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I.   MOTIVATION 

Large unexpected oil price movements pose a significant macroeconomic risk for both 

oil-importing and exporting countries. Over the last decade oil prices have tripled from 

around $40 in 2003 to $140 in 2008, only to drop below $50 in late 2014, with these price 

movements largely unexpected. The price crash in the aftermath of the Lehman bankruptcy, 

the subsequent upswing between 2009 and mid-2014, and the sharp fall since then reveal that 

oil price fluctuations remain prominent, adding to (and potentially feeding back from) the 

general economic uncertainty and weak recovery.  

 

Since oil prices are notoriously difficult to predict, practitioners have long relied on 

futures. However, recently developed economic vector auto-regression (VAR) models in the 

class of Kilian (2009) have been used for short to medium term real oil price forecasting. In 

particular, Baumeister and Kilian (2012) and Alquist, Kilian and Vigfussion (2013) have 

shown that these real oil price forecasts provide more accurate predictions of the future path 

of real oil prices relative to futures or other models.  

 

In this paper, we build on this seminal body of work, by attempting to forecast the 

nominal price of international oil benchmarks (Brent, WTI)—rather than real oil prices or the 

real  U.S. refiners’ acquisition cost (RAC), 2 and by this we fill a gap in the literature to the 

best of our knowledge. Nominal oil prices are of direct interest to the IMF’s World Economic 

Outlook forecasts. We rely on well-established macroeconomic and oil market variables such 

as global industrial production, oil supply and oil inventories to capture demand and supply 

as well as speculative (precautionary) demand effects on oil prices as noted by Kilian (2009) 

and Kilian and Murphy (2014). In addition, for the purpose of providing a nominal oil price 

forecast, we introduce CPI inflation into our VAR model. Finally, building on Chen et al. 

(2010) and Grisse (2010), we augment the VAR model with the U.S. dollar exchange rate, 

trade weighted vis-à-vis the largest oil consumers to account for the impact of the exchange 

rate channel on oil demand.  

 

Four further issues are of particular interest in the literature. First, how should we 

measure oil demand? We experiment with different specifications; namely global and 

regional industrial production indices and the Kilian index of real economic activity (REA) 

based on dry cargo bulk freight rates (Kilian, 2009). Further, we differentiate between 

advanced and emerging market oil demand, following Aastveit et al. (2014) who show that 

emerging market economies’ demand has been more than twice as important as developed 

economies’ demand in driving oil prices over the past two decades. Second, how to handle 

                                                 
2 U.S. refiners’ acquisition costs (RAC) is the average price paid by U.S. refiners for imported crude oil and 

includes transportation and other fees. See http://www.eia.gov/dnav/pet/PET_PRI_RAC2_DCU_NUS_M.htm  

http://www.eia.gov/dnav/pet/PET_PRI_RAC2_DCU_NUS_M.htm
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the rise in unconventional oil production from North America? We break down global supply 

into its major regional producers (e.g., OPEC vs. non-OPEC). Third, how to handle the 

upward drift in oil prices between 2003 and 2008 and their subsequent decline? Since it is 

difficult to account for all additional driving factors beyond those variables in our VAR, we 

assess both a trended oil price model (consistent with Hotelling’s 1931 positive intercept) 

and a detrended model (with a zero intercept in the real oil price equation of the VAR). 

Fourth, how far back are oil market fundamentals relevant for near- to medium-term 

predictions? For this, we assess the medium-term memory of the variables in the system and 

experiment with varying lag structures to capture oil market dynamics over various windows 

up to 24 months. For all, we evaluate the forecasting performance of our estimates against 

several other prominent forecasting models from the literature (e.g., futures prices, the no-

change prediction and univariate autoregressive models).  

 

The discussion above indicates that the exact specification of a VAR model for the 

purpose of oil price prediction is still open to debate—whether for real or nominal prices. 

Hence, as well as experimenting with additional variables, we highlight the instability of 

rival forecasting models over time. That is, while the standard parsimonious VAR model of 

oil demand, supply and inventory demand performs best over the full sample, we show that 

there is merit in other specifications, as well as in the futures forecast during subsample 

intervals. These differences may be fruitfully combined by forecast averaging. 

 

Evaluating forecasting performance over the past two decades, our paper’s main findings are 

as follows:  

 

 Across the whole sample, the bias of futures forecasts has been larger than that of the 

VAR across all horizons. The direction of the bias indicates a severe underprediction of 

the futures forecast. For forecast horizons between five to eight months, even a random 

walk (with or without drift) outperformed the futures curve in terms of lower bias, lower 

absolute mean square error, and higher accuracy. For horizons up to 12 months, an AR(6) 

outperformed both the random walk and futures.    

 

 However, for horizons beyond 12 months up to 24 months, futures forecasts were more 

accurate than those of the random walk or autoregressive models. In contrast, most of our 

VAR model specifications outperformed all competitors for both short- and medium-term 

horizons in terms of accuracy.3 In addition, we find that removing the trend in oil prices 

improved the forecast performance for the short-term even further. Beyond the one-year 

                                                 
3 Throughout our paper, near- or medium-term refers to horizons up to 24 months. Short-term refers to horizons 

between 1 to 12 months. The long-term, i.e. forecasts in excess of 24 months, are not examined in our paper.     



 6 

forecast horizon, VAR models including the exchange rate, interest rates, and 

decomposed oil supply by region provided the most accurate forecasts among all 

competitor models. 

 

 Forecasting performance varies across time. The random walk forecast performed better 

during periods of stable oil prices, but the VAR has performed best since 2008. Indeed 

since the collapse in oil prices in 2008, the VAR has had superior forecasting 

performance. Measures of activity based on the Baltic Dry Index included valuable 

information for forecasting oil prices prior to 2008, but thereafter performed poorly.  

 

 Combination forecasts for horizons under 18 months performed poorly. However, for 

horizons beyond 18 months, we found merit in a combination forecast, particularly one 

with inverse forecast accuracy weights computed over 24 months. 

 

 Despite the overall strength of VAR models, performance suffered from instability over 

the full sample, with small alterations in specifications, subsamples, and lag lengths 

providing widely different forecasts at times. Therefore, we conclude that predicting oil 

prices on a long sample of data with structural breaks remains difficult.    

 

The rest of this paper is structured as follows. Section 2 provides a brief overview of the 

existing literature and Section 3 describes the baseline forecasting models, relating them to 

the main near- to medium-term oil price forecasting models in the literature. Section 4 

describes the data used. Section 5 then introduces our evaluation approach, measuring 

forecast unbiasedness and accuracy and discussing key results. Section 6 offers robustness 

checks and Section 7 proposes a forecast combination. Section 8 illustrates ex ante VAR 

predictions during the oil price collapse of 2014. Section 9 concludes.  

 

 

II.   RELATION TO THE LITERATURE 

After a period of relatively stable oil prices, academic interest in the topic of forecasting 

oil prices over the near to medium term picked up.4 The futures forecast has so far been the 

predominant focus in practice and the academic literature, with its informational content 

widely reported, as in Reeve and Vigfusson (2011), Reichsfeld and Roache (2011) and Chinn 

and Coibion (2013). While all three papers investigate the predictive ability of futures (for a 

range of commodities, showing that energy futures generally perform better in forecasting 

future spot prices than non-energy commodity futures), different aspects are highlighted. 

                                                 
4 It is important to note that our paper relates to this class of forecasting models, i.e. short to medium term, 

defined as those horizons from 1 to 24 months only. For longer horizons, structural models are more common. 

See Benes et al. (2015) for one example of these longer horizon models. 
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Next to this strand, there is some evidence that recently developed economic vector auto-

regression (VAR) models by Kilian (2009) for the determination of the real price of oil could 

provide more accurate forecasts. Economic theory suggests that a number of global economic 

aggregates such as oil supply and demand (or related variables), and forward looking 

variables (such as changes in global crude oil inventories) could contain information about 

future oil prices. For real oil prices, Alquist et al. (2013) first find that some proxies for 

global oil demand, namely global industrial production (GIP) and the index of global real 

economic activity (REA) developed by Kilian (2009), feature significant predictive ability, 

while US GDP does not. Using a factor VAR, Aastveit et al. (2014) find that demand from 

emerging economies, most notably from Asian countries, is more than twice as important as 

demand from developed countries (as proxied by industrial production in each region) when 

accounting for the fluctuations in the real U.S. refiners’ acquisition cost (RAC) and in oil 

production.  

 

Second, Alquist et al. (2013) demonstrate that a simple VAR model with global oil 

supply, Kilian’s REA index and crude oil inventories outperforms the futures forecast and 

other models for short forecast horizons (up to 9 months). This result also holds in real-time, 

as shown by Baumeister and Kilian (2014). These VAR forecasts are found to be robust to 

various changes in model specification and estimation methods, including Bayesian 

estimation (Baumeister and Kilian, 2012). Yet, to the best of our knowledge, none of the 

papers in the literature compare the forecasting performance of nominal oil prices against the 

futures-based forecast, and hence this is the gap our paper fills. 

 

Finally, before turning to our research approach, we augment the baseline model with 

two variables that may help explain oil price movements. First, to obtain a nominal oil price 

forecast, we need to forecast inflation. This is directly in line with Alquist et al. (2013) who 

find that monetary variables such as inflation, money growth rates and other nominal 

commodity prices influence nominal oil price movements. Second, we augment the model 

with an index to capture the transmission of exchange rate movements on oil demand from 

oil-importing countries. This is motivated by Chen et al. (2010) who find some evidence of 

predictability when using U.S. dollar exchange rates for a broad index of commodity prices, 

since global oil demand and supply are influenced by the relative exchange rates of oil 

importers and exporters in relation to the U.S. dollar. Indeed, Grisse (2010) finds persistent 

negative correlation between oil prices and the U.S. dollar in recent years.  

 

 

III.   BASELINE FORECASTING MODELS 

We now introduce the empirical specification of our baseline VAR out-of-sample 

forecasting model and discuss the selection of variables. We employ the standard reduced-

form VAR model with monthly seasonal dummies, which takes the form: 
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𝑦𝑡+1 = 𝑐 + 𝛿𝑚D𝑚,𝑡+1  + 𝐴1𝑦𝑡 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝+1 + 𝑢𝑡+1                 (1) 

 

where 𝑦𝑡, 𝑐 and 𝛿𝑚 are 𝐾𝑥1 vectors of observables, constants, and monthly dummy 

parameters, respectively, and 𝐴𝑖 , 𝑖 = 1, … 𝑝 are 𝐾𝑥𝐾 coefficient matrices. D𝑚,𝑡 is the monthly 

dummy indicator which takes the value of 1 if the forecast period 𝑡 is month 𝑚, with 𝑚 =

 {𝐽𝑎𝑛𝑢𝑎𝑟𝑦, … , 𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟}.5  

 

The lag length 𝑝 = 6 is obtained by the Akaike information criterion (AIC). The 

reduced-form residuals 𝑢𝑡 are assumed to be 𝑖𝑖𝑑 𝑁(0, Σ𝑢), where Σ𝑢 is the variance-

covariance matrix of (potentially) correlated residuals. The absence of serial correlation in 

the residual vectors is important for forecasting. We do not find any evidence of remaining 

serial correlation for the VAR model with 𝑝 = 6 lags. Henceforth, the VAR model with 6 

lags is chosen, VAR(6), but (in Section VI) we evaluate the forecasting performance for all 

𝑝 ∈ {6, … , 24}. The model is estimated by multivariate least-squares.6  

 

The baseline model, 𝑦𝑡 = [𝛥𝑙𝑜𝑔 𝑝𝑟𝑜𝑑𝑡, 𝛥𝑙𝑜𝑔 𝑖𝑝𝑡 , 𝛥𝑙𝑜𝑔 𝑟𝑝𝑜𝑡, Δ𝑐𝑟𝑖𝑛𝑣t, 𝛥𝑙𝑜𝑔𝐶𝑃𝐼𝑡]′, 

(Table 1, model A(i)), refers to the vector of endogenous variables, as follows: 𝛥𝑙𝑜𝑔 𝑝𝑟𝑜𝑑𝑡, 

is the log-difference in global crude oil production;  𝛥𝑙𝑜𝑔 𝑖𝑝𝑡 is the log-difference of the 

global industrial production index, 𝛥𝑙𝑜𝑔 𝑟𝑝𝑜𝑡 is the log-differenced real price of oil; and 

Δ𝑐𝑟𝑖𝑛𝑣t, is the level change in OECD inventories. OECD inventories are included as a proxy 

for global inventories and hence capture speculative (precautionary) demand for oil.7 By 

specifying the real price of oil in log-differences, we assure stationarity of the model and 

remove higher order persistence,8 and hence longer lag lengths are unnecessary, even harmful 

since they could reduce estimation efficiency (see Section VI). The real price of oil is 

computed by dividing the monthly average nominal spot price of oil by U.S. CPI inflation. 

The forecast change in U.S. CPI is used to obtain nominal oil price forecasts. 

 

                                                 
5 No dummy is needed for December as the constant already captures that month, with other months’ constants 

adjusted relative to December’s. 

6 Since the forecasting methodology is well-known, we refer the reader to standard time series textbooks such as 

Hamilton (1994) or Lütkepohl (2007) for further details on estimation and recursive forecasting. 

7 Kilian and Murphy (2014) first introduced inventories into oil VAR models using U.S. oil inventories to 

extrapolate global inventories data. Kilian and Li (2014) obtain proprietary data to estimate OECD and non-

OECD inventories, including oil in transit (i.e. floating storage and at sea). See www.IEA.org for more details.     

8 When following the literature and specifying the real price of oil in logs, the largest estimated eigenvalue is 

0.996, questioning stationarity of the model for our sample period. As a robustness check we run the model with 

the log-specification and find that the forecasting performance deteriorates. 

http://www.iea.org/
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In addition to the above variables, motivated by Chen et al. (2010), we construct an 

exchange rate index of the U.S. dollar against the currencies of major oil consumers (Table 1, 

model B(i)). With this, we capture additional demand-side effects from exchange rate 

movements of large oil importing countries. Specifically, we weight the exchange rates of 

these countries by the country’s relative share of oil consumption: 

 

𝐸𝑋𝑅𝑡 =
1

𝑁
∑

𝐶𝑜𝑛𝑠𝑖,𝑡

∑ 𝐶𝑜𝑛𝑠𝑖,𝑡
𝑁
𝑖=1

𝐸𝑋𝑅𝑖,𝑡.𝑁
𝑖=1          (2) 

 

For completeness we also explore the forecasting performance with the addition of the 

following variables:  

Table 1.  Overview of Forecasting Models

Benchmark 1

Benchmark 2

Benchmark 3

Benchmark 4

Benchmark 5

Benchmark 6

VAR models Variables

A(i) Log-diff trend Global oil supply, global IP, OECD inventories, CPI 6 12 18 24

A(ii) detrended

B(i) Log-diff trend A + exchange rate index 6 12 18 24

B(ii) detrended

C(i) Log-diff trend A + 3Y interest rate (in differences) 6 12 18 24

C(ii) detrended

D(i) Log-diff trend C + 10-3Y interest rate spread 6 12 18 24

D(ii) detrended

E(i) Log-diff trend B, with IP broken into advanced, emerging 6 12 18 24

E(ii) detrended

F(i) Log-diff trend B, with oil supply broken into OPEC, non-OPEC 6 12 18 24

F(ii) detrended

G(i) Log-diff trend B, with oil supply broken into three: OPEC, North, ROW 6 12 18 24

G(ii) detrended

H(i) Log-diff trend B, with Kilian’s REA, no global IP 6 12 18 24

H(ii) detrended

* The drift parameter for the random walk was estimated as the average percentage change in the oil price over the last 12 

years—identical to our training period for the out of sample forecast. Small letters indicate logs, caps indicate levels.

MA(q)

Random walk with drift *

Random Walk

Futures-based forecast

ARMA(1,1)

AR(q)

Lag LengthsTransformations

  

 

𝑝𝑡 +1 =  𝜐 + 𝑝𝑡 +  𝑢𝑡+1  
  

 

𝑃𝑡+𝑗 =  𝐹𝑡+𝑗 +  𝑢𝑡+𝑗  
  

 

𝑝𝑡 +1 =  𝑐 + 𝜙𝑝𝑡 +  𝑢𝑡+1 + 𝜃𝑢𝑡  
  

 

𝑝𝑡+1 =  𝜇 + 𝜙1𝑝𝑡 + ⋯ + 𝜙𝑝 𝑝𝑡−𝑝+1 + 𝑢𝑡+1 
  

 

𝑝𝑡+1 =  𝜇 + 𝑢𝑡+1 + 𝜃1𝑢𝑡 + ⋯ + 𝑞𝑢𝑡−𝑞 +1 

  

 

𝑃𝑡+1 =  𝑃𝑡 +  𝑢𝑡+1 
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 Interest rates (U.S. 3-month and 10-year treasury bond yields at constant maturity) 

(Table 1, model C(i)) since this can be motivated by the Hotelling (1931) model—

whereby the nominal price of a non-renewable resource should increase by the 

nominal interest rate if marginal extraction costs are zero.  

 

 The spread between long- and short-term interest rates (Table 1, model D(i)), i.e., the 

yield curve, as an indicator for the expected future state of the business cycle and thus 

future oil demand.  

 

 Disaggregated oil supply (production) and demand (proxied by industrial production 

indices) of key producers or regions (Table 1, models E(i)-G(i)). Model E follows 

Aastveit et al. (2014), differentiating between developed and emerging market 

industrial production.  

 

 Kilian’s REA, as a measure or proxy for oil demand (Table 1, model H(i)).  

 

These are the main explanatory variables of our reduced-form VAR model. 

 

An important issue is how to handle the presence of trends in our VAR models. While 

there are several alternatives, the approach so far allows for a time varying trend given that 

this could be important to capture the run up in oil prices between 2003 and 2008, and is 

consistent with the intercept term in the spirit of Hotelling (1931).9 In addition, we introduce 

a detrended model without removing any seasonality, which would protect against upward 

bias in post-2008 forecasts (based on estimation after the oil price run up). Indeed, Kilian 

(2009) argues that the real oil price is stationary and thus not trending.10 For this, we 

determine the steady state of the VAR system and deduct this steady-state change of the real 

price of oil from the system’s dynamics (Table 1, models A(ii)-H(ii)).11  

 

The steady state of the VAR system is defined as a state in which the endogenous 

variables 𝑦𝑡 do not change over time (in differences, i.e., we have a constant change). This 

implies that 𝑦𝑡= 𝑦𝑡−1 = ⋯ =  𝑦𝑡−𝑝 = �̅�. Inserting this into (1) provides an expression of the 

VAR system’s steady state:  

                                                 
9 Hotelling (1931) assumes a constant discount/interest rate, however, these are rarely constant over time. 

10 For this reason (i.e., the stationarity of real oil prices), Baumeister and Kilian (2011) take log real oil prices 

rather than log-differences. However, we ran the models shown in Table 1 with log real oil prices but these 

performed worse than those with log differences and hence are excluded from the tables for parsimony. See also 

footnote 8. 

11 In other words, we set the steady-state change in the equation of real oil prices to zero. 
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�̅� = (𝐼 − 𝐴1 − ⋯ − 𝐴𝑝)
−1

∗ 𝑐.                                                                                         (3) 

 

Kilian (2009) argues that real oil prices are stationary and non-trending (thus ordered last 

in the vector 𝑦𝑡), thus we only subtract the estimated steady-state value of real prices from 

the system while allowing all other variables to be trending—by setting the other steady-state 

values equal to zero: 

    

�̅�(1, … , 𝐾 − 1) = 0. 

 

The forecasts of the detrended models are then obtained by subtracting the steady-state 

value of real oil prices for each iterative prediction, as in: 

 

𝑦𝑡+1̂ − �̅� = 𝑐 + 𝛿𝑡+1  + 𝐴1𝑦𝑡 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝+1 − 𝑦.̅      (4) 

 

Setting this constant equal to zero safeguards against an increase in the future real oil 

price forecast that is primarily due to its long-run trend, on the one hand; and allows us to 

evaluate how far our results are driven by this behavior and not by the joint dynamics of the 

system, on the other hand. 

 

 

IV.   DATA 

We use monthly data from 1985M01:2014M12. Data on crude oil production, OECD 

inventories and oil consumption are from the International Energy Agency’s (IEA) Monthly 

Oil Data Service. Oil prices for Brent and WTI crude, U.S. CPI, global and regional 

industrial production, exchange rates of major oil consumers vis-à-vis the U.S. dollar and 

U.S. bond yields are obtained from Haver Analytics. Finally, Kilian’s index for real 

economic activity (REA) is taken directly from http://www-personal.umich.edu/~lkilian/.12 

Our sample starts in 1985 due to lack of data for oil consumption and inventories prior to this 

date. The first forecast is carried out in 1997M01 and thereafter the model is re-estimated 

each month based on a recursively expanding sample.  

 

We do not adjust for seasonality in order to capture deterministic changes in nominal oil 

prices. All data has been revised to the latest availability. Real-time data sets were not 

available for the full sample time period. While this could be considered a limitation of our 

analysis in this paper, Baumeister and Kilian (2014) show that ex post data revisions matter 

                                                 
12 See Beidas-Strom and Pescatori (2014) and The Economist (2015) for a discussion of the performance of this 

index since the onset of global financial crisis during a period of overcapacity in the bulk shipping sector.   

http://www-personal.umich.edu/~lkilian/
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most for forecasting real refiners’ acquisition cost (RAC) but not for non-revised prices of 

WTI crude oil. This suggests the importance of acknowledging the real-time dimension of 

data in RAC forecasts is primarily driven by revisions to the RAC price series—and not due 

to revisions of demand and supply variables. Since we focus on forecasting Brent (and WTI) 

crude oil prices, revisions of nominal prices of RAC are thus not relevant here. Hence, we 

would expect only negligible changes to our forecast evaluation based on revised data for 

Brent and WTI using VAR forecasts with real-time data. 

 

 

V.   FORECAST EVALUATION  

In this section, we compare the models’ out-of-sample forecasting performance with 

regard to their unbiasedness and forecasting accuracy. For unbiasedness, we follow the 

standard approach of Mincer and Zarnowitz (1969) and regress realizations of oil prices ℎ 

periods from the forecast period 𝑡, 𝑦𝑡+ℎ, on the prediction �̂�𝑡+ℎ and a constant: 

 

𝑦𝑡+ℎ =  𝛼 + 𝛽�̂�𝑡+ℎ + 𝑣𝑡+ℎ.         (5) 

 

If the forecasts are indeed unbiased, we would expect 𝛼 = 0 and 𝛽 = 1. Evidence against 

this joint hypothesis indicates a significant forecast bias. In addition to testing for 

unbiasedness of our forecast, the accuracy of the prediction is of critical importance. As 

Reichsfeld and Roache (2011) discuss, the measure of accuracy, however, should generally 

vary depending on the forecaster’s loss function. For oil prices, oil importers are naturally 

more concerned about upward price risk, while exporters are more vulnerable to downward 

surprises. To get around these asymmetries, we follow the standard practice of comparing the 

forecasting accuracy on the basis of the symmetric root mean squared forecast error (RMSE) 

for the ℎ-period forecast: 

 

𝑅𝑀𝑆𝐸ℎ =  √
1

(𝑇−ℎ)
∑ (�̂�𝑡+ℎ − 𝑦𝑡+ℎ)2(𝑇−ℎ)

𝑡=1 .    (6) 

 

We then compare all forecasts against the accuracy of the random walk (RW) prediction 

and test the null hypothesis of equal RMSE’s of a forecast (from our VAR models and the 

futures forecast) and the random walk forecast by means of the Diebold-Mariano (1995) test. 

The asymptotically normally distributed test statistic 𝐷𝑀ℎ~𝑁(0,1) can be obtained as: 

 

𝐷𝑀ℎ =  
�̅�

√�̂�𝑑/(𝑇−ℎ)
                                                                                                             (7) 
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where �̅� =  
1

(𝑇−ℎ)
∑ [(�̂�𝑡+ℎ

𝐵 )2 − (�̂�𝑡+ℎ
𝐴 )2]𝑇−ℎ

𝑡=1  and where  �̂�𝑡+ℎ
𝐴 , �̂�𝑡+ℎ

𝐵  are the h-period ahead oil 

price forecast errors of the alternative model and the benchmark, respectively, and �̂�𝑑 is the 

long run covariance matrix of �̅�, taking serial correlation into account. For ARMA models 

that nest the random walk, we do not report the DM statistic. 

 

In order to shed light on when the VAR model forecasts differ from the RW and the 

futures forecast, we compute 2-year rolling averages of the RMSE for all horizons. A 

statistical test that attempts to capture time-dependent patterns in different forecasting 

performances has been proposed by Giacomini and Rossi (2010) for fixing or rolling 

estimation schemes. However, since we rely on recursive estimation, this test is not 

applicable. The forecasting performance of our VAR model deteriorates with decreasing 

length of the estimation window, hence switching to rolling estimation seems unfit and 

makes a time-dependent statistical comparison hard to justify. We therefore solely compare 

the forecast performance of the VAR model with the benchmarks for different subsamples. 

To illustrate general patterns of forecast instability, we focus here on different forecast 

performances before and after the onset of the global financial crisis in 2008M06 based on 

the RMSE measure and the Diebold-Mariano test statistic. 

Unbiasedness 

We begin with an assessment of the out-of-sample forecasting performance by taking a 

first pass at forecast unbiasedness.13 Figure 1 shows the predictions and corresponding 

realizations for our baseline VAR, model A(i), and the futures forecast for different 

horizons ℎ = {3, 6, 12, 24} and the corresponding best-fit lines from the Mincer- Zarnowitz 

(MZ) regression from top left to bottom right. The 45 degree line in black gives the ideal 

forecast with a perfect fit.  

 

Three points emerge from the figure. First, while the bias (indicated by a non-zero 

intercept and slope of the best-fit-line diverging from unity) seems to be small for horizons 

up to six months, it becomes more substantial thereafter. Second, there is a general tendency 

of forecasts to underpredict the oil price, as evidenced by most points lying above the 45 

degree line. For the futures forecast, this is more pronounced with a strong underprediction 

present even at ℎ = 6. Third, the futures forecast have the largest forecast errors at each 

horizon. For all horizons but ℎ = 3, there is also some visual evidence that the VAR forecast 

errors are less dispersed along the 45 degree line, indicating higher accuracy. 

 

                                                 
13 In this paper we report the findings for Brent spot price forecasts only, but the results hold equally for WTI. 
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Figure 1. Prediction-Realization Diagrams for VAR and Futures Forecasts 

 

 
 

To test these findings for statistical significance, Table 2 reports the coefficients of the 

MZ regression along with the joint test of 𝛼 = 0 and 𝛽 = 1 for the RW benchmark, the 

futures baseline forecast and the most parsimonious VAR, model A(i).14 The first two 

columns in each panel display the estimated coefficients of the MZ regression along with the 

F-statistic of joint significant deviations from the null hypothesis in the third column of each 

panel. Values indicated by *, **, and *** are statistically significant at the 5, 1, and 0.1 

percent, respectively. The last two columns of each panel report the average forecast error 

and its standard deviation.  

 

Three points emerge from this table. First, the 𝛼-coefficients of the MZ regression are 

similar, having the same sign, for the random walk, futures, and the VAR forecasts. 

However, the futures forecast 𝛼-bias is generally the largest, indicating the largest under 

prediction. Second, the slope coefficient, 𝛽, diverges strongly from 1 for horizons longer than 

three months for the VAR and the random walk, but is strongly biased for the futures forecast 

                                                 
14 Note that the choice of VAR model A(i) is illustrative since all specifications were checked and conformed to 

the reported findings.  



 



 

from horizon one. This bias generally increases the longer the forecast horizon, as can be 

expected. Third, the VAR model features the smallest absolute mean forecast errors for 

horizons of 4-5 months and for horizons beyond 9 months, with futures coming in first for 

horizons of 6-8 months (Table 2, third column). Fourth, the VAR model features the smallest 

standard deviation of the MZ-regression residuals (Table 2, fourth column); hence the 

parameters in the regression equation can be estimated with the highest accuracy.15 This 

finding explains why the bias coefficients of the VAR model are significant more often than 

those of the random walk forecasts.   

 

Finding 1.  Relative to the VAR forecast, the bias in futures forecasts is larger across all 

horizons and underprediction is more pronounced.  Significant biases have been found for all 

forecasting models with horizons longer than six months.  The VAR forecasts have the 

smallest absolute average forecast errors for horizons longer than three months and feature 

the lowest dispersion for all but the 24 month forecast horizon.  For horizons beyond 5 

months, futures perform better than the random walk, in terms of absolute mean forecast 

errors. 

 

Accuracy 

 

For a deeper discussion of forecast accuracy, Table 3 reports the RMSE of all models 

introduced in Table 1 relative to the RMSE of the random walk. Values less than one indicate 

superiority of the forecast model compared to the random walk, and * indicate when the 

rejection of the null hypothesis of equal predictive ability of the candidate model relative to 

the random walk using the Diebold-Mariano test is significant at or below the 5 percent level. 

Values shown in bold indicate the best forecasting model for a particular horizon. Given the 

popularity of futures for forecasting the oil price, Table 3 also shows the test for equal 

forecast accuracy of the VAR(6) models relative to futures, indicated by ǂ for the rejection of 

the null hypothesis of equal predictive ability.   

 

Six points emerge from Table 3: 

 

i. Oil futures generally outperform the random walk forecast for horizons greater than 11 

months. This suggests that futures do have predictive content for such horizons. 

                                                 
15 These findings generally hold for all models shown A(i) to H(i). The futures forecast generally features the 

largest bias for all horizons, while the random walk and VAR bias are not insubstantial either. Model G(i) 

features a stronger bias than the random walk for short horizons up to six months. Model H(i) is strongly biased 

for medium term predictions beyond 18 months, with the bias exceeding that of futures. Detrending reduces the 

short-term forecast bias, yet induces a larger medium-term bias. 
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ii. For forecast horizons from one to eight months, the random walk with drift performs 

(significantly) better than futures. In addition, accounting for inflation by means of a drift 

component does not improve the forecast performance of the random walk for any 

horizon. In other words, the random walk without a drift performs better.  

iii. For all ARMA-type models, only the AR model with 6 lags, AR(6) is found to 

outperform the random walk (for all horizons) and futures (for horizons up to 12 months). 

iv. In contrast, all VAR(6) specifications outperform the random walk and futures forecasts 

over the entire forecast horizon, with very few exceptions.16 Gains relative to the random 

walk are largely significant up to the 12 month horizon, whereas gains to the futures 

forecasts are significant only up to 9 month horizon. All models barring H (with the REA 

measure of oil demand) outperform the futures forecast for horizons up to 9 months. 

Beyond that horizon, the detrended models largely perform worse, yet still manage to 

beat futures forecasts for horizons up to 12 months. 

v. Relative to the random walk (and futures, given the first result in (i) above), models A 

and B—the baseline four-variable model augmented with inflation and our exchange rate 

index—generally perform best for horizons up to 6 months. Here the detrended versions, 

A(ii) and B(ii), provide the largest gains and outperform their trending counterparts. For 

horizons longer than a year, the trending models clearly perform better. Some of the 

forecast gains of real oil price trending VARs have been shown before—namely, by 

Baumeister and Kilian (2014) and Alquist et al. (2013). However, to the best of our 

knowledge, the performance of nominal oil price detrended models has not been studied 

before. 

vi. Finally, our trending VAR(6)  models also beat the random walk and futures forecasts for 

horizons of one to two years, with the exception of model H (for these outer horizons). 

This suggests that global industrial production outperforms the REA index as a measure 

of global oil demand.17 We find that for longer horizons up to 24 months, models 

augmented with interest rates as a measure of the business cycle, C(i), as well as those 

decomposing oil supply by region, G(i), provide the most accurate forecasts. To the best 

of our knowledge these findings have not been shown before. 

 

 

                                                 
16 While for horizons between 7- 21 the results are not statistically significant at the 5 percent level, this is due 

to the large variance of the forecast errors. In these instances, the VAR does neither better nor worse than the 

random walk.  

17 See footnote 10.  
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Finding 2.  Futures provide more accurate forecasts than the random walk or autoregressive 

models only for horizons beyond 12 months, while most VARs outperform all competitors for 

both shorter and medium-term horizons.  We find that removing the trend in oil prices 

improves the VAR forecasting performance for the short term even further.  Beyond the one-

year forecast horizon, VAR models including the exchange rate index, interest rates, and 

decomposed oil supply by region provide the most accurate forecasts among all competitor 

models. 

 

 Given our findings so far, it makes sense for the remainder of this paper to proceed with 

robustness checks in relation to the VAR model forecasts alone. 

 

VI.   ROBUSTNESS 

Structural breaks 

 

An important issue to check for is the presence of structural breaks in the sample, particularly 

at time of increased emerging market demand for oil, the onset of the global financial crisis 

and the unconventional oil boom in North America thereafter. A common strategy to deal 

with this issue would be to rely on a threshold VAR (T-VAR) model and modeling state-

dependence explicitly, raising the difficult question of how to forecast the future state of the 

economy. Another, simpler approach is to rely on a rolling estimation of the VAR. 

 

The notion that rolling VAR estimation for forecasting protects the forecaster against 

future structural changes has been contested (Baumeister and Kilian, 2012). Nonetheless, it is 

useful to investigate whether rolling VAR forecasts deliver an improvement in the RMSE 

relative to the recursive VAR forecasts. Table 4’s last rows show our finding that the 

recursively estimated VAR performs best regardless of the length of the rolling window.18 

This holds true even without controlling for different lengths of the observation period, and 

implies that there are large gains in forecasting accuracy at the end of the sample, e.g., during 

the global financial crisis.  

 

A related question to the presence of structural breaks is: When does our VAR(6) 

forecast perform best? Figure 1 and Table 3 already revealed that the predictions of our VAR 

model were more accurate than the futures forecast over the whole sample. For more insights 

on the issue of forecast stability, we next plot two-year rolling averages of the RMSE’s for 

the best performing (i.e., the recursively estimated) VAR A(i), the random walk and futures 

forecasts. 

                                                 
18 This is illustrated for model A(i). The same holds true for all ARMA-type models. 



 

Table 3.  Root-Mean-Square-Errors (relative to the Random Walk) 

Model 1 2 3 4 5 6 9 12 15 18 21 24

RW 5.054 8.435 11.272 13.586 15.454 16.897 19.079 20.274 21.062 20.994 21.081 21.772

RW w/ drift 1.003 1.007 1.010 1.013 1.016 1.019 1.026 1.031 1.034 1.032 1.029 1.028

AR(6) 0.948 0.956 0.969 0.976 0.979 0.984 0.993 0.987 0.987 0.986 0.991 0.995

MA(3) 0.960 0.977 0.995 1.006 1.013 1.022 1.035 1.036 1.046 1.042 1.040 1.039

ARMA(1,1) 0.959 0.975 0.992 1.004 1.011 1.020 1.033 1.034 1.043 1.040 1.037 1.036

Futures 1.807 1.273 1.154 1.099 1.070 1.052 1.024 0.982 0.957 0.968 0.987 0.995

VAR(6) 1/

A trend 0.931ǂ 0.894ǂ 0.840ǂ 0.820 0.805 0.820 0.913 0.948 0.907 0.866 0.941 0.979

detrend 0.927ǂ 0.883ǂ 0.836ǂ 0.818ǂ 0.797ǂ 0.806 0.894 0.962 0.987 1.057 1.299 1.535

B trend 0.937ǂ 0.890ǂ 0.845ǂ 0.827 0.808 0.823 0.924 0.961 0.917 0.875 0.961 0.996

detrend 0.932ǂ 0.877ǂ 0.841ǂ 0.824ǂ 0.793ǂ 0.800 0.899 0.979 1.024 1.141 1.453* 1.754*

C trend 0.944ǂ 0.913ǂ 0.877ǂ 0.879 0.871 0.892 0.954 0.944 0.895 0.863 0.931 0.956

detrend 0.939ǂ 0.900ǂ 0.871ǂ 0.879 0.867 0.882 0.962 1.054 1.175 1.406* 1.833* 2.256*

D trend 0.972ǂ 0.949ǂ 0.901ǂ 0.894 0.880 0.898 0.956 0.947 0.898 0.865 0.928 0.947

detrend 0.968ǂ 0.936ǂ 0.897ǂ 0.896 0.878 0.891 0.975 1.085 1.235 1.505* 1.974* 2.439*

E trend 0.959ǂ 0.923ǂ 0.879ǂ 0.861 0.841 0.846 0.935 0.956 0.912 0.876 0.943 0.958

detrend 0.956ǂ 0.907ǂ 0.868ǂ 0.855 0.829 0.835 0.975 1.105 1.223 1.448* 1.856* 2.242*

F trend 0.951ǂ 0.912ǂ 0.868ǂ 0.846 0.822 0.833 0.912 0.959 0.928 0.888 0.973 1.013

detrend 0.946ǂ 0.901ǂ 0.867ǂ 0.846ǂ 0.813 0.819 0.899 0.985 1.030 1.127 1.416 1.703

G trend 1.071ǂ 1.087 1.050 1.015 0.966 0.926 0.891 0.917 0.927 0.884 0.904 0.933

detrend 1.066ǂ 1.074 1.053 1.029 0.984 0.949 0.960 1.106 1.293ǂ* 1.533ǂ* 1.939ǂ* 2.412ǂ*

H trend 1.009ǂ 0.997ǂ 0.972ǂ 0.978 0.970 0.977 1.031 1.080 1.090 1.117 1.198 1.265

detrend 1.001ǂ 0.994ǂ 0.998 1.033 1.040 1.084 1.287ǂ* 1.516ǂ* 1.783ǂ* 2.210ǂ* 2.851ǂ* 3.509ǂ*

Forecast horizons in months

1/  All VARs shown have six lags. Models with longer lags generally perform worse, in part likley due to estimation inefficiency. 

2/  Cells in bold indicate the model with the lowest RMSE for each column/forecast horizon.

3/  * indicates rejection of the null hypothesis of equal predictive ability of the candidate model relative to the random walk model using the Diebold-

Mariano test at or less than the 5 percent significance level. 

4/  ǂ indicates rejection of the null hypothesis of equal predictive ability of the candidate model relative to futures using the Diebold-Mariano test at or 

less than the 5 percent significance level. 



 

 
 

 

Figure 2 shows that while the random walk forecast performs best for short horizons 

during periods of stable oil prices up to 2005, the VAR performs better than both the random 

walk and the futures forecasts during periods of high oil prices—specifically since 2006. For 

forecast horizons shorter than one year, the gains of the VAR model stem mostly from the 

period following the collapse in oil prices in 2008, while before this period the performance 

of all three forecasts are very similar. Towards the end of the sample, the performance is 

ambiguous. For longer horizons up to 24 months, the VAR model performs better than its 

competitors in almost all periods, and particularly during the run up in oil price. 

 

 

Table 4.  Root-Mean-Square-Errors for Rolling and Recursive Estimations

Start of evaluation 

period Window size 1 2 3 4 5 6 7 8 9 12

1993M1 8 years 1.367 1.360 1.411 1.372 1.348 1.406 1.509 1.628 1.748 2.229

1995M1 10 years 1.340 1.277 1.226 1.179 1.113 1.135 1.214 1.304 1.421 1.663

1997M1 12 years 1.190 1.145 1.105 1.072 1.044 1.074 1.145 1.221 1.291 1.391

1999M1 14 years 1.135 1.124 1.071 1.019 0.994 1.010 1.069 1.132 1.184 1.216

2001M1 16 years 1.058 1.068 1.022 0.971 0.957 0.970 1.017 1.060 1.088 1.111

2003M1 18 years 1.022 1.015 0.955 0.894 0.871 0.887 0.934 0.982 1.013 1.039

2005M1 20 years 0.979 0.946 0.891 0.871 0.875 0.902 0.940 0.981 1.017 1.034

1997M1 0.939 0.895 0.851 0.830 0.811 0.819 0.840 0.872 0.908 0.941

Start of evaluation 

period Window size 13 14 15 16 17 18 19 20 21 24

1993M1 8 years 2.261 2.343 2.516 2.854 3.294 3.747 4.241 5.108 6.135 12.546

1995M1 10 years 1.645 1.608 1.574 1.570 1.584 1.615 1.648 1.695 1.745 1.849

1997M1 12 years 1.372 1.341 1.314 1.305 1.310 1.330 1.360 1.409 1.465 1.533

1999M1 14 years 1.188 1.155 1.127 1.107 1.100 1.102 1.120 1.160 1.217 1.293

2001M1 16 years 1.085 1.052 1.025 1.004 0.992 0.979 0.988 1.020 1.074 1.143

2003M1 18 years 1.014 0.983 0.956 0.939 0.927 0.913 0.922 0.953 1.005 1.091

2005M1 20 years 1.010 0.984 0.965 0.952 0.940 0.928 0.941 0.984 1.041 1.140

1997M1 0.919 0.903 0.884 0.868 0.852 0.842 0.849 0.879 0.921 0.990

Rolling estimation

Recursive estimation

Rolling estimation

Recursive estimation

Forecast horizons in months
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Figure 2. Rolling Averages of Root Mean Square Errors 

 
 

 

Sample splits 

 

The performance gains appear to mostly stem from the period of increasing oil prices 

between 2003 and 2008 where the futures and random walk forecasts generally unpredicted 

oil prices, and from periods of high oil volatility following the global financial crisis. A 

statistical test of significant differences by means of the procedure outlined by Giacomini and 

Rossi (2010) is not applicable here since we rely on recursive estimation. Therefore, we split 

our sample at 2008M06 and investigate the relative RMSE before this date when oil prices 

were stable but running upward, and then after this date when they were volatile culminating 

in the collapse during the second half of 2014.19  

                                                 
19 We also evaluate the performance of other samples splits of interest. For example, 1997M01-2002M12, 

1997M01-2008M06, and 1997M01-2014M06. Results are available upon request. 
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The results are shown in Tables 5 and 6. Interestingly, we find that the futures 

forecast performed poorer than the random walk and the simple autoregressive models until 

the global financial crisis for all forecast horizons (Table 5). Medium-run gains stem solely 

from the period since the crisis, where it outperforms the random walk and ARMA models 

for horizons of more than one year (Table 6). Since the absolute level of the forecast error 

variance is considerably larger in this period, the futures forecast beat the random walk and 

ARMA models over the full sample too, for those medium-term horizons.  

 

For our VAR model forecasts, we find that most gains to the short-run forecasts stem 

from the period of the crisis (Table 6), while for longer forecast horizons up to 24 months, 

the gains are relatively larger during the period up to 2008M06 (Table 5). Prior to the crisis, 

most VAR models did not beat the random walk model for horizons up to twelve months, but 

both the futures and random walk forecasts are generally outperformed by the VAR for 

forecasts of one year ahead up to 24 months. Those medium-term forecasts are largely 

significantly better than the random walk and futures forecasts—but the shorter ones are not 

statistically different from the competitor models’ predictions (with the exception of the two 

and four month horizons). During and after the crisis, most VAR models always outperform 

competitor models, with gains for shorter-term forecasts up to 12 months being particularly 

large and statistically significant. Again, the detrended models predict the short-run relatively 

well during this sample split.  

 

Including our exchange rate index improves the forecasting performance in the earlier 

sample split, model B, when emerging market demand mattered a great deal for the 

determination of oil prices, while disaggregating global supply and demand provides 

consistent gains in the more recent period when North American supply may have 

contributed to lower prices. In addition, VAR models augmented with interest rates, models 

C and D, perform relatively well in the later sample. It also becomes apparent that the REA 

index (Kilian 2009) includes valuable information for medium-run forecasts of oil prices up 

to 2008, whereby model H outperforms other VAR specifications and futures alike. 

However, from the onset of the crisis, the medium-run predictive ability strongly 

deteriorates. Moreover, model H was clearly outperformed for short-run forecasts by rival 

VAR specifications using global industrial production as a proxy for oil demand.20  

 

Lag length 

 

Alquist et al. (2013) provide evidence that a shorter VAR lag length of p = 12 

provides more accurate forecasts than p = 24 when the real oil price is specified in log 

                                                 
20 See footnote 10.  
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levels. Baumeister and Kilian (2015) argue the opposite: longer lag lengths (specifically, p =

24) provide more accurate forecasts. We explored longer lags for our results shown so far 

(Tables 3-6), and found that p = 6 generally performed better than VAR specifications with 

p > 6, with the exception of a few models (namely, A, B, and F) when p = 18. These few 

models performed equally well only for forecast horizons between 18 to 24 months and only 

during the post crisis sample split.21 Better overall performance of the shorter lag length is 

likely due to estimation inefficiency at the beginning of the evaluation period. 

 

Since we have eliminated long-run cointegrating relationships—by estimating our 

VARs in log-differences—increasing the lag length reduces estimation efficiency. However, 

as shown in Section VIII, when estimating over a longer sample, longer lag lengths may at 

times provide good forecasts and reduce confidence interval dispersion, narrowing these 

bands. Before turning to this issue, however, we next explore forecast combinations.   

  

Finding 3.  Forecasting performance varies across time, with some performance 

instability at times.  The random walk forecast performed better during periods of stable oil 

prices, but various VAR specifications have performed best since 2008 across almost all 

specifications and horizons.  Indeed since the collapse in oil prices during 2008, the VAR 

was found to have superior forecasting performance.  Measures of activity based on the 

Baltic Dry Index included valuable information for forecasting oil prices prior to 2008, but 

thereafter have performed poorly. 

 

 

VII.   FORECAST COMBINATIONS 

We have shown that the VAR model provides better forecasts than both the random 

walk and futures forecasts across time and for almost all forecast horizons. However, we 

have also shown that futures or random walk forecast with similar or better accuracy at some 

horizons and in different subsamples. Thus, there could be merit in a combination forecast 

(Bates and Granger, 1969; Diebold and Pauly, 1987; and Stock and Watson, 2004) for 

several reasons. First, even the most accurate forecasting models do not necessarily perform 

well at all times (Figure 2). Second, we have shown that some forecasting models perform 

better at short horizons and others at longer horizons. Third, even the forecasting model with 

the lowest RMSE may potentially improve by incorporating information from other models 

                                                 
21 Results for Tables 3-7 for VAR lag lengths of 12, 18, and 24 are available upon request. 



 

 

Table 5. Root-Mean-Square-Errors (relative to the Random Walk): 1997M01 - 2008M06

Model 1 2 3 4 5 6 9 12 15 18 21 24

RW 2.565 3.734 4.424 5.083 5.649 6.363 8.134 9.905 11.599 13.303 15.154 18.254

RW w/ drift 0.996 0.991 0.984 0.982 0.981 0.982 0.984 0.985 0.982 0.966 0.952 0.939

AR(6) 1.037 1.070 1.065 1.074 1.065 1.058 1.050 1.025 1.012 0.997 0.982 0.967

MA(3) 1.031 1.027 1.004 1.010 0.992 0.993 0.998 0.985 0.987 0.974 0.961 0.950

ARMA(1,1) 1.026 1.024 1.001 1.007 0.988 0.989 0.995 0.984 0.984 0.972 0.958 0.947

Futures 1.436 1.188 1.173 1.175 1.207 1.218 1.236 1.225 1.220 1.215 1.200 1.160

VAR(6)

A trend 1.152ǂ 1.202* 1.206* 1.155* 1.053ǂ 1.007ǂ 1.050ǂ 1.043ǂ 0.957ǂ 0.880ǂ* 0.879ǂ* 0.861ǂ*

detrend 1.153ǂ 1.187* 1.182* 1.121 1.014ǂ 0.981ǂ 1.032ǂ 1.074 1.051 1.014 1.075 1.069

B trend 1.193ǂ 1.246* 1.234* 1.170* 1.074ǂ 1.023ǂ 1.050ǂ 1.036ǂ 0.901ǂ* 0.795ǂ* 0.797ǂ* 0.780ǂ

detrend 1.194ǂ 1.235* 1.223* 1.154* 1.065ǂ 1.036ǂ 1.077ǂ 1.110 1.045 0.998ǂ 1.097 1.130

C trend 1.171ǂ 1.217* 1.204* 1.166* 1.064ǂ 1.011ǂ 1.025ǂ 1.012ǂ 0.926ǂ* 0.857ǂ* 0.861ǂ* 0.840ǂ*

detrend 1.171ǂ 1.207* 1.209* 1.190* 1.094 1.059 1.158 1.372* 1.513ǂ* 1.668ǂ* 1.917ǂ* 2.015ǂ*

D trend 1.193 1.248* 1.231* 1.181* 1.082 1.043ǂ 1.073ǂ 1.042ǂ 0.943ǂ 0.868ǂ* 0.862ǂ* 0.834ǂ*

detrend 1.191ǂ 1.237* 1.247* 1.222* 1.136 1.125 1.288* 1.545* 1.758* 1.990* 2.316* 2.457*

E trend 1.188ǂ 1.238* 1.257* 1.222* 1.125 1.061ǂ 1.065ǂ 1.049ǂ 0.939ǂ 0.851ǂ* 0.854ǂ* 0.836ǂ*

detrend 1.194ǂ 1.214* 1.197* 1.139 1.035 0.991ǂ 1.021ǂ 1.085 1.058 1.050 1.177 1.237*

F trend 1.149ǂ 1.235* 1.265* 1.200* 1.096 1.033ǂ 1.040ǂ 1.030ǂ 0.915ǂ* 0.810ǂ* 0.810ǂ* 0.793ǂ*

detrend 1.149ǂ 1.224* 1.255* 1.182* 1.075 1.029ǂ 1.046ǂ 1.083 1.034 0.969 1.044 1.058

G trend 1.486 1.777* 1.936ǂ* 1.848* 1.679 1.430 1.032ǂ 1.028ǂ 1.002ǂ 0.921ǂ* 0.865ǂ* 0.839ǂ*

detrend 1.485* 1.758* 1.972* 1.928 1.774 1.553* 1.171 1.249* 1.391* 1.441* 1.512ǂ* 1.544ǂ*

H trend 1.234* 1.260* 1.260* 1.244* 1.182* 1.135* 1.122ǂ* 1.103ǂ* 1.007ǂ 0.909ǂ* 0.887ǂ* 0.844ǂ*

detrend 1.234* 1.257* 1.338* 1.389* 1.399* 1.434* 1.656ǂ* 2.035ǂ* 2.387ǂ* 2.796ǂ* 3.340ǂ* 3.709ǂ*

Forecast horizons in months

1/  All VARs shown have six lags. Models with longer lags generally perform worse, in part likely due to estimation inefficiency. 

2/  Cells in bold indicate the model with the lowest RMSE for each column/forecast horizon.

3/  * indicates rejection of the null hypothesis of equal predictive ability of the candidate model relative to the random walk model using the Diebold-Mariano 

test at or less than the 5 percent significance level. 

4/  ǂ indicates rejection of the null hypothesis of equal predictive ability of the candidate model relative to futures using the Diebold-Mariano test at or less than 

the 5 percent significance level. 
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Table 6. Root-Mean-Square-Errors (relative to the Random Walk): 2008M07 - 2014M12

Model 1 2 3 4 5 6 9 12 15 18 21 24

RW 7.105 12.122 16.564 20.099 22.994 25.151 27.976 29.131 29.947 29.322 27.933 26.776

RW w/ drift 1.005 1.010 1.014 1.018 1.022 1.025 1.035 1.043 1.052 1.061 1.071 1.100

AR(6) 0.923 0.940 0.963 0.972 0.977 0.984 0.994 0.995 0.990 0.999 1.009 1.033

MA(3) 0.935 0.962 0.989 1.002 1.013 1.025 1.042 1.049 1.060 1.074 1.080 1.112

ARMA(1,1) 0.934 0.961 0.987 1.000 1.012 1.023 1.040 1.048 1.058 1.072 1.077 1.108

Futures 1.829 1.272 1.153 1.102 1.070 1.047 1.004 0.957 0.907 0.885 0.900 0.890

VAR(6) 1/

A trend 0.895ǂ* 0.856ǂ* 0.805ǂ* 0.791ǂ* 0.786ǂ* 0.806ǂ* 0.900 0.937 0.900 0.864 0.967 1.052ǂ

detrend 0.890ǂ* 0.846ǂ* 0.804ǂ* 0.793ǂ* 0.781ǂ* 0.793ǂ* 0.881* 0.948 0.977 1.071ǂ 1.381ǂ 1.780ǂ

B trend 0.894ǂ 0.845ǂ* 0.808ǂ* 0.798ǂ* 0.788ǂ* 0.807ǂ* 0.913 0.952 0.922 0.897 1.021ǂ 1.118ǂ

detrend 0.887ǂ 0.831ǂ* 0.804ǂ* 0.796ǂ* 0.772ǂ* 0.782ǂ* 0.881* 0.961 1.023 1.179ǂ* 1.577ǂ* 2.068ǂ*

C trend 0.906ǂ 0.877ǂ* 0.847ǂ* 0.856ǂ 0.858ǂ 0.885 0.949 0.936 0.891* 0.867 0.960 1.027ǂ

detrend 0.901ǂ 0.863ǂ* 0.840ǂ* 0.853ǂ* 0.850ǂ* 0.870ǂ* 0.942 1.004 1.101ǂ 1.329ǂ* 1.801ǂ* 2.407ǂ*

D trend 0.935ǂ 0.914ǂ 0.871ǂ 0.871ǂ 0.866ǂ 0.888 0.946 0.935 0.891* 0.865* 0.955 1.017ǂ

detrend 0.931ǂ 0.900ǂ 0.864ǂ* 0.869ǂ 0.858ǂ 0.873ǂ 0.940 1.005 1.111ǂ 1.346ǂ* 1.823ǂ* 2.431ǂ*

E trend 0.921ǂ 0.884ǂ 0.842ǂ 0.831ǂ 0.820ǂ 0.830ǂ 0.924 0.944 0.909 0.885 0.979ǂ 1.032ǂ

detrend 0.916ǂ 0.871ǂ* 0.838ǂ* 0.832ǂ* 0.814ǂ* 0.824ǂ* 0.973 1.110ǂ* 1.255ǂ* 1.542ǂ* 2.072ǂ* 2.713ǂ*

F trend 0.918ǂ 0.873ǂ* 0.829ǂ* 0.816ǂ* 0.801ǂ* 0.818ǂ* 0.901 0.951 0.933 0.910 1.033ǂ 1.136ǂ*

detrend 0.912ǂ 0.861ǂ* 0.829ǂ* 0.818ǂ* 0.793ǂ* 0.803ǂ* 0.885 0.973 1.032 1.168ǂ* 1.544ǂ* 2.022ǂ*

G trend 0.997ǂ 0.988ǂ 0.946ǂ 0.928 0.899 0.879 0.877 0.903 0.914 0.876 0.921 0.992

detrend 0.991ǂ 0.976ǂ 0.943ǂ 0.932ǂ 0.906 0.891 0.939 1.086ǂ 1.277ǂ* 1.561ǂ* 2.091ǂ* 2.847ǂ*

H trend 0.972ǂ 0.967ǂ 0.947ǂ 0.958 0.956ǂ 0.967 1.024 1.080 1.108ǂ 1.170ǂ 1.305ǂ* 1.481ǂ*

detrend 0.963ǂ 0.964ǂ 0.968ǂ 1.004 1.013 1.056 1.246ǂ* 1.430ǂ* 1.646ǂ* 2.026ǂ* 2.634ǂ* 3.376ǂ*

Forecast horizons in months

1/  All VARs shown have six lags. Models with longer lags generally perform worse, in part likely due to estimation inefficiency. 

2/  Cells in bold indicate the model with the lowest RMSE for each column/forecast horizon.

3/  * indicates rejection of the null hypothesis of equal predictive ability of the candidate model relative to the random walk model using the Diebold-Mariano test at or 

less than the 5 percent significance level. 

4/  ǂ indicates rejection of the null hypothesis of equal predictive ability of the candidate model relative to futures using the Diebold-Mariano test at or less than the 5 

percent significance level. 



 

or macroeconomic factors. Finally, employing forecast combinations can partially insure 

against structural change and model misspecification (Baumeister and Kilian, 2013). 

 

Hence we next present a combination forecast of futures and the baseline VAR 

specification, model A(i). We retain futures despite their weak performance at the 1 to 6 

month horizons since futures are said to contain valuable forward looking information and 

can reflect market uncertainty—possibly presaging structural or risk premia. In particular, we 

expect some improvement compared to the VAR forecast for longer horizons up to 24 

months where the futures-based forecast outperformed the random walk.  

 

The most important issue for the forecast combination is the question of how to weight 

each of the forecasts that are being combined. Building on the finding that simple 

combinations are hard to beat, we experiment with equal (and constant) weights as well as 

with inverse-RMSE weights for different lengths of rolling windows (Timmermann, 2006). 

The inverse-RMSE weighted ℎ-period ahead combination forecast �̂�𝑡+ℎ|𝑡 is hence obtained: 

 

�̂�𝑡+ℎ|𝑡 =  ∑ 𝜔𝑛,ℎ,𝑡�̂�𝑡+ℎ|𝑡
𝑛

𝑛 ,  𝜔𝑛,ℎ,𝑡 =  
𝑅𝑀𝑆𝐸𝑛,ℎ,𝑡

−1

∑ 𝑅𝑀𝑆𝐸𝑛,ℎ,𝑡
−1

𝑛
     (8) 

 

where �̂�𝑡+ℎ|𝑡
𝑛  is the ℎ-period ahead forecast of model 𝑛 (here 𝑛 =  {𝑉𝐴𝑅, 𝑓𝑢𝑡𝑢𝑟𝑒𝑠}) and 

𝑅𝑀𝑆𝐸𝑛,ℎ,𝑡
−1  is the horizon ℎ-specific RMSE of model 𝑛 of the most recent 𝑤 forecast errors 

realized in period 𝑡. We experiment with rolling windows of 𝑤 = {6, 12, 18, 24} and find the 

results to be robust throughout. The equal weights combination forecast is obtained similarly 

with 𝜔𝑛,ℎ,𝑡 = 0.5 ∀ 𝑛, ℎ, 𝑡.  

 

As shown in Table 7, we find that the combination forecasts all perform worse than the 

simple VAR model for horizons ℎ < 18, which can largely be explained by the poor 

performance of the futures and/or the random walk forecast for these horizons. For longer 

horizons, however, the combination forecast irrespective of its specification outperforms the 

VAR model. The combination design seems to play only a minor role as these results are 

robust for all weights, although the combination based on inverse RMSE weights computed 

over 24 months performs best. . These results are robust to longer VAR lag lengths. 

 

Finding 4.  Combination forecasts performed poorly for horizons under 18 months.  For 

horizons beyond 18 month, however, there is merit in a combination forecast—particularly 

for a combination with inverse forecast accuracy weights computed over 24 months. 



 

Table 7. Root- Mean-Square-Errors of Forecast Combinations 

Model 1 2 3 4 5 6 7 8 9 10 11 12

Random Walk 5.835 9.823 13.078 15.681 17.799 19.547 20.876 21.913 22.626 23.067 23.522 24.091

Futures 1.214 1.014 1.019 1.017 1.015 1.009 1.000 0.990 0.982 0.975 0.965 0.954

VAR(6) 0.885 0.872 0.821 0.816 0.796 0.791 0.797 0.814 0.843 0.871 0.879 0.869

Inverse-RMSE (w=24) 1.629 1.165 1.025 0.973 0.942 0.932 0.925 0.924 0.933 0.946 0.944 0.933

Inverse-RMSE (w=12) 1.632 1.162 1.030 0.981 0.952 0.938 0.932 0.928 0.930 0.934 0.926 0.908

Equal weights 1.636 1.160 1.027 0.978 0.949 0.936 0.929 0.925 0.928 0.933 0.924 0.908

Model 13 14 15 16 17 18 19 20 21 22 23 24

Random Walk 24.717 25.217 25.538 25.853 26.139 26.380 26.606 26.887 27.202 27.617 28.213 28.968

Futures 0.941 0.934 0.929 0.926 0.924 0.924 0.927 0.930 0.934 0.937 0.940 0.940

VAR(6) 0.856 0.851 0.834 0.816 0.798 0.788 0.799 0.808 0.838 0.861 0.872 0.879

Inverse-RMSE (w=24) 0.908 0.879 0.851 0.832 0.817 0.803 0.798 0.795 0.804 0.813 0.813 0.806

Inverse-RMSE (w=12) 0.888 0.874 0.858 0.843 0.827 0.815 0.810 0.807 0.815 0.823 0.822 0.817

Equal weights 0.889 0.875 0.859 0.844 0.828 0.816 0.811 0.808 0.816 0.824 0.822 0.817

Forecast horizons in months

The evaluation period runs from 2000M01:2014M12 (1998M01:2014M12) for the inverse RMSE weighted forecast combination with w=24 (w=12) 

since the data from 1997-2000 (1997-1998) is needed for the initialization of the simple VAR forecasts and the rolling RMSE evaluation.



 

 

VIII.   THE 2014 OIL PRICE COLLAPSE AND MODEL CHOICE 

Despite the overall strength of VAR models, we have highlighted some forecasting 

performance instability at times. This finding implies that reliance on just one VAR model 

with the lowest RMSE per horizon is not advisable, despite the fact that our baseline VAR 

generally has been shown to have the lowest RMSE across all popular models, the full 

sample, and across horizons up to 24 months. Other VAR specifications that feature small 

alterations to the selected variables, subsamples or lag length can provide widely different 

forecasts at times. This wide variation in predication is central to why the oil price collapse in 

2014 was largely unexpected—with Brent prices falling from US$ 115 to US$ 55 in late 

2014. 

 

 

 

VAR model A(i) 

Panel 1. Six lags Panel 2. 18 lags Panel 3. 24 lags 

   
VAR model A(ii) 

Panel 4. Six lags Panel 5.  18 lags Panel 6.  24 lags 

  
 

   

 

 

Figure 3. Ex Ante Nominal Brent Price Forecast, as of May 2014 
(US$) 
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Baumeister and Kilian (2015) show that the oil price collapse was predictable using their 

VAR with 24 months of lags and real oil prices specified in logs. Our VAR, Model A(i), 

despite showing superior historical forecast performance over the full sample would not have 

been able to predict the crash in oil prices; rather it predicts increasing prices (Figure 3, panel 

1). The same applies to our detrended model A(ii) with six lags (Figure 3, panel 4). Of the 

two, only the detrended model with 24 lags would have predicted the full extent of the oil 

price collapse (Figure 3, panel 6).22 If anything, this illustrates that best performance over the 

entire historical sample may not be the right approach for the practitioner from an ex ante 

point of view, as new data and periods arise—highlighting that the best historical forecast 

model may be off by a considerable margin at times and such a model should be thus viewed 

with caution. 

 

Next we provide ex ante nominal forecasts for Brent oil prices with data as of end 

December 2014. Figure 4 shows the range of prices that our model A(ii) with various lag 

lengths predicts. In particular, Brent prices were predicted to range between an average of 

US$55-95 pb over a two year forecast horizon, depending on the history of oil-market 

conditions. 

 

Figure 4. Ex Ante Nominal Brent Price Forecasts, as of December 2014 
(US$) 

VAR model A(ii) 

Panel 1. Six lags Panel 2. 18 lags Panel 3. 24 lags 

 
 

  

 

 

                                                 
22 For the actual Brent price collapse and its drivers see Box 1.1 of the April 2015 World Economic Outlook.  
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Two points emerge from the figure. First, when considering the model with 24 lags, 

which predicts that the trend in OECD production would continue as it did two years prior—

and thus with global supply predicted to reach 97 mbd over the forecast horizon along with 

OPEC spare capacity rising to record highs (5 mbd)—Brent prices are forecast to remain 

low, averaging US$55 pb as demand is expected to be in line with consensus forecasts 

(Figure 4, panel 3). Second, when OECD production be capped at the slightly lower 

production which prevailed during the last six months of 2014—such that OPEC spare 

capacity would then be predicted to fall back to or below 2 mbd—then Brent prices are 

forecast to rise, averaging US$95 pb (Figure 4, panel 1). Hence the range of forecasts of 

US$55-95 pb. 

 

Finding 5.  Despite the overall strength of VAR models, we highlight performance 

instability over the full sample, with small alterations in specifications, subsamples and lag 

lengths providing widely different forecasts at times.    

 

 

IX.   CONCLUSION 

Our analysis in this paper employs a set of monthly data from 1985M01 to 2014M12 and 

allows us to evaluate ex post the out-of-sample forecasting performance of several leading 

benchmark oil price models starting in 1997M01. We compare the different models’ 

predictive abilities over a horizon of approximately 18 years.  

 

We find that the exact specification of a VAR model for oil price prediction is still open 

to debate. While our standard parsimonious VAR model of oil demand proxied by industrial 

production, global oil supply and OECD inventory demand performs well over the full 

sample (despite the presence of structural breaks), we show that there is value in other 

specifications, as well as in futures forecasts during subsample intervals. However, across 

our whole sample, we find that the bias of futures forecasts to be larger than that of the VAR, 

with the direction of the bias indicating a serve underprediction of the futures forecast. 

Nonetheless, futures do provide more accurate forecasts relative to other simple benchmarks 

(such as the random walk) for horizons between 12 to 24 months. But futures do not provide 

more accurate forecasts than our VAR, which outperforms all competitors for all horizons 

under 24 months.  

  

As expected, forecasting performance varies across time. We find the random walk 

forecast to have performed better during periods of stable oil prices, but the VAR has 

performed best since 2008. Despite the overall strength of our VAR models, their 

performance can suffer from instability over the full sample, with small alterations in 

specifications, subsamples or lag lengths providing widely different forecasts at times. 

Therefore, we find merit in combination forecasts for horizons beyond 18 months and 



 31 

conclude that predicting oil prices on a long sample of data with structural breaks remains 

difficult.    

 

Finally, a limitation of our class of VAR models is the implied prediction intervals. As 

the model is only mean-reverting in changes but not in levels, there is no long-run anchor or 

“equilibrium” oil price in the global oil market. Therefore, a VECM model could overcome 

this shortcoming and presents a potentially promising area for future research. 
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