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I.   INTRODUCTION 

The modeling of the term structure of interest rates is a critical endeavor for investors, market 
analysts, and policymakers. The modeling of the term structure helps these economic agents 
not only understand the pricing and interest rate risk of particular financial instruments and 
investment portfolios, but also appreciate the potential impact of changes in interest rate 
policy on the yield curve. The modeling of the term structure therefore facilitates (i) the 
valuation of financial instruments, including credit derivatives; (ii) the simulation of interest 
rate scenarios; and (iii) the assessment of the impact of interest rate movements on the 
default probabilities of different financial instruments. Undoubtedly, the need to undertake 
such tasks has taken on added importance as a result of the sharp interest rate movements in 
the context of the global financial crisis. 
 

The academic literature tends to focus on two models of the term structure, namely the 
Nelson-Siegel Models, or NSMs, and Affine-Term Structure models, or ATSMs (Diebold, 
Piazzesi, and Rudebush, 2005; Van Deventer, Imai, and Mesler, 2005; Baz and Chacko, 
2004; and Boulder, 2001). Both types of models make use of stochastic processes and 
particular assumptions (Cochrane, 2001). For instance, term-structure models rely either on 
the stochastic process of a single factor, namely the short-term interest rate, or stochastic 
processes of multiple factors, such as the short-term interest rates and the yields of bonds of 
various maturities at any point in time. The models also depend on assumptions about the 
presence or lack of arbitrage to understand the evolution of the yields on bonds.  
 

The models of the term structure attempt to replicate an observed yield curve. In particular, 
these models focus on ensuring that the models fit the data, while ensuring that the estimated 
rates are continuous and smooth (Nawalkha, Soto, and Believa, 2005). The NSMs tend to 

rely on at least three latent factors—interpreted as level, slope, and curvature—which are the 
parameters of a class of mathematical approximating functions. These models can also 
include observable macroeconomic variables, reflecting the importance of the joint behavior 
of the yield curve and macroeconomic variables for bond pricing, investment decisions, and 
public policy (Ang and Piazzesi, 2003). The ATSMs include some of the traditional term-
structure models in the finance literature, including the general single-factor model, the Cox-
Ingersoll-Ross (CIR) model, and the multi-factor model. 
 

This paper discusses the estimation of models of the term structure of interest rates. In 
particular, this paper first reviews some of the main term structure models, specifically the 
NSM and ATSM models, and then estimates the United States’ term structure of Treasury 
bond yields with data from 1972 to 2007. The paper uses a software developed by Fund staff 
for this purpose. This software makes it possible to model the term structure using at least 
nine models, while opening up the possibility of generating different paths of the term 
structure. This facilitates the computation of, among others, risk indicators such as Value-at-
Risk (VaR) for managing the risk of investment holdings. 
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The paper focuses on two types of term-structure models: 
 
 The Nelson-Siegel Models, or NSMs. These models postulate a particular form for 

the term structure of interest rates, and need not depend on the existence of 
arbitrage possibilities. These models consider both unobservable factors as well as 
observable macroeconomic factors. 
 

 The Affine Term-Structure Models, or ATSMs. These models, which may depend 
on the absence of arbitrage opportunities, assume that the unobservable factors 
underlying the term structure follow stochastic processes. 

 
The paper is organized as follows. Section II presents simple versions of both the NSMs and 
ATSMs, focusing on an extension of the CIR model. Section III illustrates the capabilities of 
the software developed by Fund staff through the estimation of the term structure of interest 
rates of the United States. Section IV discusses possible extensions of the software. 
Appendix I presents a detailed derivation of some of the main ATSM, Appendix II 
summarizes the estimation techniques of both NSMs and ATSMs, and Appendix III provides 
an overview of the capabilities of the software developed by Fund staff to estimate the term 
structure. 
 

II.   TERM STRUCTURE MODELS 

A.   Background 

The term structure of interest rates or yield curve can be depicted as a plot of a set of interest 
rates on bonds of different maturities. More than that, observations on the yield curve at 
different points in time suggest the presence of links among short-, medium- and long-term 
nominal bond rates. These links, though, do not appear stable through time, as statistical 
yield curves exhibit different shapes at different moments. However, such changes seem to 
follow systematic patters that economists have usefully summarized (Diebold and Li, 2006). 

One key challenge facing modeling approaches to the yield curve is to provide a useful 
summary of information at any point in time, for a large number of traded nominal bonds, 
through a parsimonious model. Such a model should be able both to reproduce the historical 
stylized facts of the average shape of the yield curve and to forecast future interest rates. In 
this regard, most models of the yield curve are built on the assumption of the existence of 
only a few unobservable, or latent, factors and their associated factor loadings relating yields 
of different maturities to those factors underlying the pricing of tradable bonds (Litterman 
and Scheinkman, 1991; Balduzzi, Foresi, and Sundaran, 1996; Bliss, 1997a, b; and Dai and 
Singleton, 2000). The NSMs and ATSMs are two of the most popular classes of factors 
models used by academics, market participants, and central bank practitioners.  
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B.   Nelson-Siegel Models 

The yield-only model 

The class of NSMs has proved satisfactory in fitting the yield curve and capturing its 
dynamics.3 Nelson and Siegel (1987) initiated a modeling strategy that provides a powerful 
and tractable yield curve modeling framework in which the forward rate curve is fit at a 
given point in time by a class of mathematical approximating function. In particular, they 
offer a methodology to approximate the forward rate curve by a constant plus a polynomial 
times an exponential decay term given by4  

(1)    ௧݂ ሺ߬ሻ ൌ ଵ௧ߚ ൅ ଶ௧݁ିఒ೟ఛߚ ൅   ,௧݁ିఒ೟ఛߣଷ௧ߚ

where ௧݂ ሺ߬ሻ is the instantaneous forward rate. 5 The corresponding yield curve is given by6 

௧ ሺ߬ሻݕ   (2) ൌ ଵ௧ߚ ൅ ଶ௧ߚ ቀ
ଵି௘షഊ೟ഓ

ఒ೟ఛ
ቁ ൅ ଷ௧ߚ ቀ

ଵି௘షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁ 

The parameters of the derived yield curve model are ߚଵ௧, ,ଶ௧ߚ  ௧, and their respectiveߣ ଷ௧ andߚ

loadings are given by 1, ቀଵି௘
షഊ೟ഓ

ఒ೟ఛ
ቁ and ቀଵି௘

షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁ. The parameter ߣ௧ controls both the 

exponential decay rate and the maturity at which the loading on ߚଷ௧ reaches its maximum. 

Although the NSM is presented as a static model, Diebold and Li (2006) interpret 
,ଵ௧ߚ  ଷ௧ as dynamic latent factors. They show that these factors can be construed asߚ ଶ௧ andߚ
the level, slope, and curvature factors, respectively, since their loadings are, respectively, a 
constant, a decreasing function of ߬, and a concave function of ߬.7 

                                                 
3 This modeling strategy has become very popular among market and central-bank practitioners (Bank of 
International Settlements, 2005). 
4 A forward rate ௧݂ ሺ߬,  on an investment that is initiated ,ݐ ሻ is the interest rate of a forward contract, set at timeכ߬
τ periods into the future and that matures τ* periods beyond the start date of the contract. The instantaneous 
forward rate ௧݂ ሺ߬ሻ is obtained by letting the maturity of the contract go to zero. 
5 This curve could be written as ௧݂ ሺ߬ሻ ൌ ଵ௧ߚ ൅ ሺߚଶ௧ ൅  .௧ሻ݁ିఒ೟ఛ, which fits the description in the textߣଷ௧ߚ
 ௧ ሺ߬ሻ denotes the continuously compounded zero-coupon nominal yield to maturity of a τ-period discountݕ 6
bond. The relationship between the yield to maturity and the forward rate is given by 

௧ ሺ߬ሻݕ ൌ
ଵ

ఛ
׬ ௧݂ ሺݑሻ݀ݑ
ఛ
଴ , which states that the zero-coupon yield is an equally-weighted average of forward rates.  

 
7 A heuristic interpretation of the factors along these lines is the following: (i) since yields at all maturities load 
identically on ߚଵ௧, an increase in ߚଵ௧ increases all yields equally, changing the level of the yield curve; (ii) since 
short rates load more heavily on ߚଶ௧, an increase in ߚଶ௧ raises short yields more than long yields, thereby 
changing the slope of the yield curve; and (iii)  since short rates and long rates load minimally on ߚଷ௧, an 
increase in ߚଷ௧will increase medium-term yields, which load more heavily on it, increasing the yield curve 

(continued) 
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The NSM is a popular model for the yield curve for a number of reasons: 

 It provides a parsimonious approximation of the yield curve. In particular, the three 

loadings ቂ1, ቀଵି௘
షഊ೟ഓ

ఒ೟ఛ
ቁ  and  ቀଵି௘

షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁቃ give the model sufficient flexibility to 

reproduce a range of shapes of observed yield curves. 

 It generates forward and yield curves that start at the instantaneous rate ߚଵ௧ ൅ ߚଶ௧ and 
then level off at the finite infinite-maturity value of ߚଵ௧, which is constant.8 

 Its three loadings ቂ1, ቀଵି௘
షഊ೟ഓ

ఒ೟ఛ
ቁ  and  ቀଵି௘

షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁቃ allow the three factors 

,ଵ௧ߚ  ,ଷ௧ to be interpreted as long-, short-, and medium-term factorsߚ ଶ௧ andߚ
respectively.9 

 The time-series statistical properties of the three factors ߚଵ௧,  ଷ௧ underlie theߚ ଶ௧ andߚ
dynamic patterns of the yield curve. 

While the three-factor NSM is capable of replicating a variety of stylized facts of empirical 
yield curves including a diversity of yield curve shapes,10 the model does exhibit difficulties 
in fitting the yield curve when yield data are dispersed, with multiple interior minima and 
maxima. Although this has led to extending the three-factor NSM model in various ways to 
increase its flexibility, there is a consensus that, for interest rate forecasting and dynamic 
analysis, the desirability of extensions of the NSM is not obvious.11 In addition, such 
extensions may compound the complexity of the estimation problem, especially for the case 
of multi-country analysis (see section IV). 

                                                                                                                                                       
curvature. An additional implication of the NS model is that ݕ௧ ሺ0ሻ ൌ ଵ௧ߚ ൅  ଶ௧, i.e., the instantaneous yieldߚ
depends on both the level and the slope factors.   
8 These values are obtained by taking the limits of ݕ௧ ሺ߬ሻ as ߬ goes to zero and to infinity, respectively. 
9 To appreciate this interpretation, notice that the loading on ߚଵ௧ is 1, which does not decay to zero in the limit; 

the loading on ߚଶ௧ is ቀ
ଵି௘షഊ೟ഓ

ఒ೟ఛ
ቁ, which starts at 1 but decays quickly and monotonically to 0; the loading on ߚଷ௧ 

is ቀ
ଵି௘షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁ, which starts at 0, increases, and then decays to 0. This coincides with Diebold and Li 

(2006) interpretation of the three factors as level, slope and curvature. 
10 See Section III C and Figure 2. 
 
11 See Diebold and Li (2006); and Diebold, Rudebusch, and Auroba (2006). However, more complex 
specifications have been implemented to obtain a close fit for the yield curve at a point in time, when one of the 
key objectives is to price yield-curve derivatives. For improving the fit at a particular point in time, Björk and 
Christensen (1999) add a fourth factor to their Nelson-Siegel specification; Bliss (1997) uses a three Nelson-
Siegel specification, but adds an additional decay parameter; while Svensson (1994) adds a second curvature 
factor with its own separate decay parameter. See De Pooter (2007) for a description and analysis of these 
extensions of the NSM.  
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In general, the Nelson-Siegel specifications mentioned above can be placed in the context the 
following state-space representation12 

(3)    ሺܨ௧  െ ሻߤ ൌ  ௧ିଵܨሺܣ െ ሻߤ ൅  ௧ߟ

(4)              or                      ܨ௧ ൌ ߤ ൅  ௧ିଵܨܣ ൅   ௧ߟ

 ௧ݕ    (5) ൌ Λܨ௧  ൅  .௧ߝ

Equations (4) and (5) can be expressed as  

(6)  ൥
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ

൩ ൌ ൥
ଵߤ
ଶߤ
ଷߤ
൩ ൅ ൥

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଶଷ ܽଷଷ

൩ ቎
ଵ,௧ିଵߚ
ଶ,௧ିଵߚ
ଷ,௧ିଵߚ

቏ ൅ ൥
ଵ௧ߟ
ଶ௧ߟ
ଷ௧ߟ

൩ 

(7)  ൥
௧ሺ߬ଵሻݕ
ڮ

௧ሺ߬ேሻݕ
൩ ൌ

ۏ
ێ
ێ
ۍ 1

ଵି௘షഊ೟ഓభ

ఒ೟ఛభ

ଵି௘షഊ೟ഓభ

ఒ೟ఛభ
െ ݁ିఒ೟ఛభ

ڮ ڮ ڮ

1 ଵି௘షഊ೟ഓಿ

ఒ೟ఛಿ

ଵି௘షഊ೟ഓಿ

ఒ೟ఛಿ
െ ݁ିఒ೟ఛಿے

ۑ
ۑ
ې
൥
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ

൩ ൅ ൥
߳ଵ௧
ڮ
߳ே௧

൩ 

Equation (6), called the transition equation, governs the dynamics of the state vector, which, 
for the three-factor NSM, is given by the unobservable vector ܨ௧ ൌ ሺߚଵ௧  ߚଶ௧  ߚଷ௧ሻᇱ. As in 
Diebold and Li (2006), it is assumed that these time-varying factors follow a vector 
autoregressive process of first order, VAR (1), where the mean state vector ߤ is a 3x1vector 
of coefficients, the transition matrix A is a 3x3 matrix of coefficients, and ߟ௧ is a white noise 
transition disturbance with a 3x3 non-diagonal covariance matrix Q.13 Equation (7), called the 
measurement equation, is the specification of the yield curve itself, and relates ܰ observable 
yields to the three unobservable factors. The vector of yields ௧ܻ, contains ܰ different 
maturities ௧ܻ ൌ ሾݕ௧ሺ߬ଵሻ ڮ  ௧ሺ߬ேሻሿԢ. The measurement matrix Λ is an ܰx3 matrix whoseݕ
columns are the loadings associated with the respective factors, and ߝ௧ is a white noise 
measurement disturbance with an ܰxܰ diagonal covariance matrix H. It is assumed, mainly 
to facilitate computations, that both disturbances are orthogonal to each other and to the 
initial state, ܨ଴ .14 

                                                 
12 The state-space representation is a way of specifying a dynamic system, which facilitates the handling of a 
wide range of time series models. In particular, the state-space representation facilitates estimation, the 
extraction of latent yield curve factors, and the testing of hypotheses about the dynamic interactions between the 
macroeconomy and the yield curve. See Hamilton (1994) and Harvey (1993). 
13 The VAR is expressed in terms of deviations from the mean since ܨ௧ is a covariance-stationary vector process. 
14 Formally, 

ቀ
௧ߟ
௧ߝ
 ቁ ׾    ܹܰ ቂቀ0

0
ቁ , ቀܳ 0

0 ܪ
ቁቃ, 

(continued) 
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The yield curve with macro factors 

As pointed out earlier, movements in the yield curve can be captured by a framework in 
which yields are linear functions of a few dynamic latent factors. However, although factor 
models offer a relatively good description of the evolution of interest rates, they provide little 
insight into the nature of the underlying economic forces driving their movements. In an 
effort to understand such forces, recent latent factor models of the yield curve have started to 
incorporate explicitly macroeconomic factors. 

Diebold, Rudebusch, and Auroba (2006) use a state-space representation to incorporate 
macroeconomic factors in a latent factor model of the yield curve to analyze the potential 
bidirectional feedback between the yield curve and the economy. Specifically, they 
complement the nonstructural nature of their yield curve representation with a simple 
nonstructural VAR representation of the macroeconomy to study the nature of the links 
between the factors driving the yield curve and macroeconomic fundamentals. 

In terms of the state-space representation noted above, Diebold, Rudebusch, and Auroba 
(2006) enhance the state vector to include three key macroeconomic variables that stand for 
real activity, the stance of monetary policy, and inflation: manufacturing capacity utilization 
ሺܥ ௧ܷ ሻ, the federal funds rate ሺܴܨܨ௧ ሻ, and annual price inflationሺܮܨܰܫ௧ ሻ. 

Explicitly, the state space model for yield-macro model is as follows. 

௧ܨ   (8) ൌ ߤ ൅  ௧ିଵܨܣ ൅  ௧ߟ

(9)   ௧ܻ  ൌ Λܨ௧  ൅  ௧ߝ

where ܨ௧  ൌ ሺߚଵ௧  ߚଶ௧  ߚଷ௧  ܥ ௧ܷ  ܴܨܨ௧  ܮܨܰܫ௧ ሻᇱ, and the dimensions of ߤ, A, and  ߟ௧ are 
increased accordingly, to 6x1, 6x6 and 6x1, respectively. The matrix Λ now contains six 
columns, of which the three leftmost include the loadings on the three yield factors, and the 
three rightmost contain only zeroes, indicating that the yields still load only on the yield 
curve factors. The transition disturbance covariance matrix Q, with increased dimension to 

                                                                                                                                                       
ॱሺܨ଴ ߟ௧ᇱሻ ൌ 0, 

ॱሺܨ଴ ߝ௧ᇱሻ ൌ 0. 

In addition to computational tractability, most of these assumptions are required to obtain optimality of the 
procedure used to estimate both equations. 
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6x6, and the measurement disturbance covariance matrix H are, respectively, non-diagonal 
and diagonal matrices15 

(10)   

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ
ܥ ௧ܷ
௧ܴܨܨ
ے௧ܮܨܰܫ

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵߤ
ଶߤ
ଷߤ
ସߤ
ହߤ
ے଺ߤ
ۑ
ۑ
ۑ
ۑ
ې

൅ ቎൥
ܽଵଵ ڮ ܽଵ଺
ڭ ڰ ڭ
ܽ଺ଵ ڮ ܽ଺଺

൩቏

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵ,௧ିଵߚ
ଶ,௧ିଵߚ
ଷ,௧ିଵߚ
ܥ ௧ܷିଵ
௧ିଵܴܨܨ
ے௧ିଵܮܨܰܫ

ۑ
ۑ
ۑ
ۑ
ې

൅

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵ௧ߟ
ଶ௧ߟ
ଷ௧ߟ
ସ௧ߟ
ହ௧ߟ
ے଺௧ߟ

ۑ
ۑ
ۑ
ۑ
ې

 

(11) ൥
௧ሺ߬ଵሻݕ
ڮ

௧ሺ߬ேሻݕ
൩ ൌ

ۏ
ێ
ێ
ۍ 1

ଵି௘షഊ೟ഓభ

ఒ೟ఛభ

ଵି௘షഊ೟ഓభ

ఒ೟ఛభ
െ ݁ିఒ೟ఛభ 0 0 0

ڮ ڮ ڮ

1 ଵି௘షഊ೟ഓಿ

ఒ೟ఛಿ

ଵି௘షഊ೟ഓಿ

ఒ೟ఛಿ
െ ݁ିఒ೟ఛಿ 0 0 ے0

ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ
ܥ ௧ܷ
௧ܴܨܨ
ے௧ܮܨܰܫ

ۑ
ۑ
ۑ
ۑ
ې

൅ ൥
߳ଵ௧
ڮ
߳ே௧

൩ 

After estimating the state-space model, Diebold, Rudebusch, and Auroba (2006) proceed to 
explore the dynamics of the yields-macro system using impulse response functions,16 
considering, in turn, four groups of impulse responses: 

 Macro responses to macro shocks; 

 Macro responses to yield curve shocks; 

 Yield curve responses to macro shocks; and  

 Yield curve responses to yield curve shocks. 

In addition, Diebold, Rudebusch, and Auroba (2006) study the nature of macro and yield 
curve interactions by examining macroeconomic and yield curve variance decompositions,17 
                                                 
15 Diebold, Rudebusch, and Auroba (2006) note that these macroeconomic variables are considered to be the 
minimum set of fundamentals required to capture basic macroeconomic dynamics. See, also, Rudebusch and 
Svensson (1999). 

16 To produce impulse responses from their model, Diebold, Rudebusch, and Auroba (2006) identify the 
covariances given by the off-diagonal elements of the Q matrix by ordering the variables as follows: ߚଵ௧, ,ଶ௧ߚ
, ଷ௧ߚ ܥ ௧ܷ  , , ௧ܮܨܰܫ -௧ . This follows from the fact that they use beginning-of-period yield data and end-ofܴܨܨ
period macro data. However, they point out that their results are robust to alternative identification strategies.  

17 Diebold, Rudebusch, and Auroba (2006) explore both, variance decomposition for yields and for 
macroeconomic variables at different time horizons. For yields, they contrast the yields-only model with the 
yields-macro model. For macroeconomic variables, they contrast the yields-macro model with a macro-only 
model, which is a simple first-order VAR for ܥ ௧ܷ  , , ௧ܮܨܰܫ  . ௧ܴܨܨ
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and the results from formal statistical tests.18 Their results indicate that, although bidirectional 
causality is likely to be present, the effects of macroeconomic factors on future yield curves 
seem relatively more important than those of the yield curve factors on future 
macroeconomic developments. However, market yields do still contain relevant predictive 
information about the stance of monetary policy.19 

C.   Estimation Approaches for the Nelson-Siegel Models 

Using the state-space representation as the general framework for estimating the latent 
factors and parameters of the different Nelson-Siegel specifications, two general estimation 
approaches can be identified. In particular, depending on whether the two equations are 
estimated separately or jointly, they are a two-step approach or a one-step approach. In 
addition, for each of them the decay parameters are either pre-specified or estimated. 
 
The two-step approach is exemplified by Diebold and Li (2006), who face the problem of 
estimating the parameters ߚଵ௧, ,ଶ௧ߚ  ௧ for a Nelson-Siegel model without macroߣ ଷ௧ andߚ
factors. Following a practice initiated by Nelson and Siegel (1987), they first fix ߣ௧ at a 
prespecified value for all t, i.e., ߣ௧ ൌ  t, and then use ordinary least squares to estimate the  ߣ

factors, for each month t.20 In general, for the case of one prespecified decay parameter, this 

step generates time series of estimated values for each of the K factors: ൛ߚ௜,௧ൟ௧ୀଵ
்

 for i=1, 2,..., 

K. In the second step, the transition equation is estimated, assuming that A and Q are 
diagonal matrices. The strategy of fixing ߣ௧ at a prespecified value in the first step greatly 
simplifies the estimation procedure; otherwise, it would be necessary to use nonlinear least 
squares for each month t.21 
 

                                                 
18 These formal tests consist in tests about restrictions on the A and Q matrices. Specifically, by partitioning A 

and Q into four 3x3 blocks, as: A=൬
ଶܣ ଵܣ
ସܣ ଷܣ

൰ and Q=൬
ܳଵ ܳଶ
ܳଶ
்ܳଷ

൰,  

Diebold, Rudebusch, and Auroba (2006) test whether ܣଶ ൌ 0, ଵܣ ൌ 0, and ܳଶ ൌ 0 (i.e., there is no interaction 
between yields and macro factors), ܣଶ ൌ 0 (i.e., there is no interaction from macro to yields), and ܣଷ ൌ 0, and 
ܳଶ ൌ 0 (i.e., there is no interaction from yields to macro). 

19 It is worth noting that although Diebold, Rudebusch, and Auroba (2006) do not impose no-arbitrage 
restrictions, they argue that even if no-arbitrage restrictions hold for the data, they will, at least, be roughly 
captured by the fitted yield curves, particularly because they are flexible approximations to the data. 

20 The main role played by ߣ is to determine the maturity ߬ at which the loading on the curvature 

factor, ቀ
ଵି௘షഊഓ

ఒఛ
െ ݁ିఒఛቁ, is at its maximum. In Diebold and Li (2006), the value of ߣ that maximizes the 

curvature loading at exactly 30 months is 0.0609 =ߣ. 

21 The case of more than one decay parameter cannot be handled by pre-specifying their values, although it is 
still assumed that their values are constant over time.  
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The one-step approach, in which all parameters are estimated simultaneously, is illustrated by 
Diebold, Rudebusch, and Auroba (2006) who estimate a Nelson-Siegel-type model with 
three factors and one prespecified decay parameter with and without macroeconomic 
variables. They place their Nelson-Siegel-type model in state-space form, which allows the 
application of Kalman filter techniques.22 This, in turn, provides maximum-likelihood 
estimates and optimal filtered and smoothed estimates of the underlying factors. This 
approach is considered superior to the two-step approach since it produces correct inference 
via standard theory.23 One drawback of the one-step approach, however, is that the number of 
parameters to estimate is considerable. For example, the yield-only model in Diebold, 
Rudebusch, and Auroba (2006) has 36 parameters, while their yield-macro model has 
81 parameters that must be estimated by numerical optimization. 

In both the yield-only and yield-macro Nelson-Siegel models, we need to estimate latent 
factors ܨ௧ as well as coefficients in the transition matrix ܣ, the mean state vector ߤ, the 
measurement matrix Λ, the transition disturbance covariance matrix ܳ, and the measurement 
disturbance covariance matrix ܪ. Depending on whether the transition equation and 
measurement equation are estimated separated or jointly they are a one-step approach or a 
two-step approach.  
 
In our implementation, we also follow Diebold and Li (2006) in fixing the decay parameter 
over the time. However, we do not set the decay parameter at the prespecified value; instead, 
we choose this value based on optimizing estimation performance. In the two-step approach, 
we optimize the decay parameter based on the root mean square error (RMSE) of the 
measurement equation. For a given decay parameter, the measurement matrix is known. We 
can then consider the measurement equation as a cross-sectional model, and run an ordinary 
least square for each time epoch ݐ to obtain the latent factors ܨ௧ and the measurement error 
߳௧. From the measurement errors over time, we can calculate the measurement disturbance 
covariance matrix ܪ and the RMSE of the measurement equation. The ܨ ,,ߣ௧ and ܪ 
associated with the lowest RMSE are our estimated parameters. After we obtain the latent 
factors, we can consider the transition equation as a VAR(1) model and run an ordinary least 
square to get the transition matrix ܣ, the mean state vector ߤ , and the transition error ߟ௧ . The 
transition error makes it possible to compute the transition disturbance covariance matrix ܳ.  
 
In our implementation of the one-step approach, we optimize the decay parameter ߣ, the 
mean state vector ߤ, the measurement matrix Λ, the transition disturbance covariance 

                                                 
22 The Kalman filter is applied to models placed on a state space form, and provides algorithms for prediction 
and smoothing. In a Gaussian model, the Kalman filter supplies the ways of constructing the likelihood function 
by the prediction error decomposition. See Harvey (1993). 

23 In other words, the estimates exhibit better large-sample properties, including the asymptotic distributions 
from which inferences are made.  
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matrix ܳ and the measurement disturbance covariance matrix ܪ to maximize the log-
likelihood of the state-space system that is given as follows 
 

ܮ    (12) ൌ ∑ ቄെ ଵ

ଶ
ሾ݈݊ሺ|ܵ௧|ሻ ൅ ௧ሿቅ௧ݒ௧ᇱܵ௧ିଵݒ  

 
where the predicted error covariance matrix, ܵ௧, and predicted error, ݒ௧, are calculated using 
Kalman filtering. In our implementation, we use the following Kalman filtering iteration 
equations 
 
௧|௧ିଵܨ             (13) ൌ ߤ ൅  ௧ିଵ|௧ିଵܨܣ

 
Σ௧|௧ିଵ ൌ ᇱܣΣ௧ିଵ|௧ିଵܣ ൅ ܳ 

 
௧ݒ ൌ ௧ܻ െ Λܨ௧|௧ିଵ 

 
ܵ௧ ൌ ΛΣ௧|௧ିଵ ൅  ,ܪ

 
௧ܭ ൌ Σ௧|௧ିଵΛᇱܵ௧ିଵ 

 
௧|௧ܨ ൌ ௧|௧ିଵܨ ൅ ௧ݒ௧ܭ  

 
Σ௧|௧ ൌ Σ௧|௧ିଵ െ  ௧ΛΣ௧|௧ିଵܭ

 

We employ unconditional mean and unconditional variance of the latent factor vector ܨ௧ for 
the initial ܨ଴|଴ and Σ଴|଴. In this context, the latent factor vector ܨ௧ is also estimated. 

D.   Affine Term-Structure Models 

Background 

As mentioned above, the class of ATSMs, used mainly by finance academics and market 
participants, is another type of factor models linking the dynamics of the term structure of 
interest rates to the dynamics of a few unobserved, or state, variables that impinge upon the 
yields. The key of these dynamics is the instantaneous interest rate, ݎ௧.24 In general, an ATSM 

                                                 
24 If  ݕ௧,௧ାఛ  denotes the interest at time ݐ on a loan contract between ݐ and ݐ ൅ ߬, the instantaneous interest rate 
is defined as  ݕ௧ ൌ lim௡՜଴  ௧,௧ାఛ. As such, there is no empirical counterpart to this concept; it is a theoreticalݕ 
construct that facilitates the application of the methods of continuous-time stochastic processes in the modeling 
of the term structure. The instantaneous short-term rate, and the zero-coupon bonds are the building blocks for 
the ATSMs. 
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begins with the specification of the instantaneous interest rate as a linear combination of a set 
of state variables, followed by a description of the evolution of the factor processes, typically 
as stochastic differential equations (SDEs).25 These equations relate changes in the factor 
processes to a component changing with time itself (the well know trend or drift term) plus a 
stochastic component (the equally well known variance or diffusion term) whose changes 
depend on a linear combination of the stochastic processes driving the state variables (usually 
standard scalar Wiener processes defined on the same probability space).26  
 
Once the stochastic structure of the state variables is specified, the price of the pure discount 
bond with maturity, i.e., ܲሺ߬ሻ, is postulated to be a function of the maturity itself and of the 
underlying risk factors. The dynamics, i.e., ݀ܲ, require an appropriate application of 
techniques from stochastic calculus to the price function.27 Appendix I summarizes the 
assumptions underlying the associated stochastic equations and derives one-single factor 
model, the CIR, and multi-factor models.  
 
At this point, the generic term for the change in the price of a bond, ݀ܲ, is used in obtaining 
an expression for the relative change in the value of a riskless self-financing portfolio.28 This 
portfolio includes a long position in a pure discount bond with instantaneous maturity and as 
many short positions, each with a different maturity, in discount bonds as risk factors may 
exist.29 The problem is then to select the weights on the portfolio so as to eliminate the 
underlying sources of risk, which requires that the portfolio earn the risk-free rate to ensure 
the absence of arbitrage. This process yields a relatively complex partial differential equation 
(PDE), which can be solved analytically since the term structure model is affine.30  
 

                                                 
25 An SDE is an equation of the form: ݀ܺ௧ ൌ ,ሺܺ௧ߤ ݐሻ݀ݐ ൅ ,ሺܺ௧ߪ ሻ݀ݐ ௧ܹ, 
where ௧ܹis a scalar Wiener process. Heuristically, it indicates that the differential change in the variable ܺ௧, i.e., 
݀ܺ௧, is made up of a non-stochastic component, or drift term, i.e., ߤሺܺ௧,  and a stochastic component, or , ݐሻ݀ݐ
diffusion term, i.e., ߪሺܺ௧, ሻ݀ݐ ௧ܹ.  
26 A probability space is a triplet, ሺΩ, ࣠, Զሻ, where Ω is the set of all possible outcomes,  specifies the set of 
all events (subsets of ), to which probability numbers will be assigned, and  is a probability measure 
operating on . A standard scalar Wiener process, or standard Brownian motion, ௜ܹሺݐሻ, is a stochastic process 
having continuous sample paths, stationary independent increments, and ௜ܹሺݐሻhas normal distribution with 
mean zero and variance ݐ, i.e., ௜ܹሺݐሻ ׽ ܰሺ0.  ሻ. The subscript ݅ is an index indicating the number of stateݐ
variables for a particular ATSM. 
27 In particular, application of the Itô’s formula (see Duffie (2001)). 
28 A self-financing portfolio is a portfolio whose value changes due to a profit or loss in the investment.   
29 Assuming that there are ݊ state variables, or risk factors, determining the instantaneous interest rate, the 
model requires ݊ ൅ 1 bonds to construct a riskless portfolio.  
30 A function ݂:Թ௡ ื Թ, is said to be affine if there exists ߙ א  Թ and ߚ א Թ௡ such that ݂ሺݔሻ= ߙ ൅ ݔ்ߚ, for 
all ݔ א Թ௡. 
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The result of the steps just described previously is an analytical relationship between the 
price of a zero-coupon bond of maturity ߬, at any point in time, and the values of the risk 
factors.  
 
Extension of the Cox-Ingersoll-Ross model 

A number of authors, including Duffie (2001), Duffie and Kan (1996, 1994) and Chaplin and 
Sharp (1993) generalize a very popular one-factor model of the term structure of interest 
rates, developed by Cox, Ingersoll and Ross (1985), to include several factors in an affine 
structure. This multi-factor generalization31 starts by assuming that the instantaneous short-
term interest rate, ݕ௧, is s linear combination of ݊ independent state variables, or factors, 
denoted by ݖଵሺݐሻ, . . ,  ,.ሻ, i.eݐ௡ሺݖ
 
௧ݕ    (14) ൌ ∑ ሻݐ௜ሺݖ

௡
௜ୀଵ . 

Each of the state variables is assumed to follow a square-root process whose differential 
dynamics is given by 32 
  

ሻݐ௜ሺݖ݀  (15) ൌ ௜ߠ௜൫ߢ െ ݐሻ൯݀ݐ௜ሺݖ ൅ ሻ݀ݐ௜ሺݖ௜ඥߪ ௜ܹሺݐሻ, 
 

where ߢ௜൫ߠ௜ െ ሻ݀ݐ௜ሺݖ௜ඥߪ and ݐሻ൯݀ݐ௜ሺݖ ௜ܹሺݐሻ, for ݅ ൌ 1,… , ݊, are, respectively,  the drift and 
the diffusion terms of the process, and the ௜ܹሺݐሻ’s are independent scalar Wiener processes 
defined on the probability space ሺΩ, ࣠, Զሻ.33 
 
Given these specifications for the fundamental determinants of the instantaneous interest rate, 
an ATSM postulates that the price process of a pure discount bond is a function of the term to 
maturity, ߬, and the set of ݊ state variables ൫ݖଵሺݐሻ, . . ,   ,ሻ൯. Specificallyݐ௡ሺݖ
 
(16)    ܲሺ߬ሻ ൌ ܲሺ߬, ,ଵݖ . . ,  ௡ሻݖ
 
The differential dynamics of the price process, ݀ܲ, is obtained by applying Itô’s theorem to 
equation (14), which produces an expression that includes factors associated with ݀ݐ and a 
linear combination of factors associated with ݀ ௜ܹሺݐሻ, for ݅ ൌ 1,… , ݊. This differential 
dynamics expression, ݀ܲ, is then used in computing the return on a self-financing portfolio 
                                                 
31 As indicated in the discussion of the class of Nelson-Siegel models, a key feature desired for term structure 
models is to provide specifications with enough flexibility to reproduce a range of shapes of observed yield 
curves. A one-factor specification seems very limited for this purpose.  
32 This assumption will ensure that the factors and the interest rate are nonnegative at all times almost surely, 
i.e., with probability one.  
33 The drift term is a mean-reverting factor with parameters ߢ௜ and ߠ௜, while the diffusion term has volatility 
parameter  ߪ௜. 
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composed of a long position in a pure discount bond with maturity ݉଴, and ݊ short short 
positions in pure discount bonds with maturities ݉ଵ,… ,݉௡, where ݉଴ ് ݉ଵ ് ڮ ് ݉௡. 
Denoting the value of this portfolio by ܸ, its rate of return is given by  
 

(17)   
ௗ௏

௏
ൌ ௗ௉ሺ௧,௠బሻ

௉ሺ௧,௠బሻ
െ ∑ ௞ݑ

௡
௞ୀଵ

ௗ௉ሺ௧,௠ೖሻ

௉ሺ௧,௠ೖሻ
 

The next step is then to select the weights on the portfolio ሺݑଵ, … ,  ݊ ௡ሻ so that theݑ
underlying sources of risk are eliminated, which will require that the portfolio earns the risk-
free rate to ensure the absence of arbitrage. This process will produce a PDE, which can be 
solved analytically using the affine specification for the zero-coupon bond with maturity ߬ 
given by  
 

(18)   ܲሺ߬, ,ଵݖ . . , ௡ሻݖ ൌ ݁∑ ሺ஺೔ሺఛሻି஻೔ሺఛሻ௭೔ሻ
೙
೔సభ  

 
The solution to the ݊-factor CIR PDE involves obtaining closed-form expressions for the 
functions ܣ௜ሺ߬ሻ and ܤ௜ሺ߬ሻ given by  

௜ሺ߬ሻܣ   (19) ൌ ݈݊ ൭
ଶఊ೔௘

൫ം೔శഉ೔శഊ೔൯ഓ
మ

ሺఊ೔ା఑೔ାఒ೔ሻሺ௘
షം೔ഓିଵሻାଶఊ೔

൱

మഉ೔ഇ೔
഑೔
మ

 

௜ሺ߬ሻܤ   (20) ൌ
ଶሺ௘షം೔ഓିଵሻ

ሺఊ೔ା఑೔ାఒ೔ሻሺ௘
షം೔ഓିଵሻାଶఊ೔

 

Where         γ୧ ൌ ඥሺκ୧ ൅ λ୧ሻଶ ൅ 2σ୧
ଶ 

 
and λ୧ is the market price of risk.34 
 
Equations (16)-(20) provide the expressions linking the price of a zero-coupon bond of 
maturity ߬ to the risk factors. The functions ܣ௜ሺ߬ሻ and ܤ௜ሺ߬ሻ depend on the maturity ߬ and on 
the parameters of the model, and represent the loadings of the bond price on the state variable 
݅, for ݅ ൌ 1,… , ݊. In this regard, an ATSM can be conceived as a procedure for computing 
the zero-coupon yield of a given term to maturity, knowing the value of the state variables.  
 

                                                 
34 The market price of risk, loosely speaking, represents the standardized excess return, over the risk-free rate, 
for holding a pure discount bond.   
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III.   AN APPLICATION TO THE UNITED STATES 

A.   Background 

This section identifies, catalogues and explains key stylized facts of the U.S. yield curve for 
the period 1972 to 2007. In particular, it uncovers a set of factors driving the dynamic 
evolution of the term structure of U.S. Treasury yields, and explores their links to the 
evolution of macroeconomic fundamentals. The section proceeds first by describing the 
nature of the data used in the analysis and then by identifying a set of stylized facts from the 
available yield data. Subsequently a series of Nelson-Siegel models are estimated to explain 
the stylized facts of the U.S. yield curve, as well as the dynamic interactions between the 
yield curve and a set of macroeconomic fundamentals.35  

B.   Data 

Yield data 

The empirical analysis in this paper uses U.S. Treasury monthly data on zero-coupon bond 
yields provided obtained from Bloomberg. The yields are annualized zero-coupon bond 
continuously compounded nominal yields. They are monthly observations on yields for U.S. 
Treasury bonds between January 1972 and December 2007, i.e., 432 months, and contain 
3,888 monthly observations of yields for 9 maturities: 3, 6, 12, 24, 36, 48, 60, 84 and 
120 months.36 

Macroeconomic data 

Monthly data on three macroeconomic variables are used to study the potential bidirectional 
feedback from the yield curve to the economy. These variables, for the period January 1972 
to December 2007, are: (i) the inflation variable, the annual percentage change in the 
monthly price deflator for personal consumption expenditures; (ii) the real economic activity 
relative to potential, manufacturing capacity utilization; and (iii) the monetary policy 
instrument, the monthly average federal funds rate. These variables are widely viewed to be 
the minimum set of macroeconomic factors able to capture basic macroeconomic dynamics.37 

                                                 
35 The analysis of this section follows closely the approaches in  Diebold and Li (2006) and Diebold, 
Rudebusch, and Auroba (2006). 

36 Diebold, Rudebusch, and Auroba (2006) examine U.S. Treasury yields with maturities of 3, 6, 9, 12, 15, 18, 
21, 24, 30, 36, 48, 60, 72, 84, 96, 108 1nd 120 months for the period January 1972 through December 2000,  
using the unsmoothed Fama and Bliss (1987) approach, as described in Diebold and Li (2006). As shown 
below, the results of this section are similar to those in Diebold and Li (2006) and Diebold, Rudebusch, and 
Auroba (2006). 

37 See Rudebusch and Svensson (1999). 
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C.   The U.S. Yield Curve38 

Stylized facts 

U.S. Treasury yields exhibit a sizable inter temporal variation during the period of analysis 
(see Figure 2). To summarize the yield information at any point in time for the nominal 
bonds that are traded, we follow the principle that, since only a small number of sources of 
systematic risk underlie the pricing of financial assets, almost all price information can be 
extracted with a few constructed factors.39 In the context of our modeling approach, we 
assume that three factors—level, slope and curvature—are enough to summarize the essential 
features of the term structure at any given point in time, as well as its evolution through 
time.40 Figure 2 shows that, for the period 1972:1-2007:12, the U.S. yield curve exhibits 
sizable inter temporal variation in its level, and, although the variation in the slope and 
curvature is less marked, it is nonetheless evident. 

A set of stylized facts characterizing the U.S. yield curve can be extracted for the period of 
analysis. Table 1 presents descriptive statistics for the yields at different maturities, and for 
the yield curve empirical level, slope and curvature factors. The last three columns include 
sample autocorrelations at displacements of 1, 12, and 30 months. Based on these results and 
a detailed look at the yield data for the period, we can identify the following stylized facts, 
whose replication should be the test for any potential model of the U.S. yield curve: 

 The average yield curve is upward sloping and concave. 

 The yield curve assumes a variety of shapes through time, including upward sloping, 
downward sloping, humped, and inverted humped.41  

 Yield dynamics are persistent, while spread dynamics are less persistent.42 

 The short end of the yield curve is more volatile than the long end.43 

                                                 
38 As noted in the Introduction, the main goal of this section is to illustrate the capabilities of the MCM-TGS 
software. For this reason, the period of analysis chosen (1972:1-2007:12) leaves out the recent global financial 
crisis which is the object of an ongoing research project in the Monetary and Capital Markets Department of the 
Fund.     
39 See Diebold, Piazzesi and Rudebusch (2005) and Litterman and Scheinkman (1991). 
40 In constructing the empirical factors, we define the level as the 4-year yield, the slope as the difference 
between the one-month and the 4-year yields, and the curvature as twice the one-year yield 1minus the sum of 
the one-month and four-year yields. See Diebold and Li (2006). 
41 The empirical slope takes negative values in 73 of the 432 months. 
42 Persistent yield dynamics are associated with the strong persistence of the level, and  less persistent spread 
dynamics are related to weaker persistence of the slope. 
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 The level of the yield curve is highly persistent, but exhibits small variation relative 
to its mean. In fact the level is more persistent than any single yield. 

 The slope is less persistent than any single yield but highly variable relative to its 
mean. 

 The curvature is the least persistent of all factors and displays the largest variability 
relative to its mean. 

 
 

Figure 1. Observed Yield Curves 

Source: Fund staff estimates. 
 
A yield-only model for the United States 

A three-factor NSM model fits well the series of cross sections of U.S. monthly Treasury 
yields. In particular, fitting equation (2) to the U.S. yield data provides estimates of the three 
factors and the decay parameter in the three-factor NS model―ߚଵ௧, ,ଶ௧ߚ  Analysis 44.ߣ ଷ௧ andߚ

                                                                                                                                                       
43 Volatility at the short end of the curve results from the added volatility of the slope and the level, while the 
long end volatility is influenced only by the volatility of the level.   

44 This paper uses software developed by MCM and TGS to estimate the parameters of NSM models (see 
Appendices II and III). In the context of the empirical analysis of this section, the procedure is used to estimate 
432 yield curves, one for each month. 
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Maturity (Months) Mean Std. Dev. Minimum Maximum ρ(1) ρ(12) ρ(30)

3 6.101 2.969 0.860 15.999 0.981 0.777 0.454
6 6.326 3.010 0.976 16.511 0.982 0.791 0.486
12 6.536 2.987 1.027 16.345 0.983 0.809 0.530
24 6.799 2.872 1.251 16.145 0.985 0.829 0.599
36 6.974 2.772 1.570 15.825 0.986 0.842 0.635
48 7.119 2.696 1.966 15.847 0.987 0.849 0.660
60 7.219 2.651 2.272 15.696 0.988 0.855 0.680
84 7.398 2.564 2.855 15.283 0.990 0.866 0.705
120 (level) 7.514 2.484 3.372 15.065 0.991 0.873 0.728
Slope 1.413 1.447 -3.223 4.140 0.941 0.419 -0.154
Curvature -0.016 0.782 -2.062 3.012 0.838 0.332 0.094

Table 1. United States: Yield-Only Model Descriptive Statistics, Yield Curves

of the residuals from the estimation procedure, shown in Table 2, indicates that the three-
factor NSM model fits well the U.S. yield data during the period of analysis.45 Figure 2 
illustrates the ability of the three-factor NSM model to capture a variety of shapes that the 
U.S. yield curve assumes through time. Using the estimation results, Figure 3 shows that the 
implied average fitted curve and the average actual yield curve are very close, reinforcing the 
assessment of the overall good fit provided by the model, and matching some of the stylized 
facts of the U.S. yield curve. 

 Source: Fund staff estimates. 
  

                                                 
45 The residual sample autocorrelations indicate that pricing errors are somewhat persistent, reflecting possible 
persistent tax and liquidity effects. Also, the estimated means and standard deviations of the residuals, 
expressed in basis points, show that the mean error is negligible at all maturities and that the average standard 
deviation for the relevant middle range of maturities from 6 to 60 months is very small―about 6.5 basis points. 
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The plots include fitted yield curves for selected dates, together with actual yields, for the United States 
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Maturity (Months) Mean Std. Dev. Minimum Maximum ρ(1) ρ(12) ρ(30)

3 -0.059 0.092 -0.628 0.226 0.655 0.274 0.108
6 0.046 0.078 -0.223 0.472 0.616 0.282 0.120
12 0.050 0.102 -0.248 0.527 0.671 0.244 0.003
24 0.005 0.058 -0.220 0.206 0.654 0.145 -0.089
36 -0.031 0.049 -0.245 0.123 0.590 0.234 0.086
48 -0.030 0.055 -0.243 0.130 0.757 0.145 0.070
60 -0.032 0.050 -0.220 0.166 0.666 0.159 -0.127
84 0.019 0.047 -0.101 0.258 0.666 0.220 0.074
120 0.032 0.069 -0.159 0.311 0.739 0.356 0.032

Table 2. United States: Yield-Only Model Descriptive Statistics, Yield Curve Residuals
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Source: Fund staff estimates. 
 

Figure 3. Observed and Estimated Average Yield Curve 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Fund staff estimates. 
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The evolution of the estimated factors, ൛ߚመଵ௧, ,መଶ௧ߚ  መଷ௧ൟ, characterizes the yield curve dynamicsߚ
and reproduces several stylized facts of the U.S. yield curve.  

 Table 3 shows descriptive statistics for the estimated factors, which suggest that the 
first factor is the most persistent and the least volatile relative to its mean, and that the 
second factor is more persistent and less volatile relative to its mean than the third.46 
Figure 4 displays the three estimated factors of the model for a comparative 
assessment, and Figure 5 plots each of the factors together with their respective 
empirical proxies. The level factor, which is positive and fluctuates around 7.7 
percent, is highly persistent, and the slope and curvature are less persistent and take 
on both positive and negative values.47 The plots in Figure 5 corroborate the claim 
that the three factors of the model match up the level, slope and curvature. The 

correlations between the estimated factors and their empirical proxies are ߩ൫ߚመଵ௧, ݈௧൯ = 

,መଶ௧ߚ൫ߩ ,0.99 ,መଷ௧ߚ൫ߩ ௧൯ = 0.99, andݏ ܿ௧൯ = 0.97, where ሼ݈௧, ,௧ݏ ܿ௧ሽ stands for the 
empirical level, slope and curvature of the yield curve, as defined above. In sum, the 
level, slope, and curvature factors provide a good representation of the yield curve. 

 As noted earlier, the evolution of the yield curve factors is assumed to follow a VAR 
of order 1. Table 4 presents the estimates of the coefficient matrix A. They show 

highly persistent own dynamics of ߚመଵ௧,  መଷ௧, with estimated own-lagߚ መଶ௧, andߚ
coefficients of 1.00, 0.92 and 0.84, respectively.48 Cross-factor dynamics appear 
significant. 

  In addition to the strong persistence of the individual factors, results from the 
estimated VAR suggest that, during the period of analysis, the level influences 
positively the slope and curvature, the slope influences negatively the level and 
curvature, and the curvature affects negatively the level and slope. These results 
suggest complex dynamic interactions among the yields at different maturities 
induced by the underlying forces driving the factors’ dynamics. An economically 
meaningful interpretation of these results, however, would require a framework that 
relates changes in yield curve factors to macroeconomic fundamentals. 

 

                                                 
46 Since the long rates load heavily on the level factor, this result matches the fact that the long end of the curve 
is more persistent than the short end of the curve. On the other hand, since the short end of the curve loads on 
both the level and the slope they are more volatile than the long end of the curve. 

47 As defined earlier, the slope factor in the estimated equation, i.e., ߚመଶ௧, corresponds to the negative of the slope 
as traditionally defined, i.e., long minus short yields. 
48 Although the own-lag coefficient of the level factor is slightly greater than 1, stationarity is assured since all 
the eigenvalues of the matrix of the estimates have modulus less than 1. 
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Factor Mean Std. Dev. Minimum Maximum ρ(1) ρ(12) ρ(30)

7.723 2.377 3.934 14.399 0.992 0.879 0.734
1.693 1.903 -5.136 5.370 0.949 0.456 -0.134

-0.472 2.040 -5.953 6.007 0.884 0.439 0.062

Table 3. United States: Yield-Only Model Descriptive Statistics, Estimated Factors

Source: Fund staff estimates. 

 

Figure 4. Estimates of the Level, Slope, and Curvature in the Yields-Only Model 

Source: Fund staff estimates. 
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Figure 5. Model-Based vs. Data-Based Level, Slope, and Curvature 

Source: Fund staff estimates. 
 

Figure 5. Model-Based vs. Data-Based Level, Slope and Curvature (continued) 
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Level Slope Curvature

Level (-1) 1.00 0.04 0.06
(0.00668) (0.01378) (0.02200)
[150.416] [2.78315] [2.68736]

Slope (-1) -0.03 0.92 -0.05
(0.00807) (0.01665) (0.02657)

[-4.31019] [55.1756] [-2.05823]

Curvature (-1) -0.03 -0.07 0.84
(0.00838) (0.01719) (0.02759)

[-3.02939] [-3.97735] [30.3649]

(Standard errors in parentheses and t-statistics in brackets)
Table 4. United States: Yield-Only Model VAR Parameter Estimates

Figure 5. Model-Based vs. Data-Based Level, Slope and Curvature (concluded) 

 
 
 

 
  

 

 

 

 

 

 

 

 
          Source: Fund staff estimates. 
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A yield-macro model for the United States 

Yield curve factors appear to be related to macroeconomic variables. Figures 6–8 plot the 
estimated level, slope and curvature factors from the previous section—ߚመଵ௧,  ,መଷ௧ߚ መଶ௧, andߚ
together with likely related macroeconomic variables. Figure 6 shows the estimated yield-
only model level, ߚመଵ௧, and a measure of inflation (the 12-month percent change in the 
deflator for personal consumption expenditures), whose correlation, 0.52, appears to identify 
a link between the level of the yield curve and inflationary expectations, as suggested by the 
Fisher hypothesis. Similarly, Figure 7 displays the estimated slope factor, ߚመଶ௧  and an 
indicator of macroeconomic activity (demeaned capacity utilization), whose correlation,        
-0.48, suggests that the yield curve slope is highly connected to the cyclical dynamics of the 
economy. With regard to the curvature, as this section will show, there is no reliable 
macroeconomic links to ߚଶ௧. 
 
An expanded NSM model with macroeconomic variables could help explain macro-financial 
interactions and fits U.S. Treasury yield data well. As mentioned earlier, extending the NSM 
model to include three macroeconomic factors—manufacturing capacity utilization ሺܥ ௧ܷሻ, 
the federal funds rate, ሺܴܨܨ௧ሻ, and annual price inflation, ሺܨܰܫ௧ሻ—to the set of state 
variables under the assumption that the yields load only on the yield curve factors would 
provide a framework for studying the potential bilateral feedback between the yield curve 
and the macroeconomy. The time series of estimates of the level, slope and curvature factors 
in the yield-macro model are very similar to those obtained in the yield-only model.49 Table 5 
shows the descriptive statistics of the estimated factors in the yield-macro model, whose 
values and statistical properties are very similar to those of the yield-only model presented in 
Table 3. In addition, Table 6 displays the means and standard deviations of the measurements 
errors from the yield-macro model, which are also very similar to those of the yield-only 
model shown in Table 2. Specifically, the mean errors and the standard deviations are very 
small, suggesting a very good fit of the yield-macro model to the U.S. Treasury yield data.50  

 
 
 
 
 
 
 

                                                 
49 The MCM Term Structure Software includes an additional subroutine that extends the econometric 
procedures used to estimate the yield-only model to estimate the yield factors of a model that include 
macroeconomic variables. See Appendix II. 
50 As in the yield-only model, the estimated means and standard deviations of the residuals, expressed in basis 
points, show that the mean error is negligible at all maturities and that the average standard deviation for the 
relevant middle range of maturities from 6 to 60 months is very small―about 6.4 basis points. 
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Figure 6. Yield-only Model Level Factor and Inflation 

Source: Fund staff estimates. 

Figure 7. Yield-only Model Slope Factor and Capacity Utilization  

Source: Fund staff estimates. 

 
 



 29 
 

 

Factor Mean Std. Dev. Minimum Maximum ρ(1) ρ(12) ρ(30)

7.706 2.396 3.921 14.503 0.992 0.877 0.733
1.674 1.875 -5.023 5.279 0.946 0.442 -0.134

-0.601 2.125 -6.259 5.756 0.890 0.465 0.050

Table 5. United States: Yield-Macro Model Descriptive Statistics, Estimated Factors

Maturity 
Mean Std. Dev.

3 -0.059 0.084
6 0.048 0.078
12 0.052 0.095
24 0.002 0.058
36 -0.035 0.050
48 -0.033 0.055
60 -0.034 0.050
84 0.021 0.047
120 0.038 0.072

Table 6. United States: Summary Statistics for Measurement Errors of Yields

Yield-Macro Model

The NSM yield-macro model is able to capture the degree and the nature of the dynamic 
interactions between the economy and the yield curve. Table 7 presents the estimates of the 
parameters of the yield-macro model, which contains the key macroeconomic and yield  
curve interactions. Individually, all the diagonal elements are significant, while 12 out of 30 
off-diagonal elements appear insignificant. In particular the 3x3 lower left block of the 
matrix of coefficients, showing the influence of macroeconomic factors on the yield curve 
factors, contains five insignificant coefficients, while the 3x3 upper right block of the matrix 
of coefficients, showing the influence of yield curve factors on macroeconomic factors, 
contains three insignificant coefficients. 51 Although results from the VAR estimates appear 
to show limited bilateral feedback between the yield curve and macroeconomic variables, a 
more thorough analysis of the relation between yield movements and shocks in macro 
variables, and vice versa, would use the impulse responses implied by the estimated VAR. 

 
 

 

Source: Fund staff estimates. 

Source: Fund staff estimates. 
  

                                                 
51 Specifically, using the partitioning of matrix A, as was introduced in Section II B, A=൬

ଶܣ ଵܣ
ସܣ ଷܣ

൰, ܣଶ shows the 

influence of yield curve factors on macroeconomic factors, while ܣଷ shows the influence of macroeconomic 
factors on yield curve factors. 
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Table 7. United Sates: Yield-Macro Model Parameter Estimates
 (Standard errors in parenthesis and t-statistics in brackets)

Level Slope Curvature CU INF FFR

Level (-1) 0.97 -0.09 0.21 0.29 0.56 -0.04
(0.02476) (0.04906) (0.08044) (0.04287) (0.04298) (0.02178)
[ 39.2045] [-1.78343] [ 2.64645] [ 6.84723] [ 12.9222] [-1.78560]

Slope (-1) 0.00 1.00 -0.18 -0.21 -0.52 0.03
(0.02398) (0.04753) (0.07793) (0.04153) (0.04164) (0.0211)

[-0.17922] [ 20.9513] [-2.32893] [-5.04640] [-12.5521] [ 1.22017]

Curvature (-1) -0.03 -0.06 0.83 0.02 0.05 -0.02
(0.00872) (0.01728) (0.02834) (0.0151) (0.01514) (0.00767)

[-2.91824] [-3.75630] [ 29.4552] [ 1.26505] [ 3.27703] [-2.02061]

CU (-1) 0.00 -0.03 0.03 1.01 0.03 0.02
(0.00471) (0.00934) (0.01532) (0.00816) (0.00819) (0.00415)
[ 0.00117] [-3.27940] [ 1.82799] [ 123.177] [ 3.28826] [ 5.83939]

INF (-1) 0.02 0.12 -0.13 -0.26 0.48 0.03
(0.02085) (0.04132) (0.06775) (0.03611) (0.0362) (0.01835)
[ 1.06520] [ 2.87320] [-1.98930] [-7.24906] [ 13.3776] [ 1.62117]

FFR (-1) 0.01 -0.03 0.02 -0.01 0.04 0.99
(0.00767) (0.01519) (0.02491) (0.01328) (0.01331) (0.00675)
[ 1.84976] [-2.18756] [ 0.66352] [-0.70491] [ 3.22852] [ 147.270]

 

 

 

 

 

 

 

 

 

 

 

 

Source: Fund staff estimates. 

Results from the impulse response functions of the yield-macro model reveal complex and subtle 
dynamic interactions between macroeconomic variables and yield curve factors. Figure 8 displays the 
impulse response functions of the complete yield-macro system.52 Four groups of impulse responses 
are considered: (i) responses of the macroeconomic variables to macroeconomic shocks; (ii) 
responses of the macroeconomic variables to yield curve shocks; (iii) responses of the yield curve to 
macroeconomic shocks; and (iv) responses of the yield curve to yield curve shocks.   

 Responses of the macroeconomic variables to macroeconomic shocks. These are similar to 
those obtained in standard small macro models.53 With the exception of the ܴܨܨ, the 
macroeconomic variables show significant persistence.54 Also, an increase in the ܴܨܨ 

                                                 
52 Producing impulse responses from the VAR model requires to assume a particular ordering of the variables. 
The order of the variables used in this paper is similar to that followed by Diebold, Rudebusch and Aroba 
(2006), i.e., ߚመଵ௧, ,መଶ௧ߚ ,መଵ௧ߚ ܥ ௧ܷ,  ௧. The term structure factors enter prior to the macroeconomicܨܰܫ ௧andܴܨܨ
variables since they are dated at the beginning of the period. The results obtained are robust to a different 
ordering of the macroeconomic variables.     

53 See Diebold, Rudebusch and Aroba (2006) and the papers cited within. 

54 This result for the ܴܨܨ is not found in different Diebold, Rudebusch and Aroba (2006). However the period 
studied in Diebold et al. goes from 1972:01 to 2000:12.  
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lowers ܷܥ over the following years. The ܴܨܨ rises with ܷܥ and with ܨܰܫ in a manner 
consistent with an estimated monetary policy reaction function. Lastly, ܨܰܫ increases with 
 .ܴܨܨ and has a negative delayed response to the ,ܷܥ

 Responses of the macroeconomic variables to yield curve shocks. The macroeconomic 
variables exhibit unimportant, and mostly insignificant, responses to shocks in the curvature 
factor. However, an increase in the slope produces an important decline in the ܴܨܨ, signaling 
a close relation between the slope factor and the monetary policy instrument.55 Finally, an 
increase in the level raises ܴܨܨ ,ܷܥ, and ܨܰܫ, where the latter result confirms the link 
between inflation and the level factor highlighted in Figure 6 in which the level factor is 
perceived as the bond market’s expectation of long-run inflation. In this regard, an increase in 
the level reduces the ex-ante real rate of interest, ܴܨܨ െ  .ܷܥ ଵ, followed by an increase inߚ
However, during the period of analysis, the Fed accommodated only a fraction of the 
expected rise in inflation by increasing the nominal funds rate, reducing ܷܥ, and limiting the 
increase in ܨܰܫ to a fraction of the initial shock to the level. establish 

 Responses of the yield curve to macroeconomic shocks. Shocks to macroeconomic variables 
do have little, and mostly insignificant, influence on the curvature factor. On the other hand, a 
positive shock to the ܴܨܨ quickly increases the slope factor, making the yield curve steeper 
(or less negatively sloped).56 Positive shocks to ܷܥ, and to a less degree inflation, produce an 
inverse and more delayed response in the slope, suggesting a bond market anticipation of 
monetary policy tightening. In addition, shocks to the macroeconomic variables influence the 
level of the term structure. In particular, shocks to ܨܰܫ and ܷܥ appear to generate a 
prolonged increase in the level factor, suggesting that long-term inflation expectations may 
not be firmly anchored. Finally, a positive shock to ܴܨܨ induces a small temporary increase 
in the level factor, suggesting that a surprise tightening may be signaling a Fed’s concern 
with inflationary pressures in the economy, which may heighten inflationary expectations and 
an increase in the level factor.  

Responses of the yield curve to yield curve shocks. The three yield curve factors display 
significant persistence. Also, a shock to the level factor, interpreted as higher inflation 
expectations, will increase the slope, which is associated with a lowering of the short end of 
the curve relative to the long end, and a loosening of monetary policy. Finally, a surprise 
increase in the slope factor reduces the level factor, suggesting a shift in the total curve 
downwards, but with a relatively stronger decline in the short end of the curve. 

  

                                                 
55 As explained in Diebold, Rudebusch and Aroba (2006), there are two interpretations of this link: Either the 
Fed may be reacting to yields in setting the funds rate, or the yields are reacting to macroeconomic information 
in anticipation of the Fed decisions. This last possibility occurs when the Fed has been able to set up a 
predictable policy reaction to macroeconomic information.    

56 This result differs from Diebold, Rudebusch and Aroba (2006) in which a positive shock to the ܴܨܨ almost 
immediately makes the yield curve less positively sloped (or more negatively sloped).  
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Figure 8. Impulse-Response Functions 
 

 
 

 

Source: Fund staff estimates. 
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Figure 8. Impulse-Response Functions (concluded) 
 

 

 

 

  



34 

 

IV.   POSSIBLE EXTENSIONS 

This section explores two possible extensions of the software, namely a multi-country and 
global yield curve analysis, and the introduction of no-arbitrage restrictions. 
 

A.   Global yield curve dynamics and interactions 

The Nelson-Siegel-type models surveyed in the previous sections specify and estimate a 
single country’s yield curve in isolation, relating domestic yields to domestic yield factors 
and to macroeconomic factors. Recently, Diebold, Li, and Yue (2008) generalized the 
Nelson-Siegel approach to study the degree to which domestic yield dynamics are driven by 
the dynamics of both global and country specific factors. In particular, they construct a 
hierarchical dynamic factor model for a set of several countries’ yield curves, in which 
country yields may depend on country factors, and country factors may depend on global 
factors.57 This extension of the NSM framework permits to assess the existence of 
commonality in country-factor dynamics, and makes it possible to examine the extent to 
which the extracted global factors reflect developments in key macroeconomic variables 
during the sample period. 
 
Diebold, Li, and Yue (2008) are able to extract global factors and country–specific factors, 
showing that global factors do in fact exist and are economically relevant, accounting for a 
significant fraction of variation in country bond yields. They also find evidence that global 
yield factors may be linked to global macroeconomic fundamentals (inflation and real 
activity), and that this appear more important for the period of larger global financial 
integration. 
 
As in Diebold, Rudebusch, and Auroba (2006), Diebold, Li, and Yue (2008) use a one-step 
approach to estimate their global yield curve factor model by exploiting its state-space 
structure for both parameter estimation and factor structure. However, due to the large 
number of parameters to estimate in multi-country contexts,58 they apply a Bayesian 
approach in which they use Markov Chain Monte Carlo methods to perform a posterior 
analysis of the model. Undoubtedly, extension of the software to include these methods 
would contribute to enhance the analytical and empirical tools to understand the workings of 
the global bond market, as well as to explore the extent to which variation in individual 
countries’ yield curves come from global or idiosyncratic sources, with profound 
implications for the countries’ macroeconomic policies. In the same vein, it would provide a 

                                                 
57 Diebold, Li, and Yue (2008) use a monthly dataset of government bond yields for Germany, Japan, the US 
and the UK from 1985:9 to 2005:8.   

58 Diebold, Li, and Yue (2008) also estimate a total of 257 parameters in each of their separate global level and 
slope models.  
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tool to facilitate the monitoring and assessment of economic and financial interconnections, 
and to increase the understanding of international policy spillovers.59 
 

B.   No-Arbitrage Restrictions 

In addition to the Nelson-Siegel-type models reviewed above, a second approach to construct 
bond yield factors and factor loadings is the no-arbitrage dynamic latent-factor model, which 
is widely used in the finance literature. Since, for the case of advanced economies, bond 
trading occurs in deep well-organized markets, the restriction ruling out remaining riskless 
arbitrage opportunities across maturities and over time has been central to the literature on 
the empirical analysis of bond pricing. Unfortunately, as indicated by Duffee (2002), these 
types of models do not perform well empirically, in particular with respect to out-of-sample 
forecasting.60 Dynamic versions of Nelson-Siegel-type model, despite their good empirical 
performance, do not impose the theoretical restriction of absence of arbitrage. 
 
Recently, Christensen, Diebold, and Rudebusch (2007) have integrated the Nelson-Siegel 
model with the absence of arbitrage by constructing an affine arbitrage-free model that 
maintains the Nelson-Siegel factor structure for the yield curve, and that exhibits superior 
empirical forecasting performance. Clearly, extension of the software to include the 
arbitrage-free Nelson-Siegel would open the way to use the latest state-of–the-art analytical 
and empirical tools for studying the structure and dynamics of countries’ yield curves. 
 

V.   CONCLUSIONS 

This paper discusses the estimation of models of the term structure of interest rates. In this 
context, this paper first summarizes some of the main models of term structure, namely the 
Nelson-Siegel models and the Affine Term-Structure models, perhaps the most widely used 
models by market participants and central bank officials. The paper then presents estimations 
of the terms structure of the U.S. Treasury bond yields from 1972 to 2007. In line with the 
findings in the literature, the paper concludes that: 

 The U.S. yield curve for the period 1972:1-2007:12 exhibits large variation across all 
its maturities, which, in turn, can be characterized in terms of the variation of its three 
key factors, namely the level, slope and curvature. These factors both link the yields 
at different maturities at any given moment and restrict their dynamic evolution in a 
systematic way from which stylized facts can be identified. 

                                                 
59 See Lipsky (2010). 

60 An additional problem, as reported by Christensen, Diebold, and Rudebusch (2007, 2008) is that the 
estimation of these models is adversely affected by the existence of several model likelihood maxima that fit the 
data similarly, but have different implications for economic behavior.   
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 An estimated three-factor Nelson-Siegel model for the yield curve reproduces well 
the stylized facts of the U.S. yield curve for the period of analysis, and provides a 
framework for assessing its dynamic evolution. However, a meaningful interpretation 
of the yield curve dynamics requires exploring the links of yield curve factors with 
macroeconomic variables. This can be achieved by expanding the Nelson-Siegel 
methodology to include macroeconomic factors in addition to the yield curve ones. 

 An estimated six-factor Nelson-Siegel model fits the U.S. yield curve well and 
provides information on the nature of macro-financial linkages for the period of 
analysis. The analysis of the dynamic interactions between macroeconomic and yield 
curve factors is widened by the information provided by the impulse response 
functions of the yield-macro model. One important conclusion of the analysis is that 
market yields contain relevant predictive information about the Fed’s policy rate. 

The paper uses a software developed by Fund staff to estimate the term structure of Treasury 
bond yields for the United States. This software makes it possible to estimate at least nine 
term structure models of interest rates, focusing particularly on Nelson-Siegel models and 
Affine-Term Structure models. These models make use of state-of-the-art solution 
techniques. Even though it uses C# to solve the term structure models, the software relies on 
a friendly Excel interface. 

The paper proposes possible extensions of the software. In particular, the paper argues that a 
promising extension of the software is to include global factors that would make it possible 
to understand better the dynamics of the domestic yield curve. This extension would open the 
way to identify common factors that are important in the determination of the domestic yield 
curve across different countries. The paper also notes that an extension of the Nelson-Siegel 
model to include the absence of arbitrage could enrich the structure and dynamics of the 
countries’ yield curves.     
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APPENDIX I. TERM-STRUCTURE MODELING USING THE MCM TERM STRUCTURE 

SOFTWARE 

After providing a general overview of term-structure modeling under Absence of Arbitrage 
(AOA), this appendix summarizes the mathematics behind the models for the term structure 
models, particularly the CIR, included in the MCM Term Structure Software (MCMTS). The 
summary in this section uses a somewhat different notation than in Section II. 
 

I.   THE SHORT RATE 

Assume that there exists an instantaneous riskless interest rate. This rate is called the “short 

rate”, and its value at time t  is noted tr . More formally, let ,t tr   be the riskless interest rate 

at time t  for a loan with maturity date t  . The short rate at time t is defined as 

 

(1)
                  0 ,limt t tr r    

 
This definition makes it clear that the short rate is not comparable to short-term rates quoted 
in real-world markets. The short rate is the riskless interest rate for an infinitesimal time to 
maturity. Since there is no instantaneous interest rate in the real world, the short rate is not 
observable. Therefore, for practical applications, it must be either estimated or replaced by a 
proxy. 

II.   EQUIVALENT MARTINGALE MEASURE 

Let P be the probability measure that represents uncertainty in the “real world.” P is often 
called the market measure. 
 
Assume that there exists a probability measure Q with the following properties 
 
1. Q is equivalent to P in the sense that, for any event E,  

( ) 0 ( ) 0P E Q E   61 
In other words, P and Q assign zero probability to the same events.  

2. Discounted security prices are martingales under Q.  
 

A measure Q with these two properties is called an equivalent martingale measure. In a 
continuous-time setting, the existence of such a measure guarantees the absence of 

                                                 
61 Formally, uncertainty is represented by a probability space , ,F P  where F is a tribe on  . A measure Q  

is said to be equivalent to the measure P  if, for any element E  of the tribe F, ( ) 0 ( ) 0P E Q E   . 
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arbitrage.62 This result is sometimes called the “First Fundamental Theorem of Asset 
Pricing.” 
 
The martingale property of discounted security prices under Q can be formulated more 
precisely. Let tS  be the price at time t of a security that does not pay any dividend or 

coupon,63 let tr  be the short rate at time t , and define the discount factor process tD  as 
 

(2) 
0

exp
t

t u

u

D r du


 
   

 
  

 

The discounted security price process is defined as t tD S . Under the equivalent martingale 

measure Q, t tD S  is a martingale. Therefore, for any 0   

 
(3)  Q

t t t t tE D S D S      

 
Using the definition of tD , this equality can be rewritten as 

 

(4) 
0 0

exp exp
t t

Q
t u t u t

u u

E r du S r du S







 

    
          

     
   

 
Therefore 

(5) exp
t

Q
t u t t

u t

E r du S S









  
     

   
   

 
The fact that t tD S  is a martingale can also be expressed as 

 (6)   0Q
t t tE d D S     

 

When tr  and tS  follow Ito processes, this equation can be rewritten as 

 
(7)    0 0Q Q

t t t t t t t t t t tE r D S dt D dS E D r S dt dS                 

                                                 
62 See, for example, Duffie (2001), Chapter 6, or Shreve (2004), Chapter 5. In a finite-dimensional setting, the 
existence of an equivalent martingale measure is equivalent to the absence of arbitrage. In an infinite-
dimensional setting, the existence of an equivalent martingale measure is equivalent to the absence of 
“approximate arbitrage.” See Duffie (2001), Chapter 6, for details. 

63 The analysis can easily be extended to securities that pay dividends or coupons. 
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Since 0tD  , we finally obtain 
 

(8)  Q
t t t tE dS r S dt     

 
Therefore, under the equivalent martingale measure Q, the instantaneous expected rate of 
return on any security is equal to the short rate. This is the reason why Q is often called the 
“risk-neutral” measure: expected returns under Q are the same as in an artificial risk-neutral 
world.  
 
Equations (5) and (6) are general pricing equations under AOA; they apply to all types of 
securities (with slight modifications for securities that pay dividends or coupons). Looking 
forward, these equations will be applied to zero-coupon bonds in order to determine the term-
sctructure of interest rates. 
 

In the remainder of this appendix, PW  represents a Brownian motion under P , and QW  

represents a Brownian motion under Q . The increments of PW  and QW  over an 

infinitesimal interval of time dt  are noted PdW and QdW , respectively. PdW and QdW  are 
Normal random variables with mean 0 and variance dt . 
 

III.    EXISTENCE OF AN EQUIVALENT MARTINGALE MEASURE 

In the previous section, the existence of an equivalent martingale measure was assumed. The 
objective of this section is to construct an equivalent martingale measure. That is, given the 
market measure P, we wish to find a probability measure Q with the following properties: 
 

1. Q is equivalent to P; 
2. Discounted security prices are martingales under Q. 

 
For simplicity, this section makes the following assumptions: 
 

1. There is a fixed horizon T; 

2. Uncertainty is generated by a single one-dimensional Brownian motion PW . 
  

Consider a stochastic process   such that 
 

(9)    
2

0

2

0

 a.s.

1
exp

2

T

t

t

T
P

t

t

dt

E dt









  

  
    

   





  

 
It can be shown that the following process is a martingale under P  
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(10) 2

0 0

1
exp

2

t t
P

t u u u

u u

dW du  
 

 
     

 
   

 
In addition, the probability measure Q defined by the following equation is equivalent to P 64 
 

(11) 
T

dQ

dP
   

 
dQ dP is the Radon-Nikodym derivative of Q with respect to P. 

 
Furthermore, the following result holds: 
 

Girsanov’s Theorem: Consider the process Q
tW  defined as 

 

(12) 
0

t
Q P

t t u

u

W W du


    

 
When the process   satisfies this process, the following process is a Brownian motion (and 
hence a martingale) under Q 

 (13) 
0

t
Q P

t t u

u

W W du


    

 
Consider a security price S  that follows a geometric Brownian motion under P 
 

(14) P
t S t S t tdS S dt S dW        

 
As shown in the previous section, the discounted security price process under P is given by 
 

(15) 
 

 
 

t t t t t t t

P
t t t t S t S t t

P
S t t t S t t t

d D S r D S dt D dS

r D S dt D S dt S dW

r D S dt D S dW

 

 

       

           

       

 

 
From Girsanov’s Theorem, this equation can be rewritten as 
 

                                                 
64 See, for example, Duffie (2001), Appendix D. 
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(16)      
 

Q
t t S t t t S t t t t

Q
S t S t t t S t t t

d D S r D S dt D S dW dt

r D S dt D S dW

  

   

           

         
 

 
This is the discounted security price process under Q. We are looking for a probability 
measure Q such that D S  is a martingale under Q. In other words, we are looking for a 
probability measure Q such that the drift of D S  is zero under Q. This leads to the following 
condition 
 
(17)   0S t S t t tr D S dt          

 
This condition must be satisfied by any security price process. Therefore, the process   must 
satisfy the following condition for any security price process S 
 

(18) 0 S t
S t S t t

S

r
r

   



       

 
The process   defined in this way is called the market price of risk.  
 
To summarize, consider the probability measure Q defined by 
 

(19) 2

0 0

1
exp

2

T t
P

T t t t

t t

dQ
dW dt

dP
  

 

 
       

 
   

 
where   is the market price of risk process. This probability measure is equivalent to P, and 
discounted security prices are martingales under Q. 
 

IV.   EQUIVALENT MARTINGALE MEASURES AND MONTE-CARLO SIMULATIONS 

It must be emphasized that the equivalent martingale measure Q does not represent real-
world uncertainly. Q is an artificial probability measure that has no relevance in the real 
world. Put differently, information revelation in the real world is represented by the filtration 

of the state space generated by the Brownian motion PW ; in contrast, the filtration of the 

state space generated by the Brownian motion QW  represents information revelation in an 
artificial risk-neutral world. For these reasons, performing Monte-Carlo simulations under Q 
is not always meaningful.  
 
As shown by equation (5), arbitrage-free security prices can be represented as expectations 
under Q. In many cases, these expectations must be estimated by Monte-Carlo simulation 
because they do not have analytical representations. When the purpose of Monte-Carlo 
simulations is to compute expectations under Q, obviously, performing the simulations under 
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Q is perfectly legitimate. In other words, Monte-Carlo simulations under Q are appropriate 
for pricing purposes.  
 
This, however, is not the case when the purpose of the simulations is to compute the VaR of 
a portfolio. As mentioned above, the martingale measure Q and the market measure P are 
only equivalent in the sense that they assign 0 probability to the same events. In general, the 
distribution of portfolio values under Q is not the same as the distribution of portfolio values 
under P. Since a VaR is just a quantile of the distribution of portfolio values, it is not the 
same under Q as under P. In this case, the relevant probability measure is the market measure 
P; the martingale measure Q does not provide any information about the distribution of 
portfolio values in the “real-world.” Therefore, when the purpose of Monte-Carlo simulations 
is to compute a VaR, the simulations should be performed under the objective market 
measure P. 
 

V.   SINGLE-FACTOR TERM STRUCTURE MODELS 

Let  ,B t   be the price at time t of a zero-coupon bond that pays one unit of currency at 

time T t  , and let tx be a scalar stochastic process. A one-factor term-structure model is 

a function b  such that 
 
(20)      , , , , , ,    0 tB t b x t t e t         

 

where   is a vector of parameters to be estimated, tx  is the single factor that is assumed to 

drive the entire term-structure, and  ,e t   is a pricing error. If the model is “true”, then 

 , 0e t  for any t  and any  . In the remainder of this section, pricing errors are assumed to 

be null. 
 
This section shows that, when there exists an equivalent martingale measure, the function 

 , , ,tb x t T   is the solution of a particular stochastic partial differential equation (PDE).  

 

Let QW  represent a Brownian motion under Q. Assume that the process of x  under Q is the 
following Ito process 
 
(21) 

, ,
Q

t x Q x Q tdx dt dW    

 
Assuming that b  is a smooth, twice-differentiable function of x and a differentiable function 
of t , Ito’s lemma implies 
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(22)  
2

2
, , ,2

1
, , ,

2
Q

t x Q x Q x Q t
t t t

b b b b
db x t T dt dW

t x x x
   

    
              

 

 
Under Q, the instantaneous expected rate of return on any security is equal to tr . This means 

in particular that the drift of  , , ,tdb x t T   must be equal to  , , ,t trb x t T  . Therefore 

 
 

(23)  
2

2
, , 2

1
, , ,

2x Q x Q t t

b b b
r b x t T

t x x
    

      
  

  

 
Single-factor models of the term structure generally assume that the single factor that drives 
the term structure is the short rate  
 
(24)        t tx r t   

 
This is true, for example, in the Cox-Ingersoll-Ross (CIR) models. Equation (23) then 
becomes 
 

(25)  
2

2
, , 2

1
, , ,

2r Q r Q t t

b b b
r b x t T

t r r
    

      
  

  

 
This equation is a stochastic partial differential equation (PDE) known as the Backward 
Kolmogorov equation. It is also often referred to as the “no-arbitrage” pricing equation.65 The 
solution b  to this equation is the term structure function under AOA. 
 
The no-arbitrage pricing equation is subject to the following boundary condition 
 
(26)  , , , 1tb r T T    

 
A general solution to the no-arbitrage pricing equation is provided by the Feynman-Kac 
formula 
 

(27)  , , , exp
T

Q
t t u u

u t

b r t T E r d


  
   

   
   

 

                                                 
65 See Rebonato (1996), Chapter 7, Section 1, for a derivation of this equation without using the concept of 
equivalent martingale measure. While we focus here in the prices of zero-coupon bonds, we note that this 
equation is valid for the price of any security whose cash flows can be expressed as a function of an Ito process. 
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Note that this is just equation (5) applied to a security that pays one unit of currency at time 
T: in this case, t T   and 1tS   . 

 
Depending on the process of r , there may or may not be an analytical solution to equation 
(25) and a closed-form expression for the conditional expectation on the right-hand side of 
equation (27). When the short rate process is a simple mean-reverting process or a mean-
reverting square root process (as in the CIR model), there is a closed-form expression for 
zero-coupon bond prices. 
 
To summarize, single-factor arbitrage-free models of the term structure are derived as 
follows: 
 

1. The existence of an equivalent martingale measure Q is assumed; 
2. The existence of Q guarantees AOA;  
3. The single factor that drives the entire term structure is assumed to follow an Ito 

process under Q; 
4. Ito’s lemma is used to derive an expression for the drift of a zero-coupon bond price 

process under Q; 
5. Since Q is an equivalent martingale measure, any security’s instantaneous expected 

rate of return under Q must be equal to the short rate; this provides a second 
expression for the drift of a zero-coupon bond price process under Q; 

6. Combining the two expressions for the drift of a zero-coupon bond price process 
under Q yields the no-arbitrage PDE; 

7. The solution to the no-arbitrage PDE is the term structure function under AOA. 
 

VI.    THE COX-INGERSOLL-ROSS MODEL 

The Cox-Ingersoll-Ross (CIR) model of the term structure assumes that the single factor is 
the short rate, and that it follows a mean-reverting square root process.  
 
More precisely, the short rate process under P is assumed to behave as 
 

(28)   P
t t t tdr r dt r dW      

 
where   is the mean reversion rate,   is the long-term mean of the short rate, and   is a 
diffusion (volatility) parameter.  
 
Suppose that the short rate at time 0  is 0 0r  . The short rate at time t  is then given by 

 

(29)  0

0 0

t t
P

t u u u

u u

r r r du r dW  
 

      
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When 0  and 0 , the short rate is non-negative. When 2 2    , the short rate is 

strictly positive at any time. 
 
From Girsanov’s theorem, the corresponding process of the short rate under the martingale 
measure Q is 
 

(30)   Q
t t t t tdr r r dt r dW        

 
where   is the market price of risk. 
 

In the CIR model, the vector of parameters that need to be estimated is  , , ,     . 

Under the assumption that the short rate follows a mean-reverting square root process, the 

no-arbitrage PDE can be solved analytically, and  , , ,tb r t t    is given by66 

 
(31)      , , , exp , ,t tb r t t A C r            

 
where 

(32) 

   
  

 
 

  

 

2

2

2

2 2

2 1
,

1 2

2
, ln

1 2

2

e
C

e

e
A

e






    



 
   

 
   

   

 




   

 
      
  

  

 

 

Note that, in the CIR model,  , , ,tb r t t    actually does not depend on t , so that it can be 

rewritten  , ,tb r   . 

 
The continuously compounded yield to maturity of the zero-coupon bond with maturity t   

is  , ,y t   , and serves as the solution of the following equation 

 
(33)    exp , , , , ,ty t b r t t           

 
 

                                                 
66 See, for example, Bolder (2001) or Rebonato (1996). 
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Therefore 
 

(34)      1
, , , ,t ty r C r A     


      

 

This is the continuously compounded yield to maturity at time t of a zero-coupon bond 

maturing at t  , according to the single-factor CIR model. Note that  , ,ty r    is an affine 

function of tr ; this makes the CIR model a member of the affine term-structure model family. 

 
VII.   AFFINE MULTI-FACTOR MODELS 

Assume that zero-coupon bond prices are now functions of two factors 1x  and 2x . For 

example, the price at time t of a zero-coupon bond that pays 1 at ,  0T t     is now 

written as 
 
(35)    1, 2, 1, 2,, , ,  = , , ,t t t tb x x t t b x x t T  

 

In the rest of this section, tb  will often be used as an abbreviation for  1, 2,, , ,t tb x x t t  . 

 
As before, assume that there exists an equivalent Martingale measure Q. The factors 1x  and 

2x  are assumed to follow Ito processes 

 

(36) 1, 1, 1, 1,

2, 2, 2, 2,

Q
t t t t

Q
t t t t

dx dt dW

dx dt dW

 

 

 

 
 

where 1
QW  and 2

QW  are independent Brownian motions under Q .  

 

From Ito’s Lemma, if  b  is twice-continuously-differentiable in 1x  and 2x , then the bond 

price satisfies the following stochastic differential equation 
 
(37) 

 
 

2 2
2 2

1, 2, 1, 2, 1, 2,2 2
1 2 1 2

1, 1, 2, 2,
1 2

1 1
, , ,

2 2t t t t t t

Q Q
t t t t

b b b b b
db x x t t dt

t x x x x

b b
dW dW

x x

    

 

     
                  

 
     
 
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The process for the discounted bond price is then given by 
 
(38) 

 
 

2 2
2 2

1, 2, 1, 2,2 2
1 2 1 2

1, 1, 2, 2,
1 2

1 1

2 2

t t t t t t t

t t t t t t t

Q Q
t t t t t

d D b r D b dt D db

b b b b b
D r b dt

t x x x x

b b
D dW dW

x x

   

 

       

     
                     

  
         

 

Since Q  is an equivalent martingale measure, by definition, the discounted bond price t tD b  

is a martingale underQ . This means that the coefficient of dt  in the expression  t td D b  

must be zero. Since  0 ttD   , the following must be true 

 

(39) 
2 2

2 2
1 2 1 22 2

1, 2, 1, 2,

1 1
0

2 2
t t t t t

t t
t t t t

b b b b b
r b

t x x x x
       

             
    

  

 
This is the no-arbitrage PDE for bond prices in the two-factor case, under the assumption that 
uncertainty is generated by two independent Brownian motions. 
 
Suppose now that the processes for the factors 1x  and 2x  are affine diffusions.67 In other 

words, assume that 1 , 2 , 2
1 and 2

2 are affine functions of the factors  

 

(40) 

 
 
 
 

1 1, 1 1 1,

2 2, 2 2 2,

2
1 1, 1 1 1,

2
2 2, 2 2 2,

,

,

,

,

t t

t t

t t

t t

t x x

t x x

t x x

t x x

  

  

  

  

  

  

  

  

 

 
Also assume that the short rate is an affine function of the factors: 
 
(41) 0 1 1, 2 2,t t tr x x        

 
Under these assumptions, we can conjecture that all zero-coupon yields are affine functions 
of the factors. In other words, we can conclude that bond prices have the exponential affine 
form 

                                                 
67 See Filipovic and Mayerhofer (2009) for more details about affine diffusion processes and their applications. 
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(42)         
     

1, 2, 1 1, 2 2,

1 1, 2 2,

, , , exp

exp

t t t t

t t

b x x t t x x

T t T t x T t x

      

  

       
         

 

 

where   ,  1 and  2 are deterministic functions of the time-to-maturity.  

 
When zero-coupon bond prices have the exponential affine form, PDE reduces to three 

ordinary differential equations. To see this, compute the derivatives of  b  in equation (39) 

  

(43)  

 

     

     

 

 

1 2
1, 2,

1 2
1, 2,

,

2
2

2
,

       1,2

       1,2

t
t t t

t t t

t
i t

i t

t
i t

i t

T t T t T tb
x x b

t t t t

x x b

b
b i

x

b
b i

x

  

     
  

 

 

      
           

   
         


  




    

 

 

After replacing tr , 1 , 2 , 2
1 , 2

2  and the derivatives of tb  with their expressions, equation 

(39) becomes 
 

(44) 

 
     

       
       

0 1 1, 2 2,

1 2
1, 2,

1 1 1 1, 2 2 2 2,

2 2

1 1 1 1, 2 2 2 2,

0

1 1

2 2

t t

t t t

t t t t

t t t t

x x

x x b

x b x b

x b x b

  

     
  

       

       

     

   
        
         

                 

 

 
Since 0tb  , after re-arranging we obtain 

 
(45) 

      

         

     

     

2 2

0 1 1 2 2 1 1 2 2

21
1, 1 1 1 1 1

22
2, 2 2 2 2 2

1 1
0

2 2

1

2

1

2

t

t

x

x

 
            


 

      


 
      




                  

 
            

 
            
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Since this equation is true for any value of 1,tx  and 2,tx , we finally have 

 
(46) 

 

     

     

         

21
1 1 1 1 1

22
2 2 2 2 2

2 2

0 1 1 2 2 1 1 2 2

1

2

1

2

1 1

2 2

 
      


 

      


 
            




        


        


                

 

 
Therefore, when the factors follow affine diffusions, the no-arbitrage PDE reduces to three 
ordinary differential equations. The equations for 1  and 2  are known as Riccati equations. 

The boundary conditions for these differential equations are 

 (47) 
 
 
0 0

0 0 1, 2i i







 
 

 

These boundary conditions guarantee that  1, 2,, , , 1T Tb x x T T  . 

 
The two-factor CIR model is the special case where each factor follows a mean-reverting 
square-root diffusion process. That is 
 
(48) 

   

   
   

, ,

2
, , , ,

, 1, 2

, , 1, 2

0 1, 2

>0 1, 2         

i i t i i i t

i i t i t i i t i t

i

i

t x x i

t x x t x x i

i

i

  

 




   

   

 

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APPENDIX II. ESTIMATION TECHNIQUES 

I.   IMPLEMENTATION OF NELSON-SIEGEL MODELS 

Implementation overview 

For the implementation of the Nelson-Siegel family of models, the key issue is the definition 
of the decay parameters. These parameters can be either fixed or variable during the time 
period of the calculation. Fixed decay parameters provide a stable state space framework, 
which is crucial to predict yield curve dynamics. The estimation of fixed decay parameters 
requires joint optimization in both cross-section and time series dimensions. This 
optimization is mathematically challenging. 

MCMTS uses a one-stage solution with fixed decay parameters to estimate the Nelson-Siegel 
models. The main procedure relies on the Powell’s method to maximize the log-likelihood 
value. This method iterates an arbitrary number of times until the tolerance constraint are 
met.68 In each iteration, several optimization steps are computed sequentially. 

 Cross-Sectional Optimization: 
 Tool: OLS 
 Input: Cross-sectional yield data 
 Output: Time series of factors 

 
 Time Series Optimization: 
 Tool: Auto-regression or Vector auto-regression 
 Input: Time series of factors 
 Output: Parameters of state space model 

 
 Joint Analysis: 
 Tool: Kalman Filter 
 Input: Initial time series factors, and state space model parameters 
 Output: Adjusted time series factors, and likelihood value 

 
The covariance matrix of measurement errors is computed by OLS in the context of the 
cross-sectional optimization, and the covariance matrix of state innovation errors is computed 
by an AR(1) or VAR(1) during the time series optimization. This makes it unnecessary to 
estimate the values of these covariance matrices, which can significantly reduce the total 
number of parameters to estimate and makes the overall estimation process faster and easier 
to converge. The yield curve fitting results are also good. By way of example, when 
estimating the Nelson-Siegel models, the Root Mean Square Error (RMSE) is normally less 
than 5 basis points. 

                                                 
68 See Powel (1964). 
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Algorithm description 

The Powell algorithm—for example for the three-factor model—starts with an initial value 
for  . In each iteration, the algorithm first tries a new value of , and then computes the log-
likelihood value based on the given . In detail 

 
(1) For a given , for each maturity  , compute ix ,  

for the thj factor 

 

  11 x ,    
 

 


exp1
2x ,    

   


 


 exp
exp1

3x  

 
and the measurement coefficient matrix 
 
 

   

     

     
















NNN xxx

xxx

X





321

131211

.........  

 

(2) For each time period  Tt ...1 , run an OLS regression on 

 

   ttt XY    

 

where tY  denotes the nominal interest rates, 0 and   tttt ,3,2,1   

 

The outputs are the time series of factors t and measurement errors t . Then, compute 

covariance matrix of measurement error, H, using time series of t .  

(3) Run an auto-regression, AR(1) or VAR(1), on the time series of factors t  

   ttt   1  

The outputs include the state constant vector , state transition matrix , and time series of 

state innovation errors t . Then, compute the covariance matrix of state innovation errors, Q, 

using the time series of t . 
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(4) Now, we have all the parameters for the state space model 

 

   
ttt

ttt XY







1

 

with 

   




































Q

H
N

K

N

t

t

0

0
,

0

0
~

1

1




 

 

A Kalman Filter can be used to calculate adjusted time series of factors. The log-likelihood 
value L is also be calculated by 

     




 

T

t
tttttttt ffL

1
1|

1
1|1|1|ln

2

1   

(5) The end of this iteration. 

 
II.   IMPLEMENTATION OF COX-INGERSOLL-ROSS MODELS 

Implementation overview 

MCMTS also uses a one-stage solution based on the Powell method to estimate CIR models. 
In each iteration, this solution takes the following optimization steps 

 Cross-Sectional Optimization: 
 Tool: OLS  
 Input: Cross-Sectional yield data 
 Output: Time series of factors 

 
 Compute the parameters of a state space model 

 
 Joint Analysis: 
 Tool: Kalman Filter 
 Input: Initial time series factors, and state space model parameters 
 Output: Adjusted time series factors, and likelihood value 

Again, the covariance matrix of measurement errors is computed by OLS during cross-
sectional optimization, and the covariance matrix of state innovation errors is dynamically 
calculated at each time step of the Kalman Filter. Therefore, it is unnecessary to estimate the 
values of these covariance matrices. 
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Algorithm description 

The algorithm starts with an initial value of the parameter vector P, and

  22221111 ,,,;,,, P . In each iteration of the Powell method, the algorithm first 

tries a new value of P, and then computes the log-likelihood value based on the given P. In 
detail, for example, for a two-factor CIR 
 
 The factors are independent with each other. The state transition matrix and state error 

covariance Q are therefore diagonal. 

 The state variables follow non-central 2 distribution. The estimator here is a quasi 

maximum likelihood estimator. 

 (1) For the given parameter vector P, for each maturity i , compute the measurement 

coefficient  ijx   for the thj factor, and measurement constant i  
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(2) For each time period  Tt ...1 , run an OLS regression of 

   ttt XY  ~
 

here,   tKtttt YY ,,1 ...and
~   

The outputs are the time series of factors t  and measurement errors t . Then, compute H 

using the time series of t . 

(3) For the given parameter vector P, compute the state equation 

   ttt   1  

with 
      tjjj   exp1  
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The outputs include the state constant vector , state transition matrix  , and time series of 

state innovation errors t . Note that jjQ ,  
is a linear function of 1, tj , for a given parameter 

values. 

(4) Now, we have all the parameters for the state space model 
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A Kalman Filter can be used to calculate adjusted time series of factors. Since jjQ , depends 

on 1, tj , it is dynamically updated at each time period t in the Kalman Filter. The log-

likelihood value L is calculated by 

    
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
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T
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(5) The end of this iteration. 

III.   ESTIMATION ANALYSIS 

Appendix Table 1 shows the number of parameters and usual number of iterations required to 
achieve convergence depending on the model. 

 

Appendix Table 1. Estimation Analysis for Nelson-Siegel and CIR models 

Model 
Number of 
Parameters 

Parameters 
Number of Iterations 
before Convergence 

Nelson-Siegel model with one 
decay parameter 

1 C <10 

Nelson-Siegel model with two 
decay parameters 

2 21,  <50 

One-factor Cox-Ingersoll-
Ross model 

4  ,,,  <200 

Two-factor Cox-Ingersoll-
Ross model 

8 
1111 ,,,   

2222 ,,,   
<2,000 

   Source: Fund staff estimates. 
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IV.    MONTE CARLO SIMULATIONS 

The Monte Carlo simulations are computed based on the state-space framework. The 
dynamic evolutions of the factors is driven by the AR(1) or VAR(1) processes. The Nelson-
Siegel models and Cox-Ingersoll-Ross models use two different approaches to simulate the 
innovation errors. 

 

For the Nelson-Siegel models, K (or the number of factors) independent and identically-
distributed standard normal random variables are created. Then, a joint normal distribution, 
with covariance matrix Q can be obtained, by multiplying the vector of K standard normal 
random variables with the Cholesky decomposition of Q. Defining 

 

  IN ,0~ , and  QC composeCholeskyDe  

                  QNqCq ,0~such that,  

 

At each time step, a draw of random variable q is created. This draw is used to drive the 
evolution of the state space model. Therefore, the time series of the simulated factors and 
interest rates are calculated by the state space model. 

 

For the CIR models, a Euler scheme to “discretize” the square root diffusion process is used. 
The factor dynamics can be obtained by 

 

   jtjjjjjtjtj zty  ,,1,  ,   tNz j  ,0~  

 

The simulated interest rates can be calculated from the measurement equation of the state 
space model. 

 
The user can set the number of simulated paths N, and the number of steps S. The simulator 
first “reads” these numbers, and then starts the simulation process. After generating all the 
simulated paths, MCMTS calculates the summary statistics of the interest rates for all paths 
at the last time period, including mean, median, standard deviation and percentiles. The 
software also draws a histogram of the distribution in an Excel chart. In addition, the 
simulated paths at each time period are displayed. 
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APPENDIX III. DESCRIPTION OF THE MCM TERM STRUCTURE SOFTWARE 

Basics 

The MCM Term Structure Software (MCMTS) explores a number of solutions for models of 
the term structure of interest rates. To this end and by way of introduction, the MCMTS 
makes it possible to perform the following operations: 

 Create data sets, including of yield curves and macroeconomic variables. 
 

 Specify time horizons. 
 

 Select term structure models from a variety of model families. 
 

 Estimate model parameters, and evaluate estimation performance. 
 

 Run Monte Carlo simulations. 
 

 Estimate impulse responses and variance decomposition using a Macro Factor Model. 

 

MCMTS relies on a user-friendly Excel “add-in” which guides the user to explore different 
families of models.69 The main page contains five menu items: 

 Select Model 
 
 Model Estimation 

 
 Performance Evaluation 

 
 Cross Sectional Yield Fitting 
 Time Series Yield Fitting 
 Factors Dynamic Evolution 
 

 Monte Carlo Simulation 
 

 Model Test 
 

 Impulse Response 
 Variance Decomposition 

                                                 
69 The algorithms of the program have been developed in C#. 



61 
 

 

 Chi-square Test of Overall Fit 

Quick tour 

Creating Data Sets. As a first step in using the MCMTS, the user needs to create two data 
sets: the first with information on yields, and the second with macroeconomic variables. Data 
on yield curves are essential to run the term structure models. Data on macroeconomic 
variables are critical only for the macro-factor models. 

 The “Yield Curve” sheet contains yields of zero-coupon bonds for all different 
maturities, across a specific time period. 

 The “Macro Factors” sheet contains time series data for various macroeconomic 
variables. 

Selecting a Model. The second step in using the MCMTS is to specify a time horizon, and to 
select a model within the various alternatives. 

 
 There are three alternatives for frequency values: daily, weekly or monthly. 

 
 The “Simulation Horizon” for simulating the models can be set in line with the following 

options: 
 

 For daily time interval, one year after the end date  
 For weekly time interval, three years after the end date  
 For monthly time interval, ten years after the end date 
 

 MCMTS has three families of models of interest rate models: Nelson-Siegel Models, 
Cox-Ingersoll-Ross Models, Macro-Factor Models. 

Estimating the Models. Depending on the family of models chosen, MCMTS offers 
different options for estimating the models. The Nelson-Siegel and the Macro-Factor models, 
share the same estimation options, while the Cox-Ingersoll-Ross models have a separate set 
of options. 

 For the Nelson-Siegel models: 
 
 MCMTS offers five alternatives: (i) a three-factor base model; (ii) the Bjork and 

Christensen four-factor model; (iii) the Bliss three-factor model; (iv) the Svensson 
four-factor model; and (v) the Adjusted Svensson four-factor model. 
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 There are two options for defining the “Factor Relationships”: (i) Independent 
Factors, AR(1); or (ii) Correlated Factors, VAR(1).70 

 There are three “Optimization Methods”: (i) No Optimization; (ii) Minimize 
Measurement RMSE; and (iii) Maximum Likelihood with Kalman Filter.71 

 For the Cox-Ingersoll-Ross models, MCMTS offers two options: (i) a one-factor model; 
and (ii) a two-factor model.72 

 The output of the estimation is summarized in two charts: “Estimated Factor Loads” 
which displays the factor loadings for each maturity, and “Estimated Factors” which 
displays the dynamic evolution of each factor over time. 

Evaluating the Performance. After estimating the parameters of particular model, MCMTS 
makes it possible to evaluate the fit of a yield curve. 

 
 Cross Sectional Yield Fitting: selecting a date within the date range of the model 

estimation, MCMTS compares observed and estimated yields. 
 

 Time Series Yield Fitting: selecting a maturity, MCMTS compares time series of 
observed and estimated yields for the given maturity. 
 

 MCMTS also offers a Chi-square test for evaluating the overall performance of the 
estimation. 

Monte Carlo Simulations. MCMTS also allows the user to perform Monte Carlo 
simulations based on the estimated models. After setting the number of simulations and paths 
to be displayed, MCMTS presents the distribution and summary statistics of simulated yields 

Impulse Responses and Variance Decomposition. One of the most interesting features of 
MCMTS is that it allows the estimation of the contribution of each factor and 
macroeconomic variable to the variance of each yield maturity, and the impulse response of 
the factors to shocks in the macroeconomic variables (and vice versa). 
 
MCMTS allows the user to choose the shocks and the responding variables, as well as the 
time horizon of the exercise. 

                                                 
70 As described in Section II, a Nelson-Siegel model can explain the dynamic evolutions of three or four factors. 
The relationship among those factors can be modeled as independent or correlated. The second option is 
recommended for most cases. 

71 The Maximum Likelihood with Kalman Filter is undoubtedly the most sophisticated solution. Nevertheless, it 
is worth clarifying that there are multiple layers of optimizations implemented in the software. The optimization 
options offered in the interactive menus apply only for the highest level of optimization. Even under the “No 
Optimization” alternative, optimizations of lower levels are computed. 

72 A two-factor model can achieve a better performance in yield curve fitting, but it also takes a longer time to 
estimate the parameters of the model. 




