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I. INTRODUCTION

This paper proposes a novel approach to elicit individual parameter priors using views
on dynamic models’ properties — system priors. The Bayesian estimation paradigm uses
the likelihood principle and updates prior beliefs about the parameters with the information
conveyed by the data. The prior beliefs about many individual structural model parameters
are often difficult to formulate. When priors about individual parameters are specified as
independent, the implied prior distributions for the model’s properties as a system may be
rather infeasible or take an unintended form. It can, thus, be more transparent or even easier
to express prior views about the properties of the model directly and back-out the implied
priors for parameters. This may entail, for instance, priors on properties such as impulse
response functions, conditional correlations or the size of a cumulative output loss after a per-
manent disinflation (the sacrifice ratio). Our new method of devising priors is about just that —
formulating priors on individual parameters via prior restrictions on system’s properties. We

label these priors “system priors” and use this term henceforth.

There are many benefits of employing system priors with very little cost of implementa-
tion. System priors introduce complex dependence among structural parameter priors, and
allow for imposition of intuitive and economic priors about the aggregate behavior of the
model. They also avoid unintended consequences on model’s properties frequently associated
with marginal independent priors. In technical terms, the implementation is just a straight-
forward extension of standard Bayesian methods. The main cost of implementation remains
formulating relevant, transparent, and economic meaningful beliefs about the model’s behav-

ior. This paper provides guidance on all the issues mentioned.

The contribution of the paper lies mainly in the proposal to change the philosophy of
formulating priors, not in technical implementation details, though these are covered

as well. We argue for more careful design of priors, reflecting a priori restrictions on the sys-
tem properties of macroeconomic models, where the deep nature of behavioral parameters
may not be as deep as often believed, with identification issues and complex interactions
among parameters contributing to the complexity of the problem. We also argue, following
Geweke (2010), for much greater emphasis on the prior predictive analysis of models and
null-hypothesis, so it is clear whether it is the data or the model, a priori, that is responsible
for the final estimates of system properties. Note, this information cannot be trivially obtained
from looking at marginal posterior and prior distributions of structural coefficients. To give an

example, reporting a prior density of impulse response functions is quite rare in the literature.



Formulating parameter priors using prior views on selected model properties intro-
duces complex dependence among parameters. Imposing a prior restriction on selected
properties of the model, e.g. impulse response function, frequency response function, or con-
ditional correlations, introduces restrictions on a joint distribution of structural parameters.
This feature is quite distinct from the case of independent marginal priors about individ-

ual parameters, which introduce none. Furthermore, individually very reasonable parame-
ter priors can result in rather unreasonable aggregate model properties, different from the
researcher’s beliefs, due to the nonlinear mapping of parameters into model’s properties. In
contrast, a prior about system properties of the model creates direct stochastic restrictions on
the combinations of parameters. For instance, the parameters driving price and wage rigidi-
ties, monetary policy response, or interest rate sensitivity of output will be closely linked
when the priors on the horizon of monetary authority’s reaction to inflation-forecast devia-

tion from the target are put in place.

Priors expressed in terms of model properties seem useful and effective, as sometimes
the relevant information cannot be obtained from the likelihood function of the model.
Although the likelihood function of the model fully describes its properties with respect to
observed data, such information may not always be sufficient for parameterizing models to
be used for policy analysis. There are requirements on the behavior of the model that reach
beyond sample data, but resonate well with economic theory and intuition. Disinflation poli-
cies, for instance, are rarely observed in the macroeconomic data frequently, but the experi-
ence from other countries and historical episodes can discipline parameter estimation of the

model using a sacrifice ratio prior.

System priors may facilitate model comparison and comparison of priors among econo-
mists. Models designed to explain a common dataset may have very different structures or set
of structural parameters. The priors about the model’s properties, system priors, are higher-
level priors and may be much more coherent across models than the parameter values them-
selves. When Faust (2009) gives an example of two prior beliefs economists may have, (i)

a consumption growth insensitive to transitory changes in short-term interest rates and (ii)

a prior about long and variable lags of monetary policy, system priors allow researches to
directly implement those. This is a significant difference from the standard literature where
largely arbitrary priors, in Faust’s terms, may not guarantee that the economics of priors is
satisfied.

Translating system priors to individual parameter priors is relatively straightforward.

We express higher-level system priors as a set of stochastic restrictions on parameters. Together



with a set of marginal priors, the system priors works as a penalty for the likelihood func-
tion of the model. The composite prior is usually not analytically tractable but can be easily
obtained using standard sampling techniques. Since dynamic stochastic general equilibrium
(DSGE) models are frequently estimated using Monte Carlo techniques, incorporating system
priors amounts to adding only one additional step to the estimation — evaluating system priors

on top of evaluating marginal priors and the likelihood function.

Our contribution can be related to some existing literature. We build on and enrich the
literature dealing with Bayesian estimation of dynamic economic models following An and
Schorfheide (2007) and others. We extend the analysis of Geweke (2010), Faust and Gupta
(2012) or Faust (2009), who point out the importance of prior and posterior predictive anal-
ysis of the model. We are, however, directly shaping our parameter priors around the model
implied properties. On a more operational level, our computations are are close to Del Negro
and Schorfheide (2008), who demonstrate how to formulate priors based on pre-sample data
and long-run stylized facts of the economy, but our philosophy is very distinct from theirs.
More recently, Jarocinski and Marcet (2010) use a prior on output growth expectations at the
beginning of the sample to elicit priors for an autoregressive model. Our approach is more
general, it encompasses the methods indicated, and we focus strongly on the economics of the

prior elicitation.

The outline of the paper is as follows: The second section of the paper discusses the moti-
vation of our approach and its formal implementation in greater detail. The third section uses
a simple New-Keynesian model to illustrate how system priors induce individual parameters’

priors. Then we conclude.

II. SYSTEM PRIORS — FORMULATING PRIORS ABOUT MODELS’ PROPERTIES

A. Motivation

Building an economic model useful for policy analysis requires both art and science, and
is very much about beliefs. Prior beliefs determine the structure of the model, selection of
variables and, of course, the range and prior distribution of parameter values. The process of
model building and parameterization should be as transparent as possible. This is not always
the case, as documented by Leamer (1978) or Faust (2009), among others. The Bayesian

approach to estimating dynamic economic models is, for some, a way to make the process



more transparent. For others, it can be a pragmatic way to regularize numerical difficulties

associated with the estimation problem.

The priors for dynamic economic models often are relatively arbitrary and designed
bottom-up. The priors for vector autoregressive (VAR) models or dynamic stochastic general
equilibrium (DSGE) models in the literature often are rather arbitrary. Priors for VAR mod-
els tend to be mechanistic, individually set, with possibly counter-intuitive results for models’
properties, say for its steady state.! In the case of DSGE models, where individual parameters
usually have at least some structural interpretation, the situation is better. However, the inde-
pendent marginal priors about bits and pieces of the model may lead, and often do, to unin-
tended consequences for the properties of the model implied by the prior — e.g. steady-state
values, slope of the Phillips curve, cross-correlations among variables, or implied horizon of

the monetary policy reaction and effectiveness.

Many economists have strongly held beliefs about the aggregate behavior of the model,
yet less so for arcane, model-specific constructs and parameters. We, economists, have
priors about monetary policy horizon, conditional cross-correlation of consumption and invest-
ment, sensitivity of consumption to changes in short-term interest rate, or a cumulative loss of
output after a disinflation, for instance. In terms of these priors we can communicate across
models irrespective of their structure, state- or time-dependent pricing, or labor market struc-
ture in the model, for instance. The individual structural parameters sometimes are not so
structural after all. For instance, a key parameter in an often used time-dependent pricing
scheme due to Calvo (1983) has a very stylized interpretation and its structure does not enable
researches to identify real and nominal rigidities separately, see e.g. Coenen, Levin, and Christof-
fel (2007). What matters is just the slope of the Phillips curve and the resulting model dynam-
ics.Z The prior across models about the Calvo price rigidity parameter is thus not comparable
or transferable. When building the prior bottom-up, using individual independent parameters

only, it is hard to implement the high-level system priors researchers have in their minds.?

It is essential to understand all implications of the priors for the model’s behavior, although

this is all but ignored in applied work. It is hardly possible to come up with good parameter

I'The two-step prior by Villani (2009) about the model steady-state growth is a rare exception to the rule.
Note that a constant term of a VAR(p) model is not its steady-state.

ZFor instance, with the assumption of firm-specific capital, the slope of the Phillips curve features an addi-
tional parameter that appears nowhere else in the model. The interpretation of the Calvo price parameter then
changes dramatically, without any change in the model’s dynamics.

30ur experience with models seem to suggest that vague priors lead to unintended consequences on model’s
properties, whereas overly tight priors do not allow data to speak enough. Using system priors allows us to
delineate boundaries within which data can speak quite strongly.



priors without a thorough understanding of the model at hand. Sensible individual-parameter
distributions convolute in a non-linear way into aggregate model properties, which can be
unintuitive, unintended, and often go unchecked. While there is no substitute for a careful
examination of model properties, the prior-predictive analysis is one of the tools that allow
analysts to inspect the distribution of any system property chosen. Disregarding the prior-
implied distribution of model properties is hazardous; at least a prior-mode or mean proper-
ties (impulse-response function, second moments, etc.) of the model should be contrasted to a

posterior result. Plots of marginal prior and posterior parameter distributions just won’t do.

High-level system priors— priors about model’s properties— are an effective way of expressing
economically meaningful priors directly. A prior about system properties ties together indi-
vidual parameter combinations that satisfy the stochastic constraints imposed. For example,

what is the prior view about the maximum length of the inflation deviation from the inflation

target after a demand shock? For a given parameterization of the model, a simulation is per-
formed, a test criterion evaluated and assessed using the prior distribution for the test statistic,

the duration of the inflation response. The analyst puts forth a direct prior about the system’s
property. It will not be the case that the duration of the inflation cycle implied by bottom-up
independent marginal priors, possibly without the analyst’s intention, restricts the response in

such a way the data cannot change. A prior predictive analysis would detect the issue, though

would not provide a method to implement the prior. System priors do.

After realizing the usefulness of system priors, a variety of sensible priors that economists
can devise and test open up, which are discussed in the next section. The range of priors
economists exercise in their calibration exercises and estimation ‘specification searches’ is
wide. With system priors’ transparency of formulating the prior, the situation is much clearer
than with ‘standard’ bottom-up priors.* In effect, most economists estimating DSGE models
entertain a particularly dogmatic system prior already — the condition of saddle-path stable,

or Blanchard-Khan stable, solution of the model.” Only a subset of parameters implied by the
prior is feasible then. System priors about the model’s properties work as a non-dogmatic ver-
sion of the same principle, introducing cross-dependence among parameters to satisfy the set

of stochastic constraints.

4One may not agree with other one’s priors, but at least these are clearly stated and exposed to criticism and
discussion.

>For instance, Geweke (2007) points out the fact that the prior distribution for DSGE models is truncated
to the subset of the parameter space corresponding to a saddle-path stable solutions of the model and its impli-
cations. Note also that the Blanchard-Kahn stability breaks the marginal prior independence and thus can affect
identification of marginally unidentified parameters, see Poirier (1998) and our discussion below.



B. Candidates for System Priors for DSGE Models

Candidates for properties that can be used to formulate system priors on model parameters
abound. The system properties used for the estimation will follow from the specific goals of
the model, the prior beliefs of the analyst, and the particular application or test at hand. Any

statistic implied by the model is, in principle, amenable to be employed as a system prior.

The following is a selective list of model-implied features that are worthy of consideration
as system priors. This list is by no means exhaustive and aims to stimulate further discus-

sion.

o Steady-state values of the model variables: It is necessary to assure that the prior
guarantees a sensible steady-state of the model, in terms of level or growth rates of vari-
ables.’

o Conditional or unconditional moments of the model: Cross-correlations of variables,
conditioned on a subset of shocks, are an important candidates for system priors. For
instance, the co-movement of investment with private consumption after a demand

shocks can be judged positive a priori.

e Prominent policy scenarios: Counter-factual policy scenarios informed by experience
from other countries, microsimulation models, or expert judgement are prime candi-
dates for system priors. Key policy experiments we identified are (i) permanent disinfla-

tion and (i1) anticipated delayed response of monetary policy for several periods.

e Characteristics of impulse-response functions: — Prior beliefs about the peak impacts
of shocks, duration of recessions, or the horizon of monetary policy effectiveness, among
others, can be expressed in explicit terms using impulse-response functions and model

simulations.

¢ Frequency response function and spectral characteristics: Spectral characteristics
of the model and the implied filter are complex functions of the structural parameters.
Assumptions about signal-to-noise ratios, power of shocks at particular frequencies
for selected variables, or coherence between macro variables can be used to specify
an important class of system priors. Frequency-domain system priors are particularly

useful for thinking about trend, cycles, and high-frequency dynamics of the model.

%This point is especially acute with respect to time-series models, namely VARSs.



The system priors can be constructed both in relative or absolute terms but should be
robust to trivial changes in scaling. In the process of translating the prior beliefs into numer-
ical characterizations, either of a scalar form (sacrifice ratio) or a vector form (impulse response
path) can be used. Our experience with system priors suggests it is easier to work with a sin-
gle summary statistic in most cases. We’ve also learned that the need to formalize and quan-

tify one’s prior beliefs leads to much refined and careful analysis.

C. Examples of System Priors

This section gives examples of particular system priors that are found are simple and
powerful ones to use for estimation of DSGE models. The examples below cover (i) the
sacrifice-ratio prior, (ii) a delayed response of monetary policy, (iii) duration priors about the
model dynamics, and (iv) frequency domain prior about measurement errors. Obviously, a
great variety of system priors is available and our lists and examples are not exhaustive. These

are our favorites that we have tested in practice in several projects.

1. Sacrifice-Ratio Priors

It is the great policy relevance, sensitivity with respect to key parameters, and limited
information in the sample data that make the sacrifice ratio a prime candidate for system
priors. The sacrifice ratio measures the cumulative loss of output after a permanent, unan-
nounced 1% permanent reduction in the central bank’s target rate of inflation. The sacrifice
ratio is one of the key statistics and ‘smell tests’’ for a monetary model and the role of mon-
etary policy. For an exemplar use of the concept, see e.g. FED (1996), Laxton and Pesenti
(2003), or Fuhrer (1994), among others. The sacrifice ratio marries both theoretical rigor and
great policy relevance.® Another interesting aspect of the sacrifice-ratio statistic is that disin-
flations are rare or not present in the estimation sample. The likelihood function of the model
is thus not very informative about this model property. The prior, however, can be elicited
using the experience from historical episodes in other countries, periods not covered by the

sample, or simply using expert judgment and caution.

7Our use of the term is broadly defined by the question of (Solow, 2010, pp. 2): “Does this really make
sense?"

81n his discussions of Fuhrer (1994), Gregory Mankiw acknowledges the importance of the sacrifice ratio
analysis: “It is a rare pleasure to read a paper about the sacrifice ratio written by someone under the age of 50.
The sacrifice ratio is one of those subjects in macroeconomics that is at the heart of many practical policy dis-
cussions but, at the same time, rarely finds its way into serious academic publications. It is good to see someone
trying to be both practical and serious at the same time." (Fuhrer, 1994, pp. 70)
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The sacrifice-ratio prior is a highly non-linear function of important dynamic structural
parameters. The sensitivity of a system prior with respect to key parameters is of course
important. In the example application below, it is demonstrated that the sacrifice ratio can
be very responsive to changes in the parameterization. Depending on the hyper-parameters of
the system prior, e.g. the distribution, mean and variance of the sacrifice ratio, any parameter-

ization deviating far from the prior distribution is appropriately penalized.

From the global identification point of view, the sacrifice-ratio system prior can be very
powerful. The effort to implement system priors is not undertaken in order to render those
completely uninformative. In our empirical work, an informative prior about the sacrifice
ratio has proven to be an important identification assumption. It is able to select between dif-
ferent parameterizations with very similar likelihood and dynamics, but having dramatically

different policy implications in terms of the sacrifice ratio, notably in open economy model.

2. Delayed policy response

One of the frequent questions in policy institutions, namely central banks, is about the
effects of a delayed change in a policy instrument. The scenario may entail a demand shock
followed by keeping the policy rate unchanged for k periods. The longer the markets expect
no change in the policy instrument, the more accommodative the policy is. A statistic of inter-
est can be how much more the inflation increases compared to a standard reaction of the pol-
icy when it follows a variant of a Taylor rule, for instance. Such a statistic is very nonlinear
function of parameters— a statistic that goes beyond the properties of the model that can be
directly observed in the data. The simulation entails anticipated actions and thus uses both
stable and unstable dynamics of the model, allowing for richer identification options than the

likelihood, as explained below.

3. Duration Priors

Duration system priors proved useful in the model estimation to prevent a priori unreasonable
dynamics. We, economists, seem to often have strongly held priors about the duration or

timing of economic phenomena. We have priors about the duration of business cycles, or

the adjustment of the economy to particular shocks. For instance, inflation-targeting central

banks usually operate within a ‘monetary policy horizon’ — a horizon where monetary pol-

icy is effective and during which inflation should return to its target after the initial shock. A
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prior suggesting that no significant deviation of inflation from its target is to be found after
the fourth year would seem like a rather consensual prior. It may work as an upper bound on

the response of inflation.

Scale-invariant duration priors are relatively easy to implement. Our suggestion is to
compute the integral of the particular variable’s response in absolute value up to horizon T’
and T + h and express the prior about the relative contribution of the A-period horizon, that is
as a ratio of these two numbers. No dynamics between periods 7" and 7 + & implies that the
statistic of interest is one. Such a definition of dynamics is invariant to the size of the shock
in a linear model; in non-linear models a variety of modifications are possible. If needed, the
measure of persistence of the inflation response can be related to the persistence of the output

expansion.

4. Frequency-domain Priors

System priors based on statistics computed in the frequency domain are abundant and
offer great flexibility and control over the estimation process. Using marginal independent
priors about structural parameters to limit an property of the model a priori is often extremely
hard, or impossible. The equivalence between time domain and frequency domain allows
researchers to use whichever tool that seems most appropriate for the purpose at hand. When
the contribution of trends, cycles, or measurement errors is of a concern, the frequency domain
is the intuitive and correct approach. We discuss some examples of system priors in the fre-

quency domain below.’

Measurement-error priors can be refined by restricting a share of variance or periodicity
over which these should not affect the observed variable. Standard priors on measurement
error’s variance do not restrict the role of measurement errors in a sophisticated way. In the
case of an uncorrelated measurement error process, its spectral density is flat and the con-
tribution to the estimated variance of the observed endogenous variable can be easily con-
strained a priori. For correlated measurement errors and more general processes, some a pri-
ori information up to what frequencies the measurement error can contribute to is also easy to
implement. For each parametrization of the model, the contribution of measurement error to
population or sample variance can be evaluated and penalized for a deviation from the values

implied by the prior distribution of the statistic.

9See e.g. Hamilton (1994) or Koopman (1974) for elements of frequency-domain analysis of time series.
Familiarity with the concept of spectral density, a distribution of variance across cycles of different periodicity
is, 1s useful for this section.
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The relationship among variables at cyclical frequencies and the nature of their trends
often requires a priori information. The issue of trends specification or de-trending is a big
one in the case of DSGE models, see e.g. Canova (2012) for a lucid discussion. The system
priors can be associated with the frequency domain representation of the model, or with the
frequency response function of the Wiener-Kolmogorov or Kalman filter implied by the struc-
tural model. The properties of the implied filter are fully described by the model’s parameter-
ization and hyper-parameters determining the treatment of initial conditions. For instance, the
mid-point of the filter’s implied gain function for particular variable to another is a feasible

option for setting up a system prior on the model.

In simple setups, one can parameterize the model such that an analytical prior on signal-to-noise
ratio is feasible, otherwise a system prior needs to be specified. A prior on the signal-to-

noise ratio may be needed, for instance, to guard the estimation from the pile-up problem,

see e.g. Stock (1994) or Laubach (2001).!° In more complex models with endogenous trends,

or in trend-cycle models, as in Andrle and others (2009) or Canova (2012), system prior on

implied signal to noise ratio and frequency response function of the model provide the only

and efficient way to express a priori views on trend properties, despite having no closed-form

solution.

D. Implementing System Priors

The method for implementing system priors can be interpreted both in the coherent
Bayesian or classical framework. In the classical framework, the system priors are equiv-
alent to penalty function, or regularization, methods.!' The following discussion is centered
around the proper and coherent Bayesian view, with no loss of generality. Given the model
M, the Bayesian approach to parameter estimation consists of updating the prior beliefs,

p(6] M), about the parameters, 6, with the evidence using the data, Y, and the model’s likeli-
hood, L(Y?|6, M), i.e.

L6, M) x p(6IM)
p(Y°IM)

pOIY’, M) = oc L(Y?10, M) X p(0I M), (1

10Essentially, the pile-up problem concerns the estimator putting too little weight on the variance of perma-
nent component.

1 Tt is well known that many regularization functions have a Bayesian interpretation. For instance, quadratic
penalty function corresponds to the Gaussian distribution prior on the feature, or the Lasso method can be under-
stood as the Laplace prior on the feature.
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The expression (1) is completely general, without the type of the prior distribution function
p(6| M) specified. In the case of DSGE models, the prior information is virtually always for-
mulated in terms of independent marginal priors on components of 6. In our case, the prior

distribution is elicited, also, with the help of system priors.

To implement the system priors, the composite prior is built by first specifying marginal
distributions for individual parameters, and then augmenting it with system priors in

the second step. Backing out the individual parameter priors using the system priors boils
down to an inverse problem. We do not require the system priors to identify all parameter
priors by themselves; one can start with a set of independent marginal priors on structural
parameters, which are further updated using non-sample information in the form of the sys-
tem prior. There is an analogy to dummy observations priors, see Theil and Goldberger (1961).
Although there are cases where a system prior can be implemented using a change-of-variables
formula or other analytic calculations, we propose relying fully on numerical specification

and Monte Carlo integration techniques, which fit well into the standard estimation setup of
DSGE models.

Specification of the independent marginal priors on parameters is a feasible starting
point for the composite prior. The first restriction, a prior, on a parameter is expressed as a

joint distribution composed of marginal distributions of elements in 6, i.e.

p(BIM) =p(61) X --- X p(6). 2)

This is the most common structure of a prior specification in the DSGE literature, see e.g.
Canova (2007). Individual parameters are considered independent and marginal distributions
p(.) determine range and plausible location of individual parameter values. The independence
assumption is unrealistic and is used here for convenience, as it will be updated with the sys-

tem prior.

To update the prior formulation, a set of model properties, Z, with its distributional
assumptions needs to be specified. Model properties Z = h(8) are endowed with a complete
probabilistic model Z ~ D(Z*), where D is a distribution function with hyper-parameters Z°.
With little loss in generality, we consider Z° to describe the mean and variance of the prior
properties distribution. The likelihood function for non-sample information Z = h(6), given
Z*, is denoted ps(Z°|6, h, M) — a system prior. The combination of the marginal priors with
the priors on the system properties of the model results in the final, composite joint prior dis-
tribution p(6|Z°%, h, M) < ps(Z°16, h, M) X p(6|M).
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The posterior distribution is obtained by combining the composite prior information
and available sample observations. The posterior of the model parameters is then propor-
tional to the likelihood of the model, given the observed sample updated with the prior, condi-

tioned on the extra model features information Z*, that is

p@IY°, Z°, M) o« L(Y°6, M) X ps(Z°|0,h, M) X p(8| M) 3)
o« L(Y°l0,M)*xpO|Z°,h, M). 4)

The posterior distribution in (3) can be analyzed by popular Monte Carlo integration
techniques. The use of Monte Carlo integration techniques, namely, variants of a Random-
Walk Metropolis algorithm, has become widespread. The analysis of a posterior distribution
using the augmented prior does not differ much from the current practice, as described in An
and Schorfheide (2007) or Canova (2007), for instance. All components of the prior distribu-
tion and the likelihood function can be evaluated at particular 6, drawn from a suitable pro-
posal distribution.!”> A Random-Walk Metropolis algorithm, using the N(0® —9%=D ¢¥) asa
proposal distribution is a perfectly feasible option. Here X can be a derived from the Hessian
of the posterior mode 6* obtained by maximizing the criterion function (3) and c, a scaling
parameter. The evaluation of p(.) and likelihood L(.) is unchanged, with an additional step of
evaluating the system prior pg(.). For most system priors, the model does not need to be re-
solved, since the solution of the model is also required for the likelihood function evaluation

as well and is thus already available.

Investigation of the composite prior distribution will usually require sampling techniques.
Although an analytical expression for ps(Z°|6, M) might exist in some cases, most often it
will not and sampling from the distribution to obtain 6 will not be possible. An application

of Rejection Sampling or Importance Sampling algorithm may work well for smaller prob-
lems."? A Random-Walk Metropolis algorithm applied to (3) with the likelihood function
‘switched-off” and set to a constant, is our preferred way of analysis, mostly due to its ease of
implementation. The necessity of two sampling steps to evaluate posterior and prior distribu-

tions separately is the only minor drawback of using system priors.

Unlike the independent marginal prior, the system properties prior will invoke a complex
interdependence among parameters. The prior on system properties ties several or all param-

eters together to some extent. These restrictions are global, as they hold for all admissible val-

12The interpretation of (3) as a penalized maximum-likelihood estimation is possible and encouraged.
13In complex problems importance sampling can be preferred due to its easy of parallelization and the need
to investigate thoroughly the support of the composite prior distribution.
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ues of 6. This is desirable, as it may sharpen the identification and dissect the parameter space
into feasible regions, similar to the requirement of saddle-path stability of the model that is
usually imposed. It is important to realize the limitations of marginal posterior and prior dis-
tribution plots for individual elements of 8, not showing the joint probability of parameters
now in both cases. For proper understanding of the prior information imposed on the model, a
prior predictive analysis and prior distribution of model system properties (impulse-response
function, for instance) is of utmost importance. We are sure that nobody can understand from
a sequence of Beta, Inverted-Gamma, or Normal distribution what these parameter priors

imply for the model’s dynamics.'*

E. Identification Issues

The specification of system priors may affect the posterior distribution of even purely
unidentified parameters. As is well known, the prior distribution regularizes the likelihood
even for non-identified or weakly identified parameters. See e.g. Canova and Sala (2009) for
a discussion of identification in DSGE models. Poirier (1998) also shows that even a posterior
distribution of the unidentified parameter can be different from its marginal prior distribution
if the parameter is not independent of others. System priors provide the prior parameter inter-
dependence, as well as the requirement of Blanchard-Kahn stability does. Both restrictions

affect global identification.!?

System priors have implications both for local and global identification. They may be a
powerful mode-selection device that is easy to understand thanks to its transparency and eco-
nomic foundations. For instance, in the case of a bi-modal likelihood, the nature of the system
prior on sacrifice ratio may navigate the estimation to a particular mode. Further, using sys-
tem priors with multiple conditions restricts feasible parameterizations to a great extent due to
the ‘curse of dimensionality’ — or a blessing of dimensionality, in our case. It may be possible
to find many parameterizations satisfying sacrifice-ratio priors, but fewer also satisfying IRF

duration priors or others.

Locally, the posterior-mode Hessian or Fischer Information Matrix are useful tools for

understanding the criterion function. By virtue of the log-additive nature of the posterior

“Even the case of Normal priors is complex, since the mapping from the parameters to solution and model’s
properties is highly non-linear even for linear rational-expectations models

SFor instance, parameters of the monetary policy rule can be locally weakly identified or not identified at all.
The condition of Blanchard-Kahn stability, however, may provide only a subset of admissible combinations of
the parameters, further sharpened by system priors.
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functional (3), the Hessian evaluated at 6* can be decomposed as
H(6*) = Hy(0™) + Hs(6™) + Hp(6%), (%)

i.e. as a sum of components due to log-likelihood and composite prior — system properties
priors and independent marginal priors. All components reveal a great deal of local informa-
tion about parameter interdependence. The marginal prior component H), is diagonal, regu-
larizing the likelihood component Hy and, akin to a ridge regression, guaranteeing the non-
singularity of Hy + H),. The component due to system priors Hg will not be diagonal in gen-
eral, revealing identification patterns among parameters consistent with the system properties

priors.

Globally, system priors may contribute to mode-selection. System priors, e.g. the sacrifice
ratio, are very nonlinear function of parameters, not identified by the likelihood. One inter-
esting option is identifying information via the solution of the model featuring anticipated
events, see e.g. Blanchard and Kahn (1980) for the forward expansion, or the intuitive discus-
sion in Turnovsky (2000). Forward expansions are dependent also on unstable eigenvalues

of the system, unlike the standard solution. Hence, a system prior based on an anticipated N-
period delayed interest rate reaction to a demand shock may be a strong identifying criterion a

priori, since there is no information on it in the data.'®

ITI. ILLUSTRATION OF THE METHOD

A. Simple Monetary Policy Model

We set up a fairly standard closed economy monetary policy model to illustrate the
workings of system priors. The model is simple and rather stylized but it is no straw man;

variants of the model have been used for policy analysis and projections.

16Without forward expansion for anticipated events, standard recursive solutions of linear rational expecta-
tion models retain dynamics of stable eigenvalues and operate on their saddle path after an initial jump in reac-
tion to new information. In the case of a pre-announced event, the solution up to the implementation phase is off
the model’s saddle path and depends also on unstable eigenvalues of the system. To illustrate the point using an
extreme example, in the purely forward-looking model in Canova and Sala (2009) the interest-rate rule param-
eter, a5, drops from the solution altogether. It is not weakly identified, it simply is not there. However, it can be
shown that it does not drop from the forward expansion for anticipated events. Thus, even in this extreme case,
the scenario of delayed interest rate response to a demand shock —shock v; in Canova and Sala (2009)— results in
different interest rate reactions depending on the parameter a5 of the policy rule.
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The model follows a typical New-Keynesian closed economy model with price rigidities.
Inflation, 7;, is driven by output in excess of its trend or equilibrium value, using a forward-
looking Phillips curve. The output cycle, y, is determined by an output equation derived from
consumption smoothing and is interest sensitive. The monetary policy authority sets the short-
term nominal interest rate, i;, via an inflation-forecast based rule, weighting the expected

deviation of year-on-year inflation from its target and the output gap.

B = @1yt @y +asz(rr —rr) € (6)
i = /llnf+l|t+(1—/11)7rf_1+/125;,+af @)
i = yii+(L=71) X [(FF+7) +72(, — Taz) + 7331 | + 61 ®)
rre = ip— Tyl 9
T, = prmi_1+e&r (10)

Despite its small size and simplicity, the model can display nontrivial dynamics in response
to structural shocks. It is driven by eight parameters 6 = {123,412, pi,¥1.23} and four
standard deviations for structural shocks. Inflation target is assumed to follow a random-walk,
pr = 1. There cannot be a smaller model than this one. Namely, there exist parameteriza-

tions featuring stark differences in the coefficient values that deliver very similar properties of
the model, differing in just a few aspects, which may not always be easily identified from the

observed data.

The model is semi-structural but can be derived from behavioral assumptions. A deriva-
tion of the model is carried out in the appendix, under the assumption of GHH preferences,
habit formation, flexible wages, labor as a single input into production, and a one sector econ-
omy. The model based on explicit behavioral assumptions is a restricted version of the semi-
structural model, embodying very stylized assumptions. We use, however, the semi-structural

version of the model as it is satisfactory for illustrating the main point of the paper.

There are several key prior restrictions that even the semi-structural form of the model
strictly adheres to. First, the Phillips curve is homogeneous and independent of the inflation
target level. The inflation target is set by the monetary authority and it is the role of the policy
rule to make sure it is achieved. Second, the sum of the coefficients on lead and lag in the
output equation need not sum to unity, in contrast to the models’ price dynamics. This can be

easily seen from the derivation of the model in the Appendix.



18

B. Computational Experiment

To illustrate the idea of system priors, the example below demonstrates how a single
system prior induces individual parameter priors. We believe that this type of exercise

is very informative about the philosophy of system priors. The example uses the model with
very diffuse marginal independent priors on individual parameters, which is updated to form
a composite prior by a single system prior. An interesting aspect of the exercise is to see how
and for which parameters the prior distribution gets changed. In principle, if the property of
the model used as a system prior is affected by the parameter, the individual parameter’s prior

distribution will get influenced by introducing the system prior.

The effect of a system prior on an individual parameter’s prior distribution depends on
the global identification of the parameter with respect to the system prior. If the parame-
ter is not affecting the statistic within its whole support, the parameter is not globally identi-
fied with respect to a system prior. Note that the mapping from parameters in 6 to the rational-
expectations solution is highly nonlinear and that there may be multiple parameterizations
consistent with the desired value of the system prior. This, actually, is the key principle, oth-
erwise the prior would collapse into calibration. This multiplicity may lead to the existence of

iso-parametric paths.

In our example, the system prior used is specified in terms of a distribution of the sacrifice
ratio. Strictly speaking, there are two system priors, since we truncate the whole parameter
space to regions that are Blanchard-Kahn stable (a dogmatic system prior, in essence). The
sacrifice ratio is defined as a cumulative loss in output after a permanent decrease of the cen-
tral bank’s inflation target by 1 percentage point. In our simple linear model, the disinflation
from 3% to 2% will produce the same loss of output as disinflation from 15% to 14% would.

In a more complex, possibly nonlinear models, this would not hold and the scope for employ-
ing the sacrifice-ratio prior would be even larger. The sacrifice ratio is a key statistic for a pol-

icy model’s evaluation, see e.g. FED (1996) or Laxton and Pesenti (2003).

The system prior is specified such that the sacrifice ratio is assumed to be distributed

as N(-0.8,0.05). This constitutes relatively informative but very transparent prior informa-
tion about the model. Normal distribution is employed for simplicity only; one can opt for
any distribution of interest. For each parameter, a rather diffuse marginal independent prior is
chosen, relying on truncated Normal distribution. In particular, it is interesting to see how a
relatively diffuse multivariate Normal prior distribution of all parameters gets translated to a

prior distribution of the sacrifice ratio before the system priors are taken on board.
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Figure 1 demonstrates how the prior about the sacrifice ratio induces priors across
individual parameters. The blue dashed line is the marginal independent prior, the red solid
line is the marginal prior distribution of the composite prior, after the system prior about the
sacrifice ratio is applied. Some parameters are affected more then others, some seem essen-
tially irrelevant for the size of the sacrifice ratio. The coefficients in the output and inflation
equations are very much affected by the assumptions about the range of the system prior. It
should also be understood that only marginal distributions are plotted, whereas for the esti-
mation, the full joint prior distribution will be exploited. Interestingly it shows that the least

identified coefficients in our example are the coefficients of the monetary policy rule.

Figure 1. Priors induced by a sacrifice ratio prior
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Figure 2 illustrates two prior distributions of the sacrifice ratio — the marginal independent
prior and the composite prior. The value of the sacrifice ratio at the mode (and by that

token, at the mean) implied by the marginal independent prior is -0.5, indicated by a red ver-
tical line on both panels. As can be seen from the left panel, the diffuse Gaussian priors result

in highly non-Gaussian prior distribution for the sacrifice ratio. This is to be expected. The
mapping from the structural parameters to the sacrifice ratio is highly nonlinear and must

satisfy the saddle-path stability of the model. The right panel depicts the distribution of the

sacrifice ratio, after the system prior of N(-0.8,0.05) has been implemented.!”

Figure 2. Prior predictive distributions: sacrifice ratio
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17Both graphs feature only 15000 draws from the relevant prior distributions.
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CONCLUSIONS

This paper demonstrated a novel approach how to formulate priors for economic models.
System priors are priors directly related to the structural system properties of the model, that
allow one to back out implied complex joint prior distribution for individual parameters. Sys-
tem priors allow for eliciting transparent and economically meaningful priors for the estima-
tion of structural models, without unintentional consequences as is often the case with inde-

pendent marginal parameter priors.

System priors —no matter what they are— are transparent and easy to communicate.

With system priors, it is perfectly acceptable to have economic priors and it is likewise accept-
able to have quite informative priors. System priors foster transparency and it is their trans-
parency and economically meaningful nature that allow the priors to be discussed and debated.
After all, these are subjective priors that need to be explained. Although several examples of
system priors were discussed, these are just the tip of the iceberg. System priors free analysts
from ‘prior specification fishing,” chasing for the combination of marginal independent priors
that roughly convey their more often vague ideas about model behavior, if they have any. On

the other hand, system priors force researches to carefully articulate their priors.

System priors can serve both as a complement and substitute for individual independent
marginal parameter priors. There is no doubt that having priors directly about structural
parameters is the first best approach in many cases. System priors are not mutually exclusive
with individual parameter priors in principle; better, system priors may impose further struc-

ture on those, as is clear from the computational procedure suggested.
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APPENDIX
IV. BEHAVIORAL FOUNDATIONS OF A SIMPLE MONETARY MODEL

The standard New Keynesian Model, see e.g. Gali (2008), amounts to a system similar to our

simple model, with the restriction a, = 0.

We assume a single sector economy where monopolistic intermediate firms produce goods

using labor only, i.e.:
Y.(j) =ZL:(j)", (1D

where Z; is aggregate technology shock. We assume that intermediate firms’ prices are sticky,
which can be easily operationalized using a version of Rotemberg or Calvo pricing. We assume
Calvo (1983) pricing with the parameter 6 determining the probability of changing the price

in the current period. Firms that do not re-optimize prices in the current period follow a rule

of thumb and index their prices by previous period change of the average prices level in the
industry. These assumption lead to a Phillips Curve of the form:

B 1 (I-0)(1-6B)
ﬂty:_1+ﬁ"zy+1|z+—1+ﬁ”zy—l+ 21+ 5) rmct+a;u, (12)

where riiic = w; — p; — Z; is a log-deviation of real marginal costs from its steady-state, as

determined by the inverse markup. The ‘cost-push shock’ &/’ follows from a time variation in

the elasticity of substitution among intermediate goods.

There is a mass of consumers who supply their labor services, L;, and consume final goods,
C;, at a price P;. All consumers can use a deposit account at a perfectly competitive bank with
the rate of interest R5. They also receive proportional share of intermediate firms profits, I,

and transfers, 7;. The consumer’s problem can be stated as:

) L1+n 1+o0 |
"N(C () = hCimy) — x X —— 13
max;ﬁ (@D =hCD-x T | X (13)
subject to a period budget constraint
P,Cy(i)+B,(i) = R | Bi_1 (i) + W, L, (i) +T1,()) + P/T; (i). (14)

The bank is perfectly competitive, refinancing itself at a central bank. For simplicity we assume

that transformation of credit and deposits is costless, but subject to stochastic shocks ¢;. The
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market interest rate is thus equal to the policy rate, augmented for the banking premium, i.e.
R = Rig7.

We assume a cashless-limit economy, for simplicity. The monetary policy authority operates
under flexible inflation targeting regime and sets the nominal policy rate according to an inter-
est rate rule,

Ry = pR-1+ (1= p) [y(x)} - t3) + 7,5 + . (15)
Here R, denotes annualized deviation of the nominal policy rate from its trend (equilibrium)
value RS;.

The log-linearized model can be written down using the following set of equations:

. 1 h . 1-h{p A ~B
= — - Z=(R; - 1
Vi 1_I_hyt+l|t‘|‘ (1+h)(1+LL)yt 1 17 O'( t— 1) + & (16)
y By 1y (I-0(1-608)\n . ., u
= — — —(9; - 17
ﬂ-t 1+ﬁﬂ-l+1+l+ﬁﬂ-l—l+( 0(1+ﬁ) y(yf Zl‘)+8t ( )
R = pR_1+(1-p) [yn(ﬂ,yg—ﬁt+3)+7y9]+6§- (18)

where {7 = (1 —¢/[(1+n)(1=h)]) and ¢ = yLT(L/C)/(1+n).

It is clear that the simple structural model is a rather restricted version of the semi-structural

model estimated in the main body of the paper.
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