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I.   INTRODUCTION 

“We are drowning in information but starving for knowledge.” 

       Rutherford D. Roger 

 
Macroeconomic analysis in Lebanon presents a distinct challenge. A striking example 
in this regard stems from the compilation and publication of Lebanon’s national-accounts: 
these are compiled on a yearly basis, and are published with a lag that can sometimes exceed 
two years. In addition, the absence of key macroeconomic data prior to 1990s—owing to the 
impact of the civil war—means that most economic series are relatively short and display 
numerous structural breaks. 

Faced with an absence of timely economic statistics, discussions of economic activity 
tend to center around a select group of proxy measures. For example, the Banque du 
Liban (BdL) and the International Institute of Finance (IIF) have separately developed their 
own coincident indicators, which aim at taking the information contained within a range of 
high-frequency (monthly) variables, and combining them into a composite measure of 
underlying activity. The former was developed immediately following the end of the civil 
war and is composed of eight variables.2 And the IIF indicator follows the same approach, 
but includes an additional five variables.3 Most recently, the World Bank designed a new 
coincident indicator, which draws on the NBER Conference Board approach (Matta, 2014). 
All of these efforts are useful, but given that individual variables may sometimes give 
different (or contradictory) signals, assessments of the overall direction of the economy will 
often vary, depending on the methodology chosen.  

The Fund has typically taken a similar coincident-indicator approach when assessing 
the ongoing performance of the economy. Following the BdL methodology, Staff have 
generally estimated real GDP using the components of the BdL’s coincident indicator—
sometimes augmented by other measures of economic activity, such as construction permits, 
tourist arrivals, car registrations, and the number of property transactions.  

This paper will outline staff’s recent efforts to augment this analysis. Framing the issue 
as a standard ‘nowcasting’ problem, and mindful of the pitfalls of extracting information 
from a large number of correlated proxy variables, the paper will draw on recent advances in 
machine-learning to estimate real-time movements in GDP growth.  

                                                 
2 These are electricity production (volumes), petroleum imports (volumes), M3 (real), cleared checks (real) total 
airport passenger flows (volumes), cement deliveries (volumes) and imports and export flows (real). 

3 These are real private-sector credit, tourist arrivals (instead of passenger arrivals), real government revenues, 
real government consumption, and real machinery imports. See Iradian and Zouk (2010). 
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In particular, the paper will focus on two popular and successful machine-learning 
techniques—elastic-net regression and the Random Forests algorithm. It will outline the 
features and strengths of each approach; noting in particular that these techniques are 
intuitively familiar to most economists, are easily implemented, and in the particular case of 
Lebanese GDP, they provide plausible out-of-sample results. 

II.   THE NOWCASTING PROBLEM: PREDICTING THE PRESENT 

The term ‘nowcasting’ is a contraction of ‘now’ and ‘forecasting,’ and has become a 
standard activity for central banks. Effective policymaking requires a sound assessment of 
economic conditions. But key measures of activity–such as GDP–generally arrive only after 
a delay, which essentially forces decision makers to assess current conditions by looking in 
the rear-view mirror. In response, central banks and other market participants have put 
substantial effort into providing timely assessments of GDP. The basic idea is that, by 
drawing on a large set of high-frequency sources (e.g., jobless figures, industrial orders, trade 
balance, etc.), signals about current GDP can be extracted before the associated official GDP 
figures are actually published. A successful nowcast will thus draw on real-time data to 
accurately forecast what future GDP releases will say about the current state of the economy.  

The lags associated with Lebanese GDP data are sizable by international standards, but 
the essential problem is the same. For example, in the United States and United Kingdom, 
GDP data are compiled on a quarterly basis and are published approximately one month after 
the end of the reference quarter (so that, 
say, the first release of 2Q15 data will only 
be available end-July/early August 2015). 
In the euro area, the publication lag is 
around 2-3 weeks longer. In Lebanon, 
however, GDP data are compiled only on 
an annual basis, and the publication lag is 
1-2 years—so to gauge the true state of the 
economy in 2015, policy makers may have 
to wait until 2017. Still, at a basic level the 
challenge across these countries is the 
same—given the delayed release of actual 
data, decision makers can exploit 
information published in the interim to get 
an ‘early estimate’ before official figures 
become available. 
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III.   THE CULTURE OF NOWCASTING: FROM CAUSAL INFERENCE TO MACHINE LEARNING 

“Never trust OLS with more than five regressors” 

     Zvi Grilliches 

 
The central aim of nowcasting is to extract a reliable signal from a large set of noisy 
higher-frequency indicators. And perhaps the most widely used procedure across central 
banks entails the use of factor-based models.4 These seek to extract a (small) set of 
(unobserved) common factors from the full set of indicators—with the assumption that these 
factors embody the main processes that drive the economy and so represent a concise and 
sufficient summary of underlying GDP. If there is a high degree of co-movement amongst 
the high-frequency variables, then the bulk of their dynamics can be captured by relatively 
few common factors, effectively reducing the (often daunting) dimensions of the full dataset 
to a more manageable set of key drivers.  

A potential issue with the factor-based approach is that extraction typically ignores the 
ability of individual series to predict GDP. Indeed, any variable included in the full data 
set will usually be given at least some weight in the 
procedure, even if that variable is totally unrelated to 
GDP. The resulting factors may therefore be optimal 
at summarizing the information in the dataset, but 
may not be the best possible variables when it comes 
to actually predicting GDP. Indeed, the literature has 
generally found that factors extracted from fewer—
but more informative—indicators can yield better 
forecasts that those obtained from larger datasets.5 
So, dimension reduction is not enough. Good 
nowcasting also requires an element of variable 
selection. 

Recent advances in machine learning have shed new light on how to select the most 
informative variables from a broad set of candidates. Prompted by advances in computing 
power, and driven in part by the needs of fields like biostatistics and genetics, machine 
learning has become a rapidly expanding subfield of statistics. And the results of this 
research are now filtering into applied econometrics (Elmer, 2011). On selecting the best 
subset from a broad range of candidates, key approaches often include step-by-step 
algorithms, such as best-subset regression, and forward- and backward-stepwise regression 

                                                 
4 See Stock and Watson (2006) for a survey. 

5 See Girardi and others (2014) for a summary. 
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(see Hastie and others, 2013). But these can often be computationally expensive, particularly 
for large datasets.  

 An alternative (relatively popular) approach is instead to use a type of penalized 
regression like elastic net regression. The advantages of the latter approach is that it is 
(i) intuitively familiar, (ii) entails the same (minimal) computational cost as standard 
OLS regression, (iii) combines dimension reduction and variable selection in a single 
step, and (iv) provides results that are robust to potential correlation between predictors.  

 Another alternative is to use a decision-tree approach, like Random Forests, which can 
quickly sort through a wide range of possible predictors to provide a similarly 
parsimonious model that copes well with possible nonlinearities and interactions. Both of 
these approaches will be covered in more detail below. 

Machine-learning techniques are gaining ground among econometricians, and are 
particularly well suited to the nowcasting problem. Traditionally, econometrics and 
machine learning have focused on different types of problems, and have developed 
separately.6 Econometrics has generally focused on explanation, with particular attention to 
issues of causality, and a premium placed on models that are easy to interpret. A “good” 
model in this framework is mostly assessed on the basis of statistical significance and in-
sample goodness-of-fit. Machine learning, on the other hand, has focused more on 
prediction, with emphasis instead on a model’s accuracy rather than its interpretability. A 
“good” machine-learning model, then, is often determined by looking at its likely out-of-
sample success, based on bootstrap-style simulation techniques.  

Despite their differences, the overlap between these two fields is growing, particularly 
with the arrival of “big data.” Indeed, a number of authors are currently exploring ways in 
which machine-learning techniques can shed light on questions of causation (Athey and 
Imbens, 2015). But the overlap is perhaps clearest when it comes to nowcasting, where issues 
of causality are less relevant. Recall, the goal of nowcasting is to extract a common signal 
from a broad range of indicators, with the aim of predicting what future GDP figures will say 
about the current environment. For this purpose, it does not matter whether an indicator 
reflects a causal factor that shapes GDP, or whether it is instead a symptom of GDP growth. 
What matters is simply that the indicator contains information about the current state of the 
economy, and that this information can be used in predicting the eventual GDP release. This 
is precisely the type of problem that machine-learning techniques are designed to address. 
The remainder of the paper will introduce some key concepts and algorithms within the 
machine-learning field, and explore their usefulness in nowcasting Lebanese GDP. 

  

                                                 
6 See Breiman (2001a) for a discussion on the different cultures associated with the two fields. 
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IV.   A REGULARIZATION APPROACH: ELASTIC NET REGRESSION 

“LASSO is the new OLS” 

       Andrew Gelman 

A.   Penalized Regression 

Fitting is easy, prediction is hard. And prediction is particularly challenging in 
circumstances where there are a large number of correlated regressors. In these cases, 
estimated coefficients are often unstable, shifting significantly with the addition of new 
observations or predictors (the “bouncing beta” problem). For prediction purposes, then, out-
of-sample performance will often be relatively poor, even when in-sample performance 
seems solid and the model is theoretically unbiased. As a solution, it is sometimes possible to 
find a deliberately biased model with lower prediction error than an unbiased model—giving 
rise to the so-called bias-variance tradeoff. One option is to add a small penalty to the usual 
OLS regression, which slightly biases all coefficients towards zero, but which also has the 
benefit of stopping them from swinging wildly in the face of new information. This is called 
regularization in the machine-learning literature. Different types of penalty will have 
different properties, and we outline some of these below. 

B.   LASSO and Ridge Regressions 

Ridge regression is very similar to least squares, except that the coefficients are 
estimated by minimizing a slightly adjusted quantity. As with least squares, ridge 
regression seeks coefficients that fit the data well, by making the residual sum of squares 
(RSS) as small as possible. However, the regression also seeks to minimize a second term—
called a shrinkage penalty—which is small when the regression coefficients are close to zero. 
This term will thus tend to shrink the coefficient estimates towards zero. The details of the 
penalty are provided below (where n is the number of observations, and p is the number of 
candidate predictors). Importantly, the tuning parameter λ serves to control the relative 
impact of the penalty term. When λ = 0, the penalty has no effect, and ridge regression will 
produce the least-squares estimates. But, as λ gets larger, the impact of the shrinkage penalty 
grows, and the coefficient estimates will approach zero. Unlike least squares, which 
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generates only one set of estimates, ridge regression will produce a different set of 
coefficients for each value of λ. So selecting a good value for λ is critical; and will be 
addressed in the section on cross validation below.  

LASSO regression (Least Absolute Shrinkage and Selection Operator) is similar to the 
ridge regression, but has a different penalty. As with ridge regression, the LASSO shrinks 
the coefficient estimates towards zero. However, in the case of the LASSO, the penalty has 
the effect of forcing some of the coefficients to be exactly equal to zero when the tuning 
parameter λ is large enough—in contrast to the ridge regression, which may shrink 
coefficients so that they are close to zero, but will never eliminate them altogether. Hence, 
like some of the stepwise approaches outlined above, the LASSO includes an element of 
variable selection, and will tend to produce a parsimonious model with fewer predictors.  

C.   The Elastic Net Regression 

The elastic net regression contains a hybrid of the ridge and LASSO penalties. The ridge 
penalty will tend to shrink all coefficients proportionately; and for closely correlated 
variables, it will tend to move the coefficients toward one another, without choosing among 
them. The LASSO penalty, on the other hand, will produce a leaner model by focusing on a 
small subset of those variables, and discarding the rest. Each approach has benefits, 
depending on the data, and there is no a priori reason to prefer one over the other.  

The elastic net regression combines the strengths of both—selecting the best predictors to 
provide a parsimonious model, while still identifying of groups of closely correlated 
predictors. The relative weights of the two penalties are determined by an additional tuning 
variable (α). And as with the ridge and LASSO regressions, different values of the tuning 
parameters (α and λ) will produce different sets of coefficients. So, selecting the right 
parameter values is key. 

D.   Cross Validation 

The tuning parameters are chosen to optimize the predictive ability of the regression. 
The technique is called cross validation, and is 
a way of gauging likely out-of-sample 
performance using only in-sample data. The 
basic idea is simple. Select a starting value for 
both α and λ. Divide the data into K folds (say, 

Train Train Train TrainTest

1 2 3 4 5
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K=5), take one of those folds and set it aside as a test set. Using the remaining (4) folds as a 
training set, estimate the model, and then try to predict the values in the test set, keeping 
track of the prediction error.  

Repeat this procedure using all combinations of the test and training sets, producing a set of 
(5) validation errors associated with our chosen values of α and λ. We can then see what 
happens if we change λ. Each value of λ should 
produce a different set of validation errors, which 
then defines a cross-validation error curve. The 
value of λ is chosen to minimize the error on this 
curve (or more accurately, to produce the most 
parsimonious model possible within one standard 
deviation from the minimum). We can then 
repeat all of the above for different values of α; 
finding the best value of λ for each α, and then 
trying different values of α to arrive at the 
combination of α and λ with the lowest overall 
prediction error. The final result will be a 
model designed to produce the best possible 
out-of-sample fit, while also managing a 
potentially large number of correlated predictors 
in a procedure that is intuitive and relatively 
simple to implement.7  

E.   Elastic Net Regression Results for Lebanon 

Data 
 
While it is possible to produce an elastic net model using only annual GDP data, our 
preferred specification draws from quarterly data, available from 1996 to 2010. 8 The 
sample period includes a variety of swings and shocks—including the mid 2000’s boom, as 
well as the aftermath of the Hariri assassination and the 2006 war—and so should provide a 
valuable guide as to how GDP movements align with those of other higher-frequency 
indicators. The sample does not, however, include the sharp GDP contraction that followed 
the onset of the Arab Spring and the Syrian crisis, which we may then use as a true out-of-
sample test of the model’s predictions. 

                                                 
7 Estimation and cross-validation are available as automatic procedures within the glmnet package from R.	
See Hastie and others (2010). 

8 The quarterly series on GDP was compiled by Alain Tranap, a UNDP consultant working with Lebanon’s 
Council of Ministers. 
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For predictors, we extend the components of the BdL coincident indicator. The data are 
available on a monthly basis from 1996 and include the following 19 variables: 

Candidate Predictor Variables 

Tobacco Excises (real) Total Cleared Checks (real)

Tourist Arrivals (number) Total Airport Passenger Flows (number) 

Lending to the Private Sector (real) Cement Deliveries (volumes)

Property Taxes (real) Trade flows (imports plus exports, in real terms)

Administrative Fees (real) Construction Permits (sq. m)

Primary Fiscal Spending (real) M3 (real)

Total Non-Resident Deposits (real) Port of Beirut Freight, Incoming (volumes) 

Electricity Production (volumes) Port of Beirut Freight, Outgoing (volumes) 

Imports of Petroleum Derivatives (volumes) Imports of Machinery (volumes) 

Customs Revenue (real) 

 

Correlation Matrix 
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Looking at the correlation matrix for the data, a number of these series indeed seem to be 
tightly correlated (as expected), suggesting that trading off between bias and variance, as 
outlined above, may indeed improve the performance of the model. Where volume data is 
unavailable, nominal values are deflated by CPI to produce data series in constant prices. 
The regression is specified in growth rates, as this is the immediate measure of interest for 
Fund staff.  

Results 
 
Coefficient values and the cross-validation error curve are provided in Annex 1, but the 
key measure of effectiveness is the model’s in- and out-of-sample fit with actual GDP. 
As can be seen from the diagram below, the in-sample performance of the model is relatively 
solid. (Recall, the model is not designed to maximize in-sample fit, but is instead designed to 
maximize the likely out-of-sample fit, based on in-sample data). Looking to the ability of the 
model to predict GDP movements out of sample, it also manages to track GDP relatively 
well over 2011-13 when output contracted sharply— it does produce a notably higher growth 
rate in 2011 when compared to the (revised) official figure, but the contraction in 2011 was 
unusually sharp by historical standards. Estimated growth for 2014 (where no official figure 
is available) seems plausible. 
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V.   A DECISION-TREE APPROACH: RANDOM FORESTS 

“Random Forest has been the most successful general-purpose algorithm 
in modern times” 

   Jeremy Howard, President/Chief Scientist at Kaggle 

A.   Decision Trees 

Tree-based methods provide an intuitive, easy-to-implement way of modeling 
non-linear relationships. At core, these methods are based on the notion of a decision tree, 
which aims to deliver a structured set of yes/no questions that can quickly sort through a 
wide set of features, and produce an accurate prediction of a particular outcome (GDP in our 
case). The technique is perhaps most familiar where the goal is to predict a qualitative 
variable (e.g. “spam” vs “non spam”) And in these cases, a traditional econometric approach 
would usually be to use a logit or probit model. But decision trees take a very different 
approach. Rather than fitting a (transformed) linear regression, they center instead around the 
repeated partitioning of the predictor space into two sets, starting with an initial split that 
decreases the prediction error the most. These binary partitions then continue until the 
termination of the tree, and are recursive—i.e. each subsequent split is not conducted on the 
entire dataset, but only on the portion of the prior split under which it falls. The result is an 
efficient set of questions that can quickly narrow down the likelihood of our modeled 
outcome falling into a particular category (“spam”) or another (“non spam”).  

The decision-tree approach can predict continuous variables as well as qualitative 
variables. In this case, the decision tree is typically called a regression tree (Box 1) and 
produces a step-wise nonparametric estimator for the conditional expectation of the outcome 
(again, GDP in our case). Decision trees are computationally efficient, and work well for 
problems where there are important nonlinearities and interactions. They also are well suited 
to cope with missing data. Trees tend not to work very well if the underlying relationship is 
linear, but even in these cases they can often reveal aspects of the data that are not apparent 
from a traditional linear approach (Varian, 2014). 

B.   Random Forests 

The Random Forest (RF) algorithm modifies the decision-tree approach to minimize 
the problem of overfitting. One problem with trees is that, like standard OLS with many 
correlated predictors, they often provide models that fit the training sample well, but which 
perform poorly when making out-of-sample predictions. A common solution to this problem 
is to shorten or “prune” the tree by imposing a penalty for an overly long/complex structure, 
analogous to the regression penalty added in the elastic net regression. The ideal degree of 
complexity is then chosen using cross-validation techniques. Instead of pruning, however, the 
RF algorithm (Breiman, 2001b) takes a different approach—seeking instead to improve the 
model’s predictive ability by growing numerous (unpruned) trees and combining the results. 



13 

Box 1. Regression Trees (continued) 
A regression tree is a particular type of decision tree, which designed to approximate a continuous real-valued 
function, rather than a yes/no classifier. 

The tree is built through an iterative process that splits the data into partitions or branches, and then 
continues splitting each partition into smaller and smaller groups. 

 Initially, all observations are placed in the same group.  
 The data is then allocated into two partitions (or branches), using every possible split on every available 

predictor: the predictor/split actually chosen is the one that that most clearly separates the observations into 
two distinct groups, i.e. minimizes the overall deviation from the mean in each of the two separate partitions.  

 This splitting rule is then reapplied to each of the two new branches.  
 The process continues until each group reaches a pre-specified minimum size (minimum node size).  
 Having split the data (x) optimally into a (large) number of separate bins, the regression tree simply calculates 

the mean value of the outcome variable (y) for each bin.  
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Box 1. Regression Trees (concluded) 
A fully developed tree often suffers from over-fitting—the deeper the tree, the better the fit, but taken to the 
extreme it is possible to keep extending the tree until each individual data point is represented by its own terminal 
branch, resulting in a “perfect” in-sample fit. This over-fitting generally results in poor out-of-sample performance. 
So regression trees are often “pruned,” i.e. shortened at the expense of the in-sample fit, but with the aim of 
improving out-of-sample success. There is a sizable literature on how to prune regression tees optimally, which 
draws on many of the cross-validation techniques outlined in the main text. 

Once settled, the regression tree provides a non-parametric estimate of the expected outcome (GDP), 
conditional on the predictors falling into a particular bin. 

Essentially, the regression tree partitions the set of predictors efficiently into M regions R1, R2, …, RM. The response 
variable (y) is then modeled as the average for the region, with  

̂ ∈  

                                                        where 

̂ | ∈  

 

The first Random Forest modification is the use of bootstrap aggregation (or 
“bagging”). In bagging, an individual tree is built on a random sample of the dataset, 
roughly two thirds of the total observations—the remaining one-third are referred to as out-of 
bag (OOB) observations and can be used to gauge the accuracy the tree. This is repeated 
hundreds or thousands of times and the results are averaged. The fact that none of the trees is 
pruned means that the variance of each individual tree is high. However, by averaging the 
results, we can reduce the variance without increasing the bias. 

The second modification is to take a random sample of the set of predictors at each 
split. In the case of highly correlated predictors, and particularly in the event of a single 
driving predictor, bagging by itself can be insufficient, as it may simply produce multiple 
versions of essentially the same tree. To get around this problem, RF introduces an added 
element of randomization—at each split, the algorithm only considers a random subset of the 
available set of predictors (usually the total number of predictors divided by three). By 
randomizing the predictor space, the RF algorithm effectively guarantees that the multiple 
trees that go into the final collection will be relatively diverse. Each tree on its own will be a 
weak model, as it is grown on a deliberately limited dataset. But the essence of the RF 
approach is that, by combining a large number of (uncorrelated) weak models, we can end up 
with an aggregate prediction that is surprisingly strong.  

C.   Random Forest Results for Lebanon 

Using the same training data as for the elastic net regression, the in-sample and 
out-of-sample performance of the Random Forest are also solid.9 Detailed results are 

                                                 
9 Estimation and cross validation are available as automatic procedures within the randomForests package 
in R. See Liaw and Weiner (2002). 
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provided in Annex 2, but the model’s predictions are shown in the chart below. Again, the 
model tracks GDP relatively well over the training sample. It also follows GDP closely over 
2011-13 when output contracted sharply— although, like the elastic net, it predicts a higher 
growth rate in 2011 compared to the official figure. Estimated growth for 2014 (where no 
official figure is available) is again plausible. 
 

 
VI.   AN ENSEMBLE APPROACH: PUTTING EVERYTHING TOGETHER 

“…and in a multitude of counselors, there is safety.” 

Proverbs 24:6 

Of the two models, the elastic net produces more-accurate forecasts of Lebanese GDP. 
Placing the cross-validation results of the two models side-by-side, and comparing their 
associated prediction errors, the elastic net approach seems to dominate the Random Forest 
approach—suggesting that the underlying relationship between our predictors and GDP may 
be linear.  

Nonetheless, it may still be possible to combine the two models in a way that reduces the 
likely prediction error even further.  In this context, there is a further concept in the 
machine learning literature—the ensemble—that may 
help us design an even stronger model. An ensemble 
is a collection of models whose predictions are 
combined by weighted averaging or voting. Indeed, 
the RF algorithm itself is an example of an ensemble 
technique, in which individual trees are combined 
(and where the accuracy of the combined prediction 
is greater than that of any of its component parts). 
Looking at our two approaches, we can consider an 

Root MSE

Elastic Net 0.6902

Random Forests 1.1671

Ensemble 0.6892

Weight on Elastic Net 0.96

Weight on Random Forest 0.04

GDP Growth: Ensemble Predictor
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elementary ensemble, simply by building a weighted average of the two predictions. And 
again, we can choose the optimal weights—those likely to give the best out-of-sample fit—
by cross validation.10 From our results, although the elastic net approach is likely to be the 
more accurate of the two models, it seems that we can nonetheless reduce our likely 
prediction error (albeit marginally) by combining the two predictions and placing a (small) 
weight on the Random Forest model. 
 

 
VII.   CONCLUSIONS 

Faced with long delays in the publication of official GDP data, Fund staff have often 
been required to assess recent trends based on various proxy variables. This note 
highlights the similarities between this problem, and the relatively common ‘nowcasting’ 
challenge addressed routinely by central banks and market participants. Drawing on the 
nowcasting literature, as well as some of the methodologies developed within the field of 
machine learning, the note has presented a procedure for GDP estimation that is both 
intuitively familiar, and well suited to the more challenging features of Lebanon’s data. 

                                                 
10 Cross validation and the calculation of optimal weights are available as automatic procedures within the 
caretEnsemble package in R.  
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Annex 1. Elastic Net Results 
Elastic Net 
 
53 observations 
19 predictors 
 
Coefficients constrained to be >= 0. 
Resampling: Cross-Validated (5 fold, repeated 3 times)  
Summary of sample sizes: 44, 43, 41, 42, 42, 43, ...  
Resampling results 
 
  RMSE      Rsquared   RMSE SD    Rsquared SD 
  0.681585  0.9650695  0.1169505  0.01393376  
 
Tuning parameter 'alpha' finalized at a value of 0.45 
Tuning parameter 'lambda' finalized at a value of 0.2043761 

Constant
Primary 

Expend.

Petroleum 

Imports

Cleared 

Checks

Cement 

Deliveries

Passenger 

Flows

Trade 

Flows

Customs 

Revenue

Beirut Port 

Inflows

Beirut Port 

Inflows

2.404 0.001 0.027 0.149 0.038 0.046 0.065 0.039 0.042 0.004

Elastic Net Regression: Final Model Coefficients 1/

1/It i s  a  natura l  ques tion to as k for s tandard errors  of regres s ion coefficients , and in principle thes e can be ca lculated us ing the 

boots trap. But such standard errors  are not  meaningful  for s trongly biased estimates  such as  arise from penal ized regress ion, 

as  accurate es timates  of the bias  are typica l ly unavai lable. Boots trap ca lculations  only give an as ses sment of the variance of 

the estimates , ignoring the bias , and s o can give a  mis taken impress ion of  precis ion. 
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Annex 2. Random Forests Results 

Random Forest  
 
53 observations 
19 predictors 
 
 
Resampling: Cross-Validated (5 fold, repeated 3 times)  
Summary of sample sizes: 44, 43, 41, 42, 42, 43, ...  
Resampling results 
 
  RMSE      Rsquared   RMSE SD    Rsquared SD 
  1.145547  0.9384356  0.1886561  0.03571127  
 
Tuning parameter 'mtry' was held constant at default value of 6 

 

 
Increase in Node Purity measures the improvement in RSS that can be attributed to splitting 
on that particular variable, cumulated over all trees. 


