 0 and λ = (σx/στ)2 is equivalent to the penalized least squares
formulation of the HP filter. The problem (64) is easy to solve by finding first-order condi-
tions with respect to {τt}

T
t=0.
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The implied Winer-Kolmogorov estimate of the output gap xt is given by the multivariate
filter in terms of output level and inflation (or output growth and inflation) is as follows

xt = (1−Wy(L))yt −Wπ(L)πgap
t =

(1−Wy(L)
(1−L)

∆yt −Wπ(L)πgap
t (65)

where

Wy(L) ≡
(λ1 +λ2α

2 +ρ2λ1)−λ1ρ(L−L−1)
(λ1−2λ3 +α2λ2 +ρ2λ1)− (4λ3 +λ1ρ)(L + L−1) +λ3(L2 + L−2)

(66)

Wπ(L) ≡
−(λ1κ+αλ2) +αλ2φL +ρλ1κL−1

(λ1−2λ3 +α2λ2 +ρ2λ1)− (4λ3 +λ1ρ)(L + L−1) +λ3(L2 + L−2)
(67)

express the z-transform of the two-sided filter weights. The time domain weights profile can
be easily obtained either from a state-space representation using the theory outlined in the
paper, or from (66) and (67) by computing inverse z-transform either numerically or analyti-
cally by factorizing the formulas.

Appendix D. Not for publication: Variance Reduction
via Common Component andMultipleMeasures

In this section I briefly review the STAT-101 intuition about revision variance reduction by
adding multiple relevant measures of an underlying signals. In case there are more noisy, but
relevant measurement available, then (i) the variance of the estimates is lowered and, equiva-
lently, (ii) the weights of the filter are less spread-out, lowering revision variance.

The most simple example is an estimate of a deterministic signal µ from one or two noisy
signals: z1 = µ+ u1 and z2 = µ+ u2, with u1 ∼ N(0,σ2

1) and u1 ∼ N(0,σ2
2). In case of just

one signal, z1, the estimate is simply µ̂ = z1, with variance of the estimate σ2
1. When both

measurements are available, the estimate is given by

µ̂ =
σ2

2

σ2
1 +σ2

2

z1 +
σ2

1

σ2
1 +σ2

2

z2 MSEµ̂ =

 1
σ2

1

+
1
σ2

2

−1

. (68)

It is clear from (68) that as long as the second measurement is available, i.e. σ2
2 <∞, the pre-

cision of the estimate is increasing. This is a principle that carries over into more complex,
dynamic models analyzed using Kalman or Wiener-Kolmogorov filtering. The larger the pre-
cision of the estimate, ceteris paribus, the less spread out weights of dynamic models are.

I can also analyze more realistic model. Still, for simplicity I will ignore the trend compo-
nents of the signal. Let us assume a model of the AR(1) signal xt and two available measure-
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ments y1 and y2:

xt = ρxt−1 + ν (69)

y1,t = xt +ε1,t (70)

y2,t = φxt +ε2,t, (71)

where the parameter φ is indicating the degree of relevance of the signal, together with vari-
ances associated with error terms, σ2

ν,σ
2
1 and σ2

2. The signal extraction differs dramatically
for various parameter values of ρ and variances.

This is rather simple and well understood problem with analytical solution. The weights of
the two-sided filter will be symmetric and follow the scheme

xt|∞ = c1

∞∑
i=−∞

λ|i|Xt−i, (72)

where a variable X denotes convex combination of both observables, following essentially the
weighting scheme (68). The parameter λ can be recovered from a solution of quadratic equa-
tion associated with the transfer function of the filter. For the clarity of exposition a numerical
examples are provided below.

(D.0.0.1) Single measurement In case of single measurement only, or, equivalently, φ = 0,
the estimate of xt using doubly infinite sample is given by

xt =
q

q + |1−ρL|2
y1,t, (73)

which implies symmetric two-sided filter with weights decaying in an exponential way. The
higher is the persistence ρ the slower is the decay and the larger is the revision variance. For
ρ = 0 only the concurrent values of y1,t are used – xt = q/(1 + q) = σ2

x/(σ
2
x +σ2

1)yt.

(D.0.0.2) Two measurements of the signal The easiest case to analyze is when there is no
dynamics, ρ = 0, as the estimator uses only current period values of observables y1,t, y2,t.

The estimation with dynamics and two observables yields the two-sided filter of the form

xt =
q1

(q1 +φq2) + |1−ρL|2
y1,t +

φq2

(q1 +φq2) + |1−ρL|2
y2,t. (74)
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In case ρ = 0 the problem is trivial and solved above. Note that the weights for both observ-
ables will by symmetric and proportional, only rescaled by appropriate factor in terms of their
relative informativeness, given by the variance of the measurement error and cross-correlation
φ. Fig. 8 depicts the problem with ρ = 0.50 and ρ = 1.0, given φ = 1 and σy1 = σy2 = 0.9.

Figure 8. Weights of AR(1) model
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Appendix E. Not for publication: Additional Graphs

Figure 9. HP filter transfer function
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Figure 10. Output, unemployment (+1Q) and cap. utilization detrended
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