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Abstract

Climate-related natural disasters are increasing in frequency and severity. These

changes are not equal across countries, and therefore we should observe a response

of real exchange rates to such shocks. In this paper I evaluate whether the observed

response is consistent with a forward-looking model in which agents update their expec-

tations about future disasters, relying on Farhi-Gabaix (2015) framework. I simulate

the model for 47 countries for 1964-2019 using actual data and explicitly modeling dis-

aster arrival rate, disaster-related losses in productivity and welfare, and related belief

formation. The model predicts a persistent but relatively small real depreciation as a

result of climate-related disasters for risky countries. The data, however, shows only a

temporary real depreciation, even in recent years.
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1 Introduction

It is by now well established that physical risks of climate change are becoming more ap-

parent, more severe, and more frequent (Stott, 2016). The magnitude of damages from such

climate change-related events as fires, floods, severe storms, and extreme temperatures has

become large enough to have a substantial impact on the global economy (Burke et al., 2015).

From economic stability point of view an important question is whether markets are fully

accounting for the risks associated with increasing frequency and severity of climate-related

disasters. If the answer to this question is negative, rapid changes in relative prices and

resulting shifts in economic activity are possible. This paper investigates the response of

real exchange rates to climate-change related disasters.1

Theoretically, natural disasters can have an ambiguous effect on real exchange rates. On

the one hand, disaster-related instantaneous drop in production of exports (Jones and Olken,

2010; Osberghaus, 2019) can lead to real appreciation through the terms-of-trade effect.2 On

the other hand, any permanent reduction in export productivity, or an update of the beliefs

about the frequency of such disasters, reduces present value of the future revenue stream of

the economy, thus depreciating real exchange rate.3 While the first effect is likely temporary,

the second can be permanent, and it is on the second effect that I focus in this paper.4

Empirical analysis of the economic response to climate change risks is complicated by

the fact that the distribution of these risks is shifting , therefore rendering historical anal-

ysis potentially inapplicable for forecasting. In addition, awareness of climate change risks

increased over last three decades and continues increasing, further complicating inference

based on historical data. Not surprisingly, a naive regression analysis shows a very small,

short-lived, and not statistically significant reaction of real exchange rates to climate-related

natural disasters.

I tackle these complexities by calibrating a theoretical model with observed climate-related

disaster frequency, modeled as a Poisson process, and allowing expected Poisson parameter

to be updated based on disaster realizations, following Gamma distribution. I then compare

1In this paper I do not study the effects of transition risks that may arise from climate mitigation policies,
greening technologies, or greening consumer and investor preferences. For a study of transition risk effects
on commodity currencies, see Kapfhammer et al. (2020).

2Such effect is found, for example, in Strobl and Kablan (2017).
3Dell et al. (2012); Felbermayr and Gröschl (2014); Burke et al. (2015), among others, find a negative

growth effects from temperature shocks and natural disasters, respectively. Heinen et al. (2022) show that
extreme weather disasters can have large negative welfare effects, while Burke et al. (2015) predict 23%
global income reduction by 2100 in a likely adaptation scenario.

4In the Farhi-Gabaix framework I use the first effect is ruled out by a small open economy set-up with a
single traded good, so that the economy is a price-taker on its exports market.
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the response of real exchange rates to disasters predicted by the model with the response

observed in the data. The results show that, with the exception of very recent time period,

there is no evidence of forward-looking reaction of real exchange rates to climate disasters.

As a first step, I document that the frequency of climate-related physical disasters increased

rapidly in last decades. Using a subset of climate-related natural disasters from a database

of global natural disasters, country-specific estimates show that for most countries in the

data set climate-related disaster arrival rate could be described by the Poisson distribution.

The Poisson parameter, describing the incidence of disasters occurring in a given country

in a given year, increased on average from 0.4 in 1960-1990 to 1.5 in the 1990-2021. I use

country-specific disaster realization data to calibrate the model.

The model set up is identical to Farhi and Gabaix (2015) (FG) small open economy model

where the real exchange rate is determined by the present discounted value of the future

production of tradeables and non-tradeables.5 While FG impose the stochastic process

on a summary statistic (disaster resilience parameter) that incorporates both probability

and severity of disasters, I explicitly model disaster realization as drawn from a Poisson

distribution, the perceived probability of a disaster drawn from a Gamma distribution that

is updated depending on the realization of a disaster shock (from the data), and I separately

calibrate exogenous severity of disasters, both in terms of productivity loss and in terms of

wealth decline. Using these measures, I construct the FG disaster resilience parameter, verify

its mean-reverting properties, and estimate its dynamics to feed the mean-reversion speed

back into the model to produce a closed-form solution fully consistent with the FG setup.

The rest of the parameters are calibrated based on the available data for each country.

I simulate the model for 47 countries for the sample period 1964-2019 using actual data

and for a training pre-sample period of 100 years using FG calibration (except for the Poisson

parameter and simulated disaster arrival rate). The model produces two main variables that

are used in empirical analysis: resilience parameter, which determines whether the currency

is risky or safe when it comes to the effects of disasters on asset prices, and simulated real

exchange rate. FG model defines safe currencies as those that are more likely to appreciate

following disasters and risky currencies that are more likely to depreciate. When I classify

currencies into safe and risky based on their average resilience, simulated exchange rates

behave exactly in this manner.6 I further decompose the total effect of disasters into impact

effect that is due to productivity decline and the forward-looking effect that is due to changes

5This set-up is based on Gabaix (2008). Alternative models, such as Guo (2007) or Lewis and Liu (2017)
are, of course, possible. However, in addition to FG’s own analysis, Gupta et al. (2018) demonstrate empirical
relevance of the FG model by studying responses of currency returns and volatility to political disasters.

6In my data, countries that are classified as risky tend to have higher pre-disaster TFP growth rate but
experience larger TFP losses following disasters and are less likely to rely on fuel exports.
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in expectations of future losses. Both effects are quantitatively important in the model.

In terms of magnitudes, the model predicts a relatively small real depreciation for risky

countries, but the effect is persistent.

Observed real exchange rates do not respond to the disaster shocks as predicted by the

model. In fact, for the full sample, we observe no significant difference in real exchange rate

reaction to disasters between risky and safe currencies — both tend to appreciate by about

the same amount.7 When I control for share of exports in GDP, risky currencies do show

some depreciation in the data, but it is not statistically significant and the dynamics are

quite different from those predicted by the model. Repeating analysis for more recent years,

I find that depreciation of risky currencies is more pronounced, but is still only temporary.

These results show that real exchange rate reaction to climate-related disasters is not

consistent with the update of beliefs about the distribution of climate disaster occurrences

and costs. It is possible if the belief update will be more pronounced in the data going

forward. That said, the model predicts a relatively small magnitude of the real depreciation,

meaning that real exchange alone is not likely to be a major mechanism for the impact of

physical climate shocks, at least for the small open economies that are price takers on their

export markets.

This paper contributes to the rapidly growing literature on the pricing of climate-related

risks. To my knowledge, it is a first model-based study of the effects of physical climate

risks on real exchange rate.8 Proposed framework can be easily updated going forward as

attention to climate risks increases across economic agents.

The paper first presents background empirical analysis of climate-related disaster fre-

quency. This analysis is novel but confirms other studies that find increased frequency

of climate-related disasters. In addition, this background analysis provides parameters for

model calibration. Next I briefly summarize FG model setup and present the extension of

the model to incorporate explicit belief formation and the approach to model calibration.

Finally, I compare simulated real exchange rate behavior with that observed in the data and

then conclude.

7Risky currencies revert to pre-disaster values in the following year while safe currencies remain appreci-
ated.

8Cheema-Fox et al. (2021) study the effects of physical climate risks on nominal short-run returns on
portfolios of currencies outside G-10.
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2 Data and background empirical analysis

As a first step, I document that the frequency of climate-related physical disasters increased

rapidly in recent decades.

2.1 Disaster frequency

Climate-related natural disaster data are from The Emergency Events Database (EM-DAT)

housed at the Centre for Research on the Epidemiology of Disasters (CRED), University of

Louvain. It provides data of disaster events worldwide from 1900 to present. To be included

in the data, at least one of the following criteria must be fulfilled: 10 or more human

deaths; 100 or more people injured or left homeless; declaration by the country of a state of

emergency; an appeal for international assistance. This data set provides monthly count of

events by disaster subgroups: geophysical, meteorological, hydrological, climatological, and

biological, of which I retain climate-related disaster events: climatological, which includes

wildfire and drought; meteorological, which includes extreme temperaatures and storms;

hydrological, which includes floods.

I use the annual count of the sum of the three event types to estimate the Poisson regression

for each country for each of the four 30-year periods: 1900-1930, 1930-1960, 1960-1990, and

1990-2021. The results are reported in Figure 1 as distribution of Poisson parameters λit for

each time period t across all countries i in the sample. We can observe a steady increase

in the incidence of climate-related disasters. One has to acknowledge, however, that there

might be an increase in the reporting frequency that contributes to this growth, especially

because new countries are added to the sample. For this reason, the analysis is based on

country-specific estimates. However, I also estimate the full sample Poisson regression in

Table 1, where I report predicted λt for each time period t for the panel of countries.9 By

comparison, non-climate disasters, such as volcanic eruptions and earthquakes, only show a

mild increase in the frequency of their occurrence (See Table A.1), indicating that reporting

frequency is likely to have a limited effect on the recorded occurrence of climate-related

disasters.

The dataset also includes monthly number of deaths, number of people affected, and

economic losses in USD. I use economic losses, deflated by the U.S. CPI as a share of

nominal GDP in USD to calibrate economic damages from the disaster. I aggregate these

data to country-year level and use them to calibrate an exogenous parameter of the disaster

9Estimating a negative binomial model that allows for overdispersion produces nearly identical results,
indicating that Poisson regression is a good fit.
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severity for each period and each country.

2.2 Other data sources

Real exchange rates (real effective exchange rate indexes) are from Global Financial Data.

For most countries, excluding former Soviet block, these are available starting 1964 and

through 2014. GDP, TFP at constant national prices (2017=1), and export share are from

Penn World Table (PWT).

2.3 Simple regression

With these data we can run a panel local projections regression at annual frequency

ŝit+τ = αi +DNit + εit+τ , τ ∈ {0, 4}, (1)

where ŝit+τ is the percentage appreciation in the real exchange rate, αi are country fixed

effects, DNit is the number of disasters that occurred in country i in year t, and ε is a

standard error.

The results are reported in Figure 2 with shaded areas representing one standard deviation

error band. We can see initial appreciation that is not statistically significant, followed by a

depreciation two years later.

3 Theoretical framework

Real exchange rate can be viewed as an asset that is priced based on the expectation of

future stream of production and endowments in each country, thus representing relative net

present discounted values of the economies. Such is a set-up of Farhi and Gabaix (2015)

model (FG). If we augment the FG model with Bayesian update of the expected probability

of the disaster that is driven by disaster realizations, we can think of this setting as markets

fully incorporating physical climate change risks by recognizing increasing disaster frequency.

This model predicts an ambiguous effect of a natural disaster realization, which reduces

present value of future tradeable good production (which leads to real depreciation of the

currency), while increasing the present discounted value of the future cash flow by increasing

stochastic discount factor (SDF) (which leads to real appreciation of the currency).

I first give a brief description of the FG model set-up and then describe in detail my

modifications and additions to the model.
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3.1 Macroeconomic environment

The world consists of n stochastic infinite horizon small open economies. Each economy

consumes 2 goods (tradeable good Y and non-tradeable good Z), good Y is common across

countries, Z is country-specific. Consumers combine the two goods with the constant elas-

ticity of substitution (CES) utility with constant relative risk aversion (CRRA) coefficient γ

and substitution elasticity σ. Each country gets random endowments of Y and Z and can

use Z to produce more Y with productivity parameter ωit that grows exogenously at rate

ω̂it. Financial markets are complete.

Disasters affect production and consumption. Effect on consumption can be summarized

by the effect on pricing kernel

M∗
t+1

M∗
t

=

{
e−R, Dt+1 = 0

e−RB−γ
t+1, Dt+1 = 1,

(2)

where D is an indicator of a disaster occurrence (0 or 1).

Similarly, productivity is affected by disasters

ωit+1

ωit

=

{
egωi , Dt+1 = 0

egωiFit+1, Dt+1 = 1
(3)

FG show that a sufficient statistic for solving the model is the “resilience” H of a country

to disasters.

Hit = ptED
t

[
B−γ

t+1Fit+1 − 1
]
, (4)

where p is disaster probability. H can be decomposed as into constant and time-varying

components Hit = Hi∗ + Ĥit where. Ĥit+1 has to satisfy

Ĥit+1 =
1 +Hi∗

1 +Hit

e−ϕiĤit + εit+1 (5)

with mean-reversion parameter ϕ.

In addition to explicitly modeling resilience parameter, I make a number of small modifi-

cations to this FG set-up that facilitate calibration process.

• Welfare loss B is country and time-varying, not just time-varying, Bit

• Productivity loss F is country-varying, but not time-varying, Fi
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• Disaster probability p is country and time-varying, pit

• Time-invarying country-specific component Hi∗ of H is replaced with time-varying but

slow-moving component H it

• Mean-reversion parameter ϕ is country and time-varying ϕit

Thus, in the modified model the resilience of a country is

Hit = pitED
t

[
B−γ

it+1Fi − 1
]
, (6)

which is decomposed as Hit = H it + Ĥit where

Ĥit+1 =
1 +H it

1 +Hit

e−ϕitĤit + εit+1 (7)

FG derive a closed form solution for the real exchange rate e for country i in year t.

eit =
ωit

rit

(
1 +

Ĥit

rit + ϕit

)
, (8)

where rit = R + δ − ω̂it − ln(1 +H∗
it), R is consumption growth rate, δ is depreciation rate,

ωit and ω̂it are productivity and productivity growth rate.

3.2 Belief update

In FG model, expectations of disaster probability and related loss are modeled as global

and exogenous, while productivity loss is country-specific and also exogenous. Instead of

calibrating these parameters separately, the authors combine them into a sufficient summary

statistic, disaster resilience parameter H, for which they assert a linearity-generating process

as described in the previous section. I use the following approach to unpack the process and

to model the components explicitly so that I can calibrate them to each country in the data.

Disaster Probability p. Based on the results of the disaster data analysis, disasters

are assumed to arrive with Poisson distribution with parameter λit. DNit is an observed

number of disasters in i in year t and is used by economic agents to update their believe

about disaster probability pit. A prior about disaster arrival rate, with full history that is

updated each period, is θit−1. Posterior belief about λit is a realization θit of a Gamma

distribution with scale 1/t and shape αit = DNit +
∑t−1

s=0 αst. Thus, probability of at least
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one disaster occurring in year t+ 1

pit = 1− e−θit . (9)

Welfare loss B. Parameter 0 < Bit < 1 affects the pricing kernel and is measuring

the expected impact of a future disaster on the consumption basket, which includes both

tradeable and non-tradeable consumption. I assume static expectations of this parameter by

calibrating it to the most recent, as of period-t, disaster impact measure: Et(Bit+1) = Bit,

where Bit is the latest observed realized disaster loss experienced when the last disaster prior

to t occurred. If there were no prior disasters, B = 1, i.e. no loss.

Productivity loss F . I assume that the expected disaster-related productivity loss is

country-specific, but not time-varying, that is Fit = Fi ∀ t. However, each disaster leads to

a permanent reduction of productivity by a factor Fi: ωD
it = ωND

it Fi.
10 This parameter is

calibrated from regression of ∆TFP on the 0/1 indicator of disaster D in a previous year

TFPit = ai + βi,TFPDit−1 + εit, Fi = 1−max{0, βi,TFP}. (10)

Mean-reversion parameter ϕ and slow-moving component of H. The above pa-

rameters allow to calculate H as

Hit = pit[B
−γ
it Fi − 1]. (11)

I compute the slow-moving component of H as a moving average of the past history of

resilience parameter H it = 1/t ∗
∑t

s=0His. Then Ĥit = Hit −H it.

Next, I estimate ϕit from country-by country AR(1) looking backward in each period t

Ĥis = ait + bitĤis−1 + εis, s ∈ [0, t] (12)

ϕit = − ln

(
bit

1 +Hit

1 +H it

)
. (13)

Thus, the model structure remains unchanged, but I can now calibrate pit, Bit, Fi, and ϕit

10Ibarrarán et al. (2007) argue that there are important cumulative macroeconomic effects of natural
disasters, while Kalkuhl and Wenz (2020) estimate substantial decline in productivity resulting from climate
change even in the absence of extreme weather events. Felbermayr and Gröschl (2014) find a significant
negative effects of natural disasters on economic growth.
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explicitly to compute resilience parameter.

3.3 Calibration

I simulate the model for each country for which the data are available. In order to have

sufficient observations for computing moving averages and the autoregression necessary to

recover ϕit, I first run 100 periods differently than last 55 period which correspond to 1964-

2019 sample for which actual data are available. For this pre-sample, calibration is taken

directly from FG, with the exception of disaster probability and occurrence: disaster re-

alization is drawn from the Poisson distribution with λi that corresponds to estimates for

that country in 1930-1960,11 disaster probability is computed based on the same update as

described above. Table 2 summarizes all parameter sources and values or value ranges.

For country-specific variables calibration is as follows.

• Non-traded good sector is assumed to grow at 2.5 percent per year following FG.

• Traded good sector productivity and its growth rate is calibrated as the TFP growth

rate from Penn World Table to construct ωit = (1+ ω̂it)ωit−1 in the absence of natural

disasters. For each disaster observed, ωit is permanently reduced by a country-specific

factor Fi, which represents productivity loss that is due to disasters. ω̂i0 in the pre-

sample is set to 1 ∀ i as in FG.

• To obtain Fi I regress, for each country, change in the TFP on the 0/1 indicator

of whether a climate-related disaster occured in a previous year. I use estimated

coefficient βi,TFP as a measure of productivity loss due to a disaster. If the estimated

coefficient is positive, productivity loss is set to zero. Thus, for the sample period

Fi = 1 −max{0, βi,TFP}. Distribution of βi,TFP is reported in Appendix Figure A.1.

For pre-sample, Fi = 1∀ i as in FG.

• Number of disaster realizations Dit is taken directly from the data in sample. In pre-

sample it is drawn from the Poisson distribution with country-specific λi estimated for

1930-1960 for each country.

• Bit as 1 - observed total disaster losses as a share of GDP. This parameter is set to be

equal to the most recently observed disaster loss for years with no disasters. For the

pre-sample Bit = 0.66∀ i ∀ t as in FG.

11For countries where no disasters are observed or reported prior to 1960 this value is set to zero.
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The effect of disasters on model-simulated real exchange rate ê can be decomposed into

two channels: the immediate impact on productivity and the effect on resilience through

expectations update, which includes future productivity reduction. In model simulation

I decompose this two channels by first shutting down completely the expectation channel

as Ĥit = 0 ∀i ∀t. The only effect is from productivity loss in disaster year as in this case

êĤ=0,it = ωit/rit. The second channel êF=1,it can be isolated by shutting down immediate

productivity loss: Fi = 1∀i in the disaster year. The only effect is from changes in Ĥit, to

which calibrated Fi still enters.

4 Comparing model predictions with the data

Two main parameters are taken from model simulation — the time-varying component of

the resilience parameter Ĥit and simulated real exchange rate eit. Table 3 reports summary

statistics for these parameters as well as disaster probability pit, resilience parameter Hit, its

permanent (or slow-moving) component H it, its mean-reversion parameter ϕit, and interest

rate rit = R + δ − ω̂it − ln(1 + H∗
it). The simulated parameters are produced for the full

balanced panel of countries in the sample and are compared to the FG calibration. Because

real exchange rate data are not available for the full balanced panel, I also provide summary

statistics for these parameters for only the observations with non-missing real exchange rates.

We can see that the distribution in the unbalanced panel is not very different than for the

balanced panel.

Together with calibrate parameters reported in Table 2, these are all the inputs needed

for calculation of the simulated real exchange rate. I compare the response of simulated

real exchange rate to climate-related disasters with those observed in the data. To do so,

I compute annual percentage appreciation ê of simulated real exchange rate e and annual

percentage appreciation ŝ of observed real exchange rate s for each country in the sample for

years 1964-2014. To simplify the comparison, I normalize and standardize the distribution

of ê and ŝ across the entire sample (not country-by-country).

FG model predicts differential effect of disasters for countries that are risky (have low

time-varying portion of disaster resilience Ĥ) and those that are safe. Risky currencies

are expected to depreciate in response to disasters while safe currencies are expected to

appreciate. I split all countries into risky (average Ĥ across all years in the sample is

negative) and safe and compare ê and ŝ across these groups in the years with disasters (any

positive number of disasters) and years without disasters. I chose Ĥ = 0 as a threshold for

this definition because it is near median in the sample. Appendix Table A.2 reports the

differences in relevant characteristics of countries classified as safe or risky. Risky countries
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have higher TFP growth and lower share of fuel exports on average.

Table 4 reports the results of the comparison between model and data response to disasters

for safe and risky countries.12 For the model, I report, in addition to the response of the

exchange rate, the response that is due to immediate impact of productivity loss êĤ=0 and

the response that is due to the change in resilience parameter, removing time t productivity

loss, êF=1. For the data, I report year t response as well as a year t+1 response, in order to

account for cases when disaster might have occurred towards the end of the year. We can see

that in the absence of disasters, on average, there is slight currency appreciation of simulated

exchange rates for all countries and depreciation of actual exchange rates for risky countries.

In disaster years the model predicts appreciation of safe currencies and depreciation of risky

currencies with difference strongly statistically significant and both components playing an

important role. In the data, however, we do not observe this difference in the disaster year.

Instead, both safe and risky currencies appreciate by the amount that is not statistically

different between the two groups. In the year following disasters, we observe a smaller

appreciation in risky countries than in safe countries on average, but the difference is not

statistically significant.

I next analyze dynamic response of real exchange rate to disasters, using local projection

regressions similar to the regression in (1), which I estimate for model-generated exchange

rate and its components as well as for the real appreciation in the data. To simplify in-

terpretation, I scale the number of disasters in the data, DN , by the average number of

disasters per country-year (1.85 in the full sample). So that the impulse response represents

a response to one disaster. In the data regressions I control for the share of exports in GDP

for each country. I continue to include country fixed effects.

The main results are reported in Figure 3, which plots impulse responses to a disaster

occurrence in the model and the data. We can clearly see a substantial and persistent real

depreciation predicted by the model, with both impact and persistent components playing

an important role (decomposition is reported in Figure 4. In terms of the magnitudes, the

effects are not very large: the impact effect is about 10% of the standard deviation, while

the persistent effect is half as large. Given that the effect is very persistent, however, a

cumulative appreciation over a number of years becomes non-negligible.

In the data, we observed a one-year delayed depreciation for risky countries of about the

same magnitude, but it is not statistically significant and is short-lived. Thus, data response

is not consistent with response predicted by the model.

I next test whether these predictions changed over time. Unfortunately, real exchange rates

12The sample includes a number of countries that are in the euro area. As a robustness test, I dropped
all euro area countries except for Germany. The results were not different.
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are not consistently available after 2014, and therefore I cannot test for the effects of the 2015

Paris Accord (COP21). Instead, I split the sample roughly in half, before and after 1990.

This split also coincides with the publication of the first report of the Intergovernmental

Panel on Climate Change (IPCC) in 1988. I repeat the analysis, for both model and data,

for these two subsamples. The results are reported in Figures 5 and 6. In these regressions

I scale the number of disasters by their subsample means, 0.58 and 3.17, respectively,

We can see that prior to 1990 the data for safe countries is quite in line with the model,

but for risky countries we actually observe real appreciation 2 years following the disaster.

This is not surprising given that climate change was not much discussed in these decades.

After 1990, the model continues to predict persistent real depreciation, but in the data we

still see the pattern that is similar to the full sample, a delayed real depreciation that is not

persistent. Note, however, that the average number of disasters in the data is much higher

during this more recent time period, which means that overall response is larger than the

figures show.

4.1 Robustness tests

I conduct a number of robustness tests for the local projection regression for the data.

In particular, I exclude controls for export share and find that the results do not change

substantially.

While there are many variables that can affect real exchange rates, there might be a concern

that some are correlated with countries classification into safe and risky. In particular, I test

whether controlling for the exchange rate regime using recent dataset by Harms and Knaze

(2021) or the share of fuel exports in total exports changes the results. I find that these

variables limit the sample and do not change results, which is why they are not included in

benchmark specification.

Alternatively, I re-estimated both model and data regressions excluding countries with

export share more than 25%. I find that these countries are not driving the results.

Finally, the results are qualitatively the same if instead of scaled count of disasters I use

a 0/1 disaster indicator.

5 Conclusion

Frequency and severity of climate-related disasters increased in recent decades. In a forward-

looking model with rare disasters I allow agents to update their beliefs about such disasters
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accordingly. The model predicts a persistent real depreciation for risky countries following

such disasters. This effect is due to both an immediate productivity loss and expectation

of future losses and future disaster probability. For most of the sample, such effect is not

observed in the data, that is, physical climate risks, as measured by climate-related disasters,

do not appear to be priced in the real exchange rates.

Will there be a “wake-up call” for the markets? It is possible that as changes in climate

disaster distribution become more obvious, markets will start incorporating these changes

through the update of their beliefs about frequency and severity of disasters. Given that the

model predicts the magnitude of real depreciation for risky countries to be quite modest, it

is possible that real exchange rate will not be the main mechanism for these physical risks’

effect on the economies.

There are two ways in which these results should not be generalized. First, I explicitly did

not model export price changes as a result of productivity loss, so the results only apply to

countries that are price-takers on their export markets. Second, I do not evaluate the effect

of transition risks that might have large term-of-trade effects. I leave it for future analysis,

as FG framework is not appropriate for quantifying effects of transition risks such as changes

in policies, preferences, or technologies.
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Figure 1: Distribution of the Poisson parameter
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Notes: Reported is the distribution of the estimates of the Poisson regression parameter for each country
and each sub-period. Input data are annual frequency. No control variables are included in the regression.
In the first period only 25 countries reported any disasters, in the second period, 67 countries, in the third
period, 150 countries, and in the final period 193 countries.
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Figure 2: Response of real exchange rate to an additional disaster
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Notes: country fixed effects included in the regressions. No other controls are included.
Shaded area represents one standard error band.

18



Figure 3: Dynamic response to one disaster
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Note: Average number of disasters in the sample is 1.85. Local projection models with country fixed effects.
Data regressions control for export share of GDP. Countries are classified into risky and safe depending on
whether their average time-varying component of resilience is negative or positive, respectively. Shaded area
represents one standard error band.
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Figure 4: Dynamic response to one disaster: model decomposition
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Note: Average number of disasters in the sample is 1.85. Local projection models with country fixed effects.
Data regressions control for export share of GDP. Countries are classified into risky and safe depending on
whether their average time-varying component of resilience is negative or positive, respectively. Shaded area
represents one standard error band.
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Figure 5: Dynamic response to one disaster: 1963-1989
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Note: Average number of disasters in the sample is 0.58. Local projection models with country fixed effects.
Data regressions control for export share of GDP. Countries are classified into risky and safe depending on
whether their average time-varying component of resilience is negative or positive, respectively. Shaded area
represents one standard error band.
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Figure 6: Dynamic response to one disaster: 1990-2014
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Note: Average number of disasters in the sample is 3.17. Local projection models with country fixed effects.
Data regressions control for export share of GDP. Countries are classified into risky and safe depending on
whether their average time-varying component of resilience is negative or positive, respectively. Shaded area
represents one standard error band.
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Table 1: Distribution of climate disasters in the full sample

Time period λ Std. Err.λ z P > |z| 95 % Conf. Interval

1900-1930 0.0142 0 .0017 8.54 0.000 0 .011 0.017

1930-1960 0.0572 0.0031 18.44 0.000 0.051 0.063

1960-1990 0.397 0.0082 48.54 0.000 0.381 0.413

1990-2021 1.474 0.015 96.63 0.000 1.444 1.504

Notes: Poisson regression results for the panel of all countries and full sample, with Poisson parameter λ
predicted for each time period using Delta-method.

Table 2: Calibrated parameter values and sources

Parameter Value or range Source

Constants

CRRA (γ) 4 FG

Rate of time preference (ρ) 0.059 FG

Depreciation rate (δ) 0.055 FG

Growth rate of global consumption (R) ρ+ γ ∗ 0.025 = 0.159 FG

Country-varying

1 - Productivity loss from a disaster (F ) [0.985; 1] Regression analysis: Figure A.1

Country-time-varying

Productivity (ω) [0.32; 6.13] TFP from PWT

Productivity growth (ω̂) [-0.32 ; 0.31] % change of TFP from PWT

Disaster realization (D) {0 ; 35} EM-DAT

1 - Disaster loss (B) [0.89; 1] Disaster damages (EM-DAT) / GDP (PWT)

Notes: Ranges for variables are reported for the estimation sample 1964-2019. See text for pre-sample values.
Countries included are Argentina, Australia, Austria, Belgium, Bulgaria, Brazil, Canada, Switzerland, Chile,
China, Cyprus, Czech Republic, Germany, Denmark, Spain, Finland, France, UK, Greece, Hong Kong, Hungary,
Indonesia, India, Ireland, Iceland, Israel, Italy, Japan, Korea, Mexico, Malaysia, Netherlands, Norway, New
Zealand, Peru, Philippines, Poland, Portugal, Romania, Saudi Arabia, Sweden, Thailand, Turkey, Taiwan,
USA, Venezuela, South Africa. FG is Farhi and Gabaix (2015), PWT is Penn World Tables, and EM-DAT is
The Emergency Events Database.
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Table 3: Distribution of main simulated parameters

Mean Std.Dev. Min Max FG

Balanced panel

e 4.300 2.410 -5.604 28.633 (.)

p 0.128 0.189 0.000 0.990 = 0.036

Ĥ 0.001 0.006 -0.006 0.213 (.)

H 0.001 0.006 -0.007 0.212 s.d. = 0.0187

H∗ = H 0.000 0.000 -0.001 0.002 = 0.154

ϕ 0.111 0.223 0.026 4.996 = 0.18

r 0.208 0.032 -0.097 0.473 = 0.06

Unbalanced panel

e 3.918 1.276 0.411 18.54

p 0.177 0.201 0.000 0.990

Ĥ 0.001 0.007 -0.006 0.213

H 0.001 0.007 -0.007 0.212

H∗ = H 0.000 0.000 -0.001 0.002

ϕ 0.144 0.255 0.026 4.996

r 0.206 0.025 0.077 0.382

Notes: Parameters from the model simulation. 47 countries as listed in Table 2, 1964-2014. The top portion
reports the results for the balanced panel: 2397 observations for each variable. The bottom portion limits
the sample to that for which real exchange rate index is available in the data, an unbalanced panel with 1735
observations.
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Table 4: Comparing model predictions and data for real appreciation: Full sample

No disasters Disasters

Safe Risky Safe Risky

Mean / N Mean / N Diff / P-val Mean / N Mean / N Diff / P-val

ê 0.109 0.041 0.069 0.035 -0.098 0.133***

1024 277 (0.422) 761 335 (0.002)

êĤ=0 0.109 0.041 0.069 0.034 -0.098 0.132***

1024 277 (0.423) 761 335 (0.002)

êF=1 0.101 0.032 0.069 0.063 0.010 0.053

1024 277 (0.422) 761 335 (0.208)

ŝ 0.045 -0.088 0.133 0.124 0.101 0.022

402 207 (0.252) 746 333 (0.860)

ŝt+1 0.085 0.026 0.059 0.102 0.031 0.072

411 213 (0.654) 737 327 (0.558)

Obs 1301 1096

Notes: T-tests of the difference between safe and risky countries’ real appreciation in years with and without
disasters. ê is model-generated real appreciation decomposed into êĤ=0 and êF=1 as described in the text. ŝ
is real appreciation in the data in the disaster year, ŝt+1 in the following year. Countries are classified into
risky and safe depending on whether their average time-varying component of resilience is negative or positive,
respectively. N is number of observations in each subsample. * significant at 10%, ** 5%, *** 1%. Safe countries
are: Countries included are Argentina, Australia, Belgium, Bulgaria, China, Cyprus, Czech Republic, Denmark,
UK, Hong Kong, Hungary, India, Ireland, Iceland, Korea,Malaysia, Norway, New Zealand, Philippines, Poland,
Portugal, Romania, Saudi Arabia, Sweden, Thailand, Turkey, Venezuela, South Africa. Risky countries are:
Austria, Brazil, Canada, Switzerland, Chile, Germany, Spain, Finland, France, Greece, Indonesia, Israel, Italy,
Japan, Mexico, Netherlands, Peru, Taiwan, USA.
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A Appendix

Table A.1: Distribution of non-climate disasters in the full sample

Time period λ Std. Err.λ z P > |z| 95 % Conf. Interval

1900-1930 1.14 0.095 12.04 0.000 0.96 1.33

1930-1960 1.29 0.084 15.23 0.000 1.12 1.45

1960-1990 1.39 0.054 25.63 0.000 1.28 1.50

1990-2021 1.68 0.035 48.11 0.000 1.61 1.75

Notes: Poisson regression results for the panel of all countries and full sample, with Poisson parameter λ
predicted for each time period using Delta-method. Only disasters that are not climate-related are included.

Table A.2: Risky and safe countries

Safe countries Risky countries Difference

Export/GDP 0.266 0.277 -0.012

(0.231)

TFP growth rate (% per year) 0.004 0.010 -0.006***

(0.000)

Share of Fuel Exports (%) 12.444 4.726 7.718***

(0.000)

F = max(1, 1− βi,TFP ) 0.998 0.989 0.009***

(0.000)

Average B 0.998 0.997 0.000***

(0.003)

Flexibility of ER regime 2.833 2.371 0.463***

(0.000)

Emerging economy (0/1) 0.694 0.382 0.312***

(0.000)

Observations 1785 612

Notes: T-tests for the panel of all countries between 1964 and 2014, Countries are classified into risky and safe
depending on whether their average time-varying component of resilience is negative or positive, respectively.
P-values are in parentheses. * significant at 10%, ** 5%, *** 1%.
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Effect of disaster on productivity

To proxy for the productivity effects of disasters Fi I estimate, for each country, a simple

regression of a TFP change on an indicator of a disaster in the previous year.

ω̂it = αi + βi,TFP I(Dit−1 > 0) + εit,TFP (14)

The estimates βi,TFP are reported in Figure A.1. For countries where the estimates are

positive, Fi is set to be equal to 1. For those with negative estimates, Fi = 1− βi,TFP .

Figure A.1: Estimates of βi,TFP
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