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I.   INTRODUCTION 

This paper introduces “system priors”, their use in Bayesian analysis of econometric time 

series, and provides a simple and illustrative application. System priors were devised by 

Andrle and Benes (2013) as a tool to incorporate prior knowledge into an economic model. 

Although system priors were originally proposed within the DSGE context, they are by no 

means specific to DSGE modeling and can be used equally well in any other domain. Unlike 

priors about individual parameters, system priors offer a simple and efficient way of 

formulating well-defined and economically-meaningful priors about high-level model 

properties. In more technical terms, eliciting prior beliefs about selected system properties of 

the model introduces restrictions on the joint prior distribution of individual model 

coefficients. To see this, it is enough to realize that many features of a model are determined 

by non-trivial functions of its individual parameters. An example of system priors is when 

researchers have views about the characteristics of a model’s impulse-response function. In 

principle, views about all meaningful and computable model properties can be expressed as 

system priors. 

 

This paper illustrates the generality of system priors using a simple but relevant example of 

an AR(2) process. As the exposition in Andrle and Benes (2013) may be less accessible to 

those not familiar with the literature on Dynamic Stochastic General Equilibrium (DSGE) 

models, we provide a more nuanced one highlighting the generality of the approach. In 

particular, we demonstrate how researchers’ economically-meaningful priors about high-

level model properties can be easily implemented into model estimation and inference and 

how these a priori beliefs restrict the parameter space of individual coefficients. In our 

application, we assume a stationary process and incorporate a belief that a significant share 

of its variance comes from business-cycle frequencies. Such a prior might be an advantage 

when an AR(2) process is used for modeling cyclical components of economic variables and 

researchers need to confine the parameter space to regions they find economically plausible.  

 

We keep the illustration as simple as possible for the ease of exposition and conceptual 

clarity of general principles, however the application of system priors to state-space models, 

Bayesian Vector Autoregressive (BVAR) models, or other type of linear or non-linear 
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models is just a straightforward extension of the basic principles introduced in this paper. See 

Andrle and Benes (2013) for examples of system priors applied to structural DSGE models 

(priors about the sacrifice ratio and impulse-response functions, for instance) and Andrle and 

Plašil (2016) for in-depth discussion of system priors for forecasting and structural BVARs.2 

 

Implementing system priors into standard Bayesian computations is fairly straightforward. 

Similar to traditional Bayesian inference, the initial (most commonly marginal independent) 

priors on parameters are updated using the likelihood function of the model. However, they 

are also updated using the information contained in the system priors, i.e. by prior views 

about the aggregate behavior of the model. Priors on individual parameters and system priors 

constitute a composite prior that reflects all available prior information. In some sense, the 

procedure is related to “dummy observation” priors (Theil and Goldberger, 1961), and allows 

to directly formulate priors on general nonlinear functions of parameters. From the non-

Bayesian point of view, system priors can simply be interpreted as another penalty in the 

criterion function, along with the likelihood and marginal prior distribution penalties. The 

formal discussion below will make the computational implementation clear. 

 

System priors do not require linearity of the model, Gaussian structural shocks, or error 

terms, or any particular form of the prior distribution on coefficients or model system 

properties. This naturally comes at some cost as they are computationally more expensive 

than natural-conjugate priors and their variations available in the literature. In this day and 

age, however, our view is that having economically meaningful models should be favored 

over convenience of having lightning-fast estimates of the models. Note also, that that 

computations with system priors can be sped up considerably by using modern parallel 

architectures.  

  

                                                 
2 Most of the BVAR priors are only vaguely motivated in terms of economic theory and rather serve as 

elementary parameter-shrinkage method. There are several noticeable exceptions: the steady-state priors of 

Villani (2008), sums-of-coefficient priors of Sims and Zha (1998), or recent ‘prior for the long run’ by 

Giannone, Lenza, and Primiceri (2014). However, these top-down priors are designed for ad-hoc problems and  

do not provide a general framework for implementing priors on high-level properties of the VAR model.  
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II.   SYSTEM PRIORS 

Estimating models with system priors closely follows general principles of Bayesian 

inference. The difference rests in the form of the prior distribution formulation. To 

demonstrate this, let us start with a traditional Bayesian setup: we assume that joint prior 

beliefs about a (k × 1) vector of individual parameters, θ, of a model Μ are expressed using 

independent marginal probability distributions, i.e. as: p
m

(θ)= p
m

(θ1)×…×p
m

(θk). Other 

setups of priors are possible with no loss of generality. We further assume that given the 

observed data, Y, it is possible to evaluate the likelihood function of the model, L(Y|θ;Μ) 

for different values of parameters. Applying the Bayes law, it is well-known that the 

posterior distribution of parameters is proportional to a product of the likelihood and the prior 

distribution: 

 p(θ|Y;Μ) ∝ L(Y|θ;Μ) × p
m

(θ). (1) 

Now, let us incorporate a priori views about the model’s system properties. To proceed, let us 

define a statistic, r = h(θ;M), which is a function of the model structure and its individual 

coefficients, and can be easily evaluated for different values of parameters. Such a function 

can describe impulse-response function characteristics or frequency-domain properties of the 

model, for instance. As in the case of individual parameters, prior beliefs about the values of 

the statistic r can be summarized by a feasible functional form, by a probability distribution. 

We will call it the system prior and denote it as p
s
(r|θ;h,M) ≡ p

s
(h(θ);M). Putting together 

the effects of the marginal prior, system prior, and the likelihood function, the posterior 

distribution of the parameters emerges as  

 p(θ|Y;Μ) ∝ L(Y|θ;Μ) × [ p
s
(h(θ);M) ×  p

m
(θ)].  (2) 

The form of the posterior kernel in (2) is an intuitive one. For a given value of the parameter, 

θ, the posterior distribution is based on a two-step updating process. In the first step the 

marginal prior,  p
m

, is updated with the system priors,  p
s
, resulting in the composite prior 

distribution. As system priors operate on functions of parameters, the composite prior implies 

some restrictions on individual coefficients but generally not in a unique or invertible way. In 
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the second step, composite prior beliefs are updated with information contained in the data 

using a likelihood function of the model. 

 

To help with the intuition, it is useful to think of system priors as an artificial likelihood 

function3 summarizing information contained in the artificial data on r, which are put into an 

auxiliary probabilistic model with a structure corresponding to function r = h(θ;M). In other 

words, system priors can be interpreted as measuring how likely the values of individual 

parameters are given the “observed” distribution of  r. As such, they penalize parameter 

values not conforming to prior beliefs about system properties of the model. The shape of 

this likelihood depends on the distributional assumptions about system priors, expressed by 

the functional form and the hyper-parameters. Combining the prior distribution of individual 

parameters both with the artificial and with the conventional likelihood function results in 

posterior distribution of parameters expressed in (2).4  

 

Essentially, estimation with system priors is just applying the Bayes law twice: first with the 

artificial likelihood function to obtain the composite prior and second with the conventional 

likelihood function of the underlying model to obtain the posterior distribution of the model 

parameters. 

 

From a non-Bayesian perspective, the criterion function (2) is simply a penalized likelihood 

problem with two types of penalties. As such, it can be subject to standard or ad-hoc 

designed optimization routines to estimate the parameters and carry out the inference. The 

equivalence between the literature on parameter shrinkage in statistics and a suite of selected 

priors in Bayesian analysis is a good example of dual interpretation.5 If feasible, the criterion 

function can be optimized numerically with respect to θ to find the posterior mode. The 

                                                 
3 This brings it close to the idea of “dummy observation” priors. As pointed out in Sims (2005), “The prior takes the form of 

the likelihood function for the dummy observations.”  Yet, the system priors are not equivalent to dummy-observation 

priors. It would be the case if for the distribution of coefficients θ, for which the statistic 𝑟 = ℎ(θ) has a distribution 𝑝𝑠(r) 

with chosen hyper-parameters, one would draw samples of the data using the model and use those in the inference. 

4 Regardless of whether Jacobian terms are involved or not, the resulting prior distribution of aggregate model properties is 

key to understanding all the consequences of the prior specification used, namely in non-trivial models.  

5 For instance, the popular ridge regression can be recast as a Bayesian problem with Gaussian priors. 
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inverse Hessian matrix evaluated at the posterior mode can then serve directly for (non-

Bayesian) inference or as an important ingredient of the Markov Chain Monte Carlo 

(MCMC) procedures. 

 

To analyze the composite joint prior distribution in greater detail, computations analogous to 

posterior sampling in (2) are needed with the evaluation of the conventional likelihood 

function switched off. Such analysis and associated prior predictive analysis of model’s 

properties is highly recommended, to check if the formulation of the priors lead to desired or 

plausible properties of the model, see Geweke (2010).  

 

Existing Bayesian computations and computer code can stay almost unchanged when system 

priors are employed—see the pseudo-code for the posterior kernel in the Appendix. The only 

difference is that for a particular j-th draw of the parameter vector, θj, three, instead of two 

components need to be evaluated – with the system prior component adding to the overhead.6 

Given the computational progress in the last decade and years to come, there is no need for 

the system priors to have closed-form solutions or conjugate forms.  

 

III.   EXAMPLE – SYSTEM PRIORS FOR AN AR(2) PROCESS 

After the theoretical exposition of system priors, let us proceed with an illustration using an 

AR(2) process and the thought process that goes along the system priors. Admittedly, the 

process by itself may not be particularly useful for macroeconomic time series. However, it 

can be an important part of richer structural time series models. For instance, it is not 

uncommon to use the second-order autoregressive model for modeling a cyclical component 

of output and other economic variables (see e.g. Watson, 1986, Clark, 1987, and Kuttner, 

1994).7 Let us then consider a zero-mean AR(2) process: 

                                                 
6 All three components, however, can be evaluated independently and thus in parallel for a particular draw of parameter 

vector or resources can be re-used in multiple components, as both the likelihood function and system priors make use of a 

model solution for a new vector of parameters.  
7 There are other common specifications of the cyclical components in the literature, for instance the trigonometric form in 

Harvey and Trimbur (2003), which in its univariate form corresponds to a restricted ARMA(2,1) process. 
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 y
t
 = ϕ

1
y

t-1
+ ϕ

2
y

t-2
+ εt,    εt~N(0,σε

2) (3) 

What would be reasonable priors for the two auto-regressive coefficients ϕ
1
and ϕ

2
? A 

common point of departure would be to start with normally distributed independent marginal 

priors for the individual coefficients, that is ϕ
1
~N(0,σϕ1

2 ) and ϕ
2
~N(0,σϕ2

2 ). However, this 

hardly sounds right if the prior is supposed to convey some relevant, economically-

meaningful information. When the coefficients can vary independently and the joint 

distribution is spread out, it implies a wide array of model dynamics, including wild 

oscillations or unstable non-stationary impulse-response functions. Researchers have been 

aware of this issue for a long time and have been striving to come up with better ways of 

formulating priors, even in the particular, and simple, example of the second-order 

autoregressive process (see, e.g. Planas et al., 2008).8 

 

In the case of the AR(2) process, a polar-form specification of the cycle was proposed as one 

of the solutions as it helps incorporate prior beliefs about cyclical behavior more efficiently. 

In the polar-form specification, the coefficients are analytically re-parameterized such that 

the priors are imposed on the periodicity and the amplitude of the cycle.9 However, such re-

parameterization may still be too vague for other types of a priori views about the business 

cycle. Further, analytical re-parameterization is not generally feasible except for very simple 

models. Luckily, there is absolutely no need for it. System priors usually will not have 

closed-form solutions. Not having a closed-form solution may add some computing overhead 

but does not affect the general principles. 

 

                                                 
8 Planas et al. (2008) have recently commented on the problem with a business cycle modeled as an AR(2) [p. 19]: “Indeed, 

assuming a normal prior distribution on parameters ϕ
1
, ϕ

2
, we found it difficult to reproduce our prior knowledge by tuning 

the mean and the covariance matrix of the autoregressive parameters… In some cases, the implied distribution for the 

periodicity and amplitude can be counterintuitive…Putting the prior on the AR coefficients […in traditional way…] is 

probably inadequate for cyclical analysis.” 

9 The polar-form specification is as follows, (1-2Acos(2pi/tau)L + A^2L^2)y(t)=epsilon(t), where A is the amplitude and tau 

is the periodicity. The amplitude is given by A=√−ϕ
2
 and the periodicity by τ = 2π/acos {ϕ

1
/2A}.   
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In our application example, we incorporate a prior view that the second-order AR process is 

stationary and more than 60% of its variance comes from business-cycle frequencies (i.e. 

frequencies of 8-32 periods in a quarterly model).  

 

The process in (3) is stationary only if ϕ
1
+ ϕ

2
 < 1, ϕ

2
 – ϕ

1
 < 1 and |ϕ

2
| < 1. These 

assumptions restrict the parameter space but they do not restrict the oscillatory properties of 

the model in a sensible way, as illustrated below. More disciplined behavior of the model can 

be achieved through a prior assumption about spectral characteristic of the process. Spectral 

density of the model can be interpreted as a distribution of variance across frequencies and is 

thus a natural starting point for formulating a system prior in this case. 

 

The spectral density of y
t
, denoted Sy(w), can be computed as follows: 

 
Sy(w)=

σε
2

2π[1+ϕ
1
2+ϕ

2
2+2ϕ

1
(ϕ

2
-1) cos(w) -2ϕ

2
cos (2w)]

, 
(4) 

where w ∈ [0,π) is the angular frequency. A brief inspection shows that spectral density is a 

non-linear function of both auto-regressive parameters. The variance of the error term, σε
2, 

determines the level of the spectrum but not its shape.10  Therefore, any prior exploiting a 

spectral restriction would result in nontrivial joint prior distribution for individual regression 

parameters. To introduce the system prior outlined above, we define the total variance of the 

process y
t
 as the integral of the spectrum (4) over the full frequency range and business cycle 

variance as the integral limited to the range of business cycle frequencies (a,b). Specifying 

the business-to-total variance ratio as:  

 
𝑟 = ∫ Sy(w)dw

b

a

/ ∫ Sy(w)dw, (5) 

                                                 
10 Although for the AR(2) process the spectrum can be expressed in a closed form, nothing would change if the closed-form 

was not available. 
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results in a statistic that is univariate, has clear units, and has clear interpretation. The ratio 

(5) can only take values within the interval [0,1]. A change in the shock variance, σε
2, shifts 

the spectrum up or down but never affects the ratio. As such, the spectral prior is completely 

uninformative about the coefficient σε
2. In general, system priors are not equally informative 

about all coefficients. 

 

Now, let us present two complementary examples of implementing a system prior that 

reflects prior beliefs about the cyclical component of the output. First, one may consider a 

condition that at least 60% of variance of y
t
 originates from business cycle frequencies. 

Second, prior beliefs about the ratio can be expressed using a statistical distribution. Given 

the range of admissible values for r, a Beta-distributed prior is a feasible option, as its 

support is in the [0,1] interval (non-Gaussian or non-conjugate prior poses no difficulty here). 

In our example, r∼Be(15,5) is used, which places a large portion of the probability mass of 

the variance of y
t
 as coming from business cycle frequencies. Other hyper-parameter settings 

are possible and used values only serve for illustration.  

 

Computationally, the inference is based on simulation techniques with the conventional 

likelihood function omitted to learn only about the composite prior. In the case of the 

minimum of 60% of the variability coming from business cycle frequencies we employ 

rejection sampling with normally distributed marginal priors used as the proposal 

distribution. In the latter and more general case, our results are based on the sequential Monte 

Carlo sampling (SMC, see e.g. Herbst and Schorfheide, 2014) which can be seen as an 

alternative to the traditional Metropolis-Hasting random walk algorithm, which in our simple 

case might suit as well. For simple models both algorithms should provide almost identical 

results, however sequential Monte Carlo sampling is strongly preferred if complex models 

(containing dozens of parameters) are estimated.11   

 

Fig. 1 shows the combinations of parameters that correspond to Normally distributed 

marginal priors, ϕ
1
,ϕ
2
∼N(0,2), in the upper-left panel and combinations that conform with 

                                                 
11 The R code for the examples presented is available upon request.  
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the stationarity restriction in the upper-right panel. The bottom panels illustrate the 

combinations in line with the requirement on sufficient variance of y
t
 coming from business 

cycle frequencies. Clearly, the considered system prior is fairly informative and leads to a 

non-Normal joint distribution of parameters. Both computational ways of implementing 

system priors reflect similar prior beliefs, hence they lead to similar results. System priors 

pose few restrictions on the actual technical design of the prior – it is the meaningfulness of 

the prior for the analysts and their audience that matters.12 

 

Knowing just the combinations and full joint prior distribution of individual parameters that 

satisfy the constraints is not enough to evaluate the role of priors. The key knowledge is the 

understanding of how these priors translate into the behavior of the model in as many aspects 

as relevant. The analyst should investigate if there are any unintended consequences of the 

chosen priors. For this purpose, the prior-predictive distribution of the models’ properties 

must be analyzed. In our case, the prior-implied distribution of the impulse-response function 

alongside spectral characteristics are natural candidates for closer inspection. 

  

Fig. 2 depicts the spectral densities and impulse response functions for parameters in regions 

complying with the requirement of stationarity and sufficient variance coming from business 

cycle frequencies. It is apparent that the stationarity condition itself does not restrict the 

process in an economically-meaningful way, while the system priors do. Our system prior is 

not diffuse, it is fairly informative. However, it is also very transparent, simple to implement, 

and easy for others to agree or disagree with, should they wish to do so. 

 

We could have specified other meaningful priors, for example directly in terms of the 

impulse-response function of the model. The scope of system priors is wide. System priors 

are a flexible tool, which easily extends to any other type of econometric and statistical 

models, including the state-space models (Andrle and Benes, 2013) or Bayesian VARs 

                                                 
12 The computer-code implementation of system priors differs from standard Bayesian analysis in that the prior restrictions 

are not off-the-shelf functions and users are expected to specify their own. Once a clear interface is established and 

documented, users only pass their function or function object with clear inputs and outputs to the system.  
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(Andrle and Plašil, 2016). Recall also, that non-Bayesian analysis can embrace the penalized 

loss-function approach to inference as well.  

 

 
Figure 1: Parameter regions for different priors 

 

 
Note: Kernel estimates of the joint prior density. Left upper panel: normally distributed independent marginal priors for ϕ

1
 

and ϕ
2
, upper right: identical priors restricted to the stationarity region, bottom left: stationarity + at least 60% of 

variability comes from business cycle frequencies, bottom right: stationarity + the share of business cycle frequencies 

given by Be(15,5). 
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Figure 2: Model properties for admissible regions 

 
Note: The business cycle frequencies are denoted by the shaded region. 

 

  



 15 

IV.   CONCLUSION 

Building on Andrle and Benes (2013), we provided a background theory of system priors 

accompanied by an illustrative example, placing emphasis on the elements and mechanics of 

system priors’ application. System priors bring on board views about high level features of 

models, not necessarily just individual coefficients. As such, they provide a more refined way 

of incorporating prior information on complex functions of parameters, like impulse-

responses or frequency-response functions. 

 

The specification and implementation of system priors was illustrated using a second-order 

autoregressive process, which, despite its simplicity, can display nontrivial dynamics. 

Gaussian independent priors on the autoregressive coefficients do not restrain the model 

dynamics in a meaningful way when it comes to cyclical properties of the process. The polar 

re-parameterization suggested in the literature is a specific modification with only a modest 

improvement. However, it was illustrated that imposing a restriction that more than 60% of 

the model’s dynamics comes from business cycle frequencies allows the parameters to be 

estimated only in a region with plausible cyclical dynamics of the impulse-response function. 

Other economically relevant priors could have been chosen due to the generality of system 

priors and options are virtually unlimited in more sophisticated models.  

 

We believe that system priors are a useful top-down approach to eliciting priors –possibly 

hierarchical– about model characteristics as long as these are computable functions of the 

underlying coefficients. System priors allow researchers to work with informative and 

economically-meaningful priors in econometric and structural economic models, be it state-

space models, Bayesian vector auto-regressions, or others. Importantly, system priors are 

easy to incorporate within the existing Bayesian toolkits with only little computational 

overhead.   
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V.   APPENDIX: PSEUDO CODE FOR THE POSTERIOR KERNEL 

The following is a simplified pseudo-code for implementing the computations to evaluate the 

formula (2) in the main body of the text, restated here for convenience: 

 

p(θ|Y;Μ) ∝ L(Y|θ;Μ) × [ p
s
(h(θ);M) ×  p

m
(θ)]. 

 

The function evaluating all three components of  p(θ|Y;Μ) takes as inputs the vector of 

coefficients, θ,  to evaluate the criterion function for, the model (either already solved for θ or 

to be solved for θ), observed data required for evaluation of the log-likelihood and possibly 

also for evaluation of the system priors.   

 

A crucial input is the user-defined function, logsprior_user_fun, that can evaluate the 

system priors for a given coefficient vector, θ. The function handle, or a function object13, 

needs to follow a pre-specified application programming interface (API) to be used with a 

general toolbox.  

 

The evaluation of the function can be efficient with solving the model with a new vector of 

coefficients only once or evaluating all three components in parallel.  

 

The switches allow to switch between Bayesian estimation with System Priors, Bayesian 

estimation without system priors, maximum likelihood estimation with no explicit priors, or 

investigation of the compound prior by switching off the likelihood component. Although the 

“do_xx” switches are not shown explicitly as inputs, they are included in the function (or 

function object). 

  

                                                 
13 For illustration of function objects in multiple programming languages, see 

https://en.wikipedia.org/wiki/Function_object. Function object is an object that can be called like a function, yet 

can do more, for instance “remember” a lot of data, its previous state, etc.   

https://en.wikipedia.org/wiki/Function_object
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PSEUDO CODE: 

 
[crit]  = function(theta, Model, Data, logsprior_user_fun, … ) 
BEGIN 
  
 

 /* Evaluate the marginal priors:  p
m
(θ)]. */ 

 IF (do_mprior == TRUE) 
  Log_mprior = evalMarginalPriors(theta, hyperParameters); 
 ELSE 
  Log_mprior = 0; 
 END 
 

 /* Evaluate the SYSTEM priors:  p
s
(h(θ);M)*/ 

 IF (do_sprior == TRUE) 
  Log_sprior = call(@logsprior_user_fun(theta, Model, Data); 
 ELSE 
  Log_sprior = 0;  
 END 
 

 /* Evaluate the likelihood or other criterion function: L(Y|θ;Μ) */ 
 IF (do_loglik == TRUE) 
  Log_lik  = evalLoglikelihood(theta, Data, Model); 
 ELSE 
  Log_lik  = 0; 
 END 
 
 
 /* Assemble and return the posterior value */ 
 crit = Log_lik + Log_sprior + Log_mprior 
  
END 
 

 

  


