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1. INTRODUCTION 

A defining aspect of the digital age is the use of data, specifically large stores of digitized 

information referred to as “bigdata.”  Much popular work on bigdata appears in the business 

strategy literature. By a very long way, the best-selling book on the subject is “Big Data: A 

Revolution That Will Transform How We Live, Work, and Think” by Mayer-Schönberger and 

Cukier (2013). The book makes several statistical claims, suggesting that data will be used to 

disprove much casually held causal intuition and reduce many measurement problems—in line 

with some economists who describe the transformational promise of digital tools that adjust 

themselves to perform better as they are exposed to more and more data (e.g., Brynjolfsson 

and McAfee 2014) and assertions in the press that data is the new oil (e.g., The Economist 

Magazine 2017).   

These statements—some from nearly a decade ago—would imply that data has had significant 

impacts on economic activity.  But has it?  Economic growth has slowed globally, and business 

productivity performance has been subpar. Though the ease with which business users can 

deploy modern digital tools needed to derive knowledge from data is frequently suggested as 

reason for this subpar performance, the very purpose of modern software and computing 

systems hosted in the cloud is to reduce technical barriers to user engagement in data analysis. 

As it seems unlikely that there has been a failure in the inherent productivity of AI and cloud-

based technologies, this paper looks to the character of knowledge gained through data itself 

as a contributor to the slowdown in productivity growth.  

Data is conceptualized as an intangible asset in this paper: a storable, nonrival (yet excludable) 

factor input that is only partially captured in existing macroeconomic and financial statistics.  A 

framework for capturing asset creation based on all digitized information that is processed and 

transformed into useable knowledge, or data capital, in an economy is set out in this paper, a 

framework amenable to measurement and quantitative analysis.   

A contribution of this paper is the development of estimates of data capital coherent with both 

national accounts and widely used concepts in the intangible capital literature at the industry-

level of analysis. We find that data assets, from stores of raw data to actionable intelligence 

derived via data analytic tools, are largely subsumed within the intangible capital framework 

attributable to Corrado, Hulten, and Sichel (2005, 2009), shown in figure 1. The analysis of data 

in this paper models the economic impacts of data capital using this framework, emphasizing 

how the relative importance of data capital within intangible capital lowers intangible asset 

prices and strengthens the (partial) appropriability of the asset class.  
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The goal of the paper is to model and 

estimate the impact of these changes 

due to the increased use of data in 

economies on (a) intangible capital 

and (b) productivity. We thus first 

address concepts associated with 

value creation due to data and 

assess how these concepts are 

covered in available measures of 

intangible capital.  

After modeling how data capital, 

innovation, and productivity are 

related, the consequences for labor 

productivity of the increased use of 

data capital according to its breadth of use and relative efficiency in production are calibrated. 

We conclude by using our findings from the conceptual and empirical analysis of the 

relationship between data assets and intangibles to interpret the recent slowdown in total 

factor productivity. The analysis makes use of the recently issued EUKLEMS & INTANProd 

database, which includes estimates of intangible investment per figure 1 for EU countries, 

Japan, United Kingdom, and the United States. 

Relation to recent literature 

Approaches to the measurement of data are summarized in the measurement section. Here we 

attempt to place our empirical macro findings in the context of models that focus on economic 

mechanisms affected by data. 

The innovative potential of data as an intangible asset rests in its ability to yield competitive 

returns to owners and “spillovers” elsewhere in an economy. Spillovers are produced when a 

technology or business idea is adopted relatively costlessly (or copied) by multiple firms in an 

economy, e.g., a blueprint or original software tool (Romer 1990, Jones 2005).  Owing to this 

nonrival property, intangible assets are only partially appropriable by their owners/creators, 

creating a situation in which the asset class has increasing returns at the macro level.  

At the micro level, data is usually assumed to have diminishing returns, e.g., Varian (2019) 

points out that there are diminishing returns to more and more training data fed to AI 

algorithms. Jones and Tonetti (2020) formulate an aggregate model of data in an economy in 

which data is a productive intermediate input with diminishing returns, not a “technology” that 

leads to increasing returns. In the intangible capital model set out in section 3, data are 

Virtually all components of intangible capital are 
potentially driven by data…. 
 
 

Figure 1  Intangible Capital: Broad groups and investment types 
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productive long-lived assets whose value stems in part from the application of data 

technologies. There are obvious differences between these approaches (e.g., data as an 

intermediate vs data as capital). The stylized Jones and Tonetti model is designed to highlight 

the aggregate welfare impacts of data sharing, while the intangibles framework applies to 

analyzing data value creation via business investment. The data/intangible capital approach of 

section 2 combined with the existence of productivity spillovers is a close representation of the 

welfare-enhancing processes theorized by Jones and Tonetti in that (a) data assets have 

diminishing returns in production but (b) returns to data asset ownership may spill over to 

other firms to the extent they are shared within an industry or economy.  

Many models attribute rising market power and/or industry concentration to scale economies 

of intangible assets at the firm level (e.g., Crouzet and Eberly 2019, De Ridder 2019), suggesting 

that firm-level studies assessing changes in competitive conditions that ignore intangibles likely 

obtain biased results (due to the usual omitted variable bias argument). Closer to our findings 

are studies that attribute declining business dynamism to a slowdown in knowledge diffusion 

and offer that proprietary data play a larger role in modern production processes as a plausible 

story for slowdown (e.g., Akcigit and Ates 2021). Such a breakdown might occur if, in innovative 

data-intensive firms, diminishing returns to data assets can co-exist with rising market power or 

cost advantages due to scope economies and local scale effects.1 Firms may also amass market 

power due to agglomeration effects that weaken the law of diminishing returns, e.g. by 

recombining data for different uses.2 And sometimes an industry’s scope of operations expands 

due to outside developments that create external economies of scale, e.g. network externalities 

enjoyed by social media and other digital sharing platforms.  

The contribution of this paper is to offer a framework and macroeconomic empirics in line with 

the primary development behind the foregoing concerns—the increased use of data—and we 

hope, in so doing, that we can sharpen our understanding of the divergent perceptions its 

impact on economic activity. 

2. DATA VALUE CREATION 
 

 
1 Unlike economies of scale, where unit costs fall as the volume of production rises, economies of scope are 
efficiencies that arise from variety, not volume, creating a situation where a company’s average cost of production 
falls with product diversification.  Economies of scope are often characterized by local cost complementarities 
among factors of production as well as the existence of fixed costs, especially in large enterprises (e.g., marketing, 
supply-chains, distribution systems, etc.).  
2 As used here, agglomeration effects refer to the fact that proprietary data assets of one type may be combined 
with another type to generate whole new uses or solutions, and to the extent this occurs within a single firm, it 
weakens the effect of diminishing returns to data.   
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Rise of Proprietary Data 

Consider first examples of data use in modern economies. Table 1 lists examples of data uses, 

grouped according to whether the use is rival or nonrival.  Though data is inherently nonrival, 

the classifications in the table are designed to reflect the degree to which data are openly 

shared with the public or other organizations in an industry (or the economy).  

As may be seen, the uses listed on lines 1–5 mainly reflect applications of new digital 

technologies by firms, i.e., digital platform-based businesses and/or applications of machine 

learning and other AI-based algorithms to massive data. Product-led growth strategies (line 6) 

refers to marketing innovations based on user feedback data (also enabled by new 

technologies). Line 7, customer lists and after-sales customer feedback, long have been inputs 

to brand development, marketing, and customer retention strategies. 

Examples of “nonrival” data use range from “new technology” marketers of personal data for 

B2C companies (line 8), to examples of longer-standing industry-level data sharing, e.g., 

financial records held by credit bureaus and shared across financial institutions (line 9), vehicle 

accident and major repair records shared by buyers and sellers in used car markets (line 10), 

and personal medical records shared across providers of medical care services (line 11), to 

cross-platform and cross-purpose uses (lines 12 and 13).  Finally, the table lists two examples of 

government open data. 

The examples in the table suggest that 

data has much potential for wide use 

and industry benefit when shared, 

though many of the “new” 

applications involve exclusive, 

proprietary use (mainly in marketing 

but also digital manufacturing 

operations). 

Consumer privacy protection also 

engenders near exclusive use of 

business-held data—and excludability 

via policies that prohibit re-using of 

data (e.g., lifestyle data collected by 

marketers used for precision medicine 

solutions) potentially affects the pace 

of digital innovation. Conversely, 

policy intervention may be needed to 

TABLE 1. EXAMPLES OF DATA USE 
Rival 

1. Product-level forecasting (e.g., Amazon) 
2. A/B Internet testing and marketing (e.g., Google) 
3. IoT factory systems (e.g., Siemens) 
4. Targeted advertising on consumer content platforms 
5. Fintech (e.g., algorithmic trading, digital lending, etc.) 
6. Product-led growth strategies (e.g., Slack) 
7. Customer lists/after sales services design 

 
Nonrival  

8. DaaS (Data as a Service) platforms (e.g., BDEX) 
9. Financial records (FICO scores) 
10. Vehicle records (CARFAX reports) 
11. Personal medical records (across service providers) 
12. Open-source data generated by web users (map data)  
13. Private by-product data put to alternative uses (e.g., 

Zillow data used for economic research) 
14. Genomic and other public biomedical research data 
15. Official statistics (economic, demographic, social) 

Note: Data is inherently nonrival, and classifications reflect the degree 
to which owners share data with other organizations or the public. 
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ensure both thriving market competition in data-intensive markets (e.g., digital platform 

businesses) and protection of consumers.   

A conceptual framework for measuring and analyzing data and its role in competition is 

necessary for understanding the factors affecting data markets and economic growth as data 

assets play an increased role in production.  A framework needs to account for the following 

“special” characteristics of data: (a) data is nonrival and, like other intangible assets, capable of 

improving economic welfare via sharing, whether within an industry or general-purpose 

commons; (b) data, though nonrival, is frequently used exclusively, i.e., to business owners, 

data assets are trade secrets; and (c) data is different from other intangible assets in that it has 

a consumer privacy dimension. Data privacy laws often mandate exclusivity. 

The Data Stack 

Many economic models of data focus on data as a “free” by-product of economic activity, and 

many observers focus on certain special features of data, such as how rapidly it accumulates. In 

contrast our approach is based on the following observations: 

• Data, in the sense of raw digitized records, may accumulate at an astonishing pace and 

be stored at little to no cost.  But that does not automatically provide a flow of services 

to production. 

• The accumulation of data has the potential to boost real output only when the sector 

also invests in transforming such records, possibly along with other available economic 

or social information, into analytical insights and actionable business intelligence.   

• Data stores and knowledge gleaned from data stores via application of data 

technologies are, in fact, long-lived intangible assets that contribute to final production 

in an economy. The long-lived appropriability of accumulated stores of digitized 

information implies that business spending on data and data transformation are 

intangible capital investments.  

Our specific approach to data value creation embraces widely used approaches in the 

technology and management literatures. Technologists characterize data according to a “data 

stack” that describes the transformation of raw data into usable data structures and 

intelligence. Business management strategists use a value chain construct that adds 

monetization, or market implementation, as a capability (or tool) required for data value 

creation.3   

 
3 See again Mayer-Schönberger and Cukier (2013), also PriceWaterhouseCoopers LLP (2019). 
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Our framework for data value creation is illustrated 

in figure 2.  Though it embraces both 

characterizations, note first that technologists 

usually stack a sequence of data forms and 

digital tools in a single pyramid.4  Figure 2 

separates these by identifying three major 

forms of data inherent in their 

characterizations.  These forms, depicted on 

the left, reflect the business strategists’ notion 

of an information value chain, where greater 

value is produced as data is processed into 

usable intelligence. The digital tools that 

enable value creation from raw, digitized 

information are depicted on the right. The 

sequencing of data assets with tools used in 

their formation is implied, i.e., ingestion tools are used to create data stores, etc.   

The data asset stack has then three layers of value—data stores, databases, and data 

intelligence—each corresponding to an asset type amenable to measurement and analysis.5  

The asset types are defined more precisely as follows: 

• Data stores are raw records that have been stored but not yet cleaned, formatted, or 

transformed for analysis, e.g., data scraped from the web or sensor and economic data 

captured from production or transactions activity.  Raw records also cover the raw data 

collected from experiments, statistical surveys, or administrative records. 

• Databases consist of transformed raw data, records that have been cleaned, formatted, 

and structured such that they are suitable for some form of data analytics or 

visualization.   

• Data intelligence reflects the further integration of data with advanced analytic tools 

(e.g., machine learning training algorithms); data intelligence is a set of quantitative 

inputs that provide actionable guidance for decision-makers, including solutions to 

scientific problems. 

 
4 See, e.g., Roca (2021a), for a recent depiction. The data stack has its roots in information science, which uses the 
concept of a “data pyramid” to depict the relationship between data, information, and knowledge (Varian 2019). 
5 A multiple asset type conceptual approach has been used in previous work on defining and measuring data, 
including McKinsey Global Institute (2016), Statistics Canada (2019a, 2019b), Nguyen and Paczos (2020), and 
Goodridge, Haskel and Edquist (2021). 

Figure 2. The Data Asset Value Chain 



 7 

What separates the “modern” data stack from legacy systems is that modern systems are 

hosted in the cloud, requiring little technical configuration by users.  According to technologists 

(e.g., Roca 2021b), “the modern data stack lowers the technical barrier to entry for data 

integration.” And “components of the modern data stack are built with analysts and business 

users in mind, meaning that users of all backgrounds can not only easily use these tools, but 

also administer them without in-depth technical knowledge.”   

Implications of the Data Stack 

The key implication of this framework is that data value creation reflects investment in the 

application of layers of data technologies and market implementation to create assets that 

generate productive value in an economy. New investment streams typically accompany the 

emergence of new technologies, e.g., the invention of the modern internal combustion (IC) 

engine was followed by a surge of spending on motorized equipment for transport. The 

seemingly sudden appearance of transport equipment stemmed from its many uses in 

consumption and production, e.g., personal travel, farming, goods delivery. The arrival of new 

data technologies such as AI might be likewise expected to cause a shift in the composition of 

business spending towards “all things data”—data analytic tools, data stores, structured 

dataset development, data-derived business strategies—i.e., the appearance of data assets 

capable of further use in production or for sale. 

The data value chain framework, in which greater value added is created as raw data is 

processed and developed into insights and solutions, applies to data-driven development of 

engineering designs, customer platforms, and organizational practices, as well as to data-driven 

R&D processes.6  This suggests that data assets are largely subsumed—though not explicitly 

identified—in available measures of intangible capital but not fully covered by investment in 

GDP/national accounts (see again figure 1). 

From this perspective, i.e., a knowledge-based or intangible capital perspective, the increased 

use of data assets derived from modern digital technologies is an “innovation in the method of 

innovation.”  Modern data use fosters faster, more efficient experimentation and feedback in 

R&D processes, industrial production processes, marketing research, and business strategy and 

operating model development.  This implies that, with increased use of data and application of 

 
6 Although the three asset types shown in figure 2 generally align with categories Statistics Canada set out in a 
conceptual framework for measuring data, Statistics Canada calls the third category “data science” and views it as 
unmeasured R&D, e.g., spending to develop new AI algorithms. Though data and data tools (AI) are inextricably 
bound via feedback and training data used to develop and refine AI tools, the data stack/data value chain notion of 
how value is created from data does not end with the development of algorithms. 
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digital technologies, the “productivity” of these activities improves, i.e., that their resource cost 

per unit of final output falls, an implication discussed more detail in section 3 of this paper. 

The depiction of monetization as a capability required data value creation in figure 2 refers to 

an organization’s capability for implementing actions guided by data intelligence. Though these 

actions are relevant for understanding the macroeconomic impacts of the increased use of data 

in economies, they are played out via adjustments to existing primary factor inputs, i.e., labor 

and capital (tangible or intangible), in the short and long run.  

Though the primary focus of this paper is on how data capital as intangible capital affects 

productivity growth, the rise of data capital as a strategic factor input also has the potential for 

altering cyclical patterns in macroeconomic data—patterns of investment and factor input 

demands, and perhaps the responsiveness of inflation to economic conditions in the short run.  

Though subjects for future research with more complete data, the partial incorporation of 

intangibles in quarterly GDP hints that there is indeed something different about the workings 

of the intangible macroeconomy.  

Research on the formulation of investment demand 

argues that intangibles are less sensitive to changes in 

interest rates than tangibles due to their higher user 

cost and tendency to be less reliant on secured debt 

financing.7 Figure 3 displays fluctuations in the 

intellectual property products share of private 

nonresidential investment using quarterly data from 

the U.S. national accounts, which also suggests that 

these investments are the last category of capital 

spending cut during downturns.  Businesses may view 

the acquisition of software (and other intangibles) as 

moves to increase efficiency that dampen the impact 

of workforce layoffs and cutbacks in customer 

demand, i.e., that intangible capital (or some forms 

of it) may allow firms to adjust production relatively rapidly to changes in economic conditions, 

with possible implications for inflation dynamics and monetary nonneutrality. 

 
7 See, e.g., Crouzet and Eberly (2019), Haskel and Westlake (2019, chapter 8), and Döttling and Ratnovski (2020) for 
further elaboration. 

Source: Authors’ elaboration of quarterly NIPA data. 
Notes: Intellectual property products include software, 
R&D, and entertainment originals. Shaded areas are periods 
of business recession as defined by the NBER. 
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1985 1991 1997 2003 2009 2015 2021

 Figure 3. U.S. Intellectual Property Products   
Investment, 1985Q1- 2021Q4 
 
Share of Gross Private Nonresidential Investment 
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Furthermore, the most recent observations in figure 3 show that IPP investments remained 

relatively strong in the recovery from the economic downturn caused by the pandemic.8 The 

fact that intangible capital increasingly reflects knowledge built from the analysis of data likely 

explains this persistence of relative strength.  Half of the respondents in survey of companies 

administered by McKinsey & Company reported that the pandemic-induced economic 

downturn had no effect on their investments in AI, while 27 percent reported increasing them 

(AI Index Report 2021, page 103). 

Data capital as Intangible capital 

Intangible investment covers a wide class of investments, from databases to business 

processes, engineering design, and market research, that would appear to be relevant for 

analyzing the consequences of the increased use of data in economies.  Let us then consider the 

definitional/conceptual overlap between the data assets in the data stack and activities covered 

by existing measures of intangible assets.  

Identified intangible investment asset types are set out in table 2. Column 1 of the table shows 

that there are three major categories of intangible assets: digitized information, innovative 

property, and economic competencies. Column 2 reports specific assets used to populate each 

major category, and column 3 reports whether the asset is covered in national accounts.  As 

may be seen, only lines 1 through 5 are included.   

 
8 IPP investments refers to the national accounts investment category, intellectual property products, which in the 
United States includes three components of intangible capital: software and databases, R&D, and artistic, literary 
and entertainment originals. International standards (e.g., OECD 2010) include mineral exploration in IPP but this is 
not done in the U.S. data. 

 
Table 2. Intangible Investment: Major Categories and Asset Types 

Categories Investment by Asset Type NA Examples of Assets and Property 

(1) (2) (3) (4) 
 
Digitized 
Information 

 
1. Software 
2. Databases 

 
Yes 
Yes 

 
Digital capabilities, tools 
Trade secrets (data) 

 
Innovative 
Property 

3. Research and development (R&D) 
4. Mineral exploration 
5. Artistic, entertainment, and literary 

originals 
6. Attributed designs (industrial)  
7. Financial product development 

Yes 
Yes 
Yes 

 
No 
No 

Patents, licenses 
Mineral rights 
Copyrights, licenses 
 
Patents, trademarks 
Trademarks, software patents 

 
Economic 
Competencies 

8. Brand and market research 
 
9. Business process and organizational 

practices 

No 
 

No 
 

Brand equity, customer lists, market insights 
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At first blush one might infer from column 1 of table 2 that the digitized information grouping 

of intangible assets includes the data stack’s individual asset types, but as may be seen in the 

itemized list in column 2 of table 2, only databases appear.  This implies that national accounts’ 

estimates of the value of investment in databases exclude the cost of acquiring or ingesting the 

data stores they contain; furthermore, as a matter of practice, outright purchases of data stores 

and databases are only included to the extent they are embedded or sold as software 

products.9 

Consider now data intelligence, the most valuable, final stage of the data value chain per 

figure 2 and where the utility of the intangible capital framework becomes especially apparent.  

The knowledge created from data encompasses all modern, data-driven business, financial, 

marketing, engineering, and scientific intelligence. The inclusion of investments in business 

operations, financial products, and general marketing intelligence in intangible capital is readily 

seen via lines 7, 8 and 9 of table 2.   

An increase in the use of data capital in R&D activities (line 3), will cover novel forms of data-

derived scientific intelligence (including the development of new AI techniques and certain bio-

engineered substances/formulas). It will exclude, however, many uses of modern data-driven 

engineering design that yield improved industrial production systems—such solutions typically 

are regarded as not sufficiently novel to be included in R&D.  Investments in modern 

engineering design are covered in the intangible framework via line 6, and also line 9, which 

includes investments that re-engineer in-house computer systems and computer network 

platforms to make use of cloud infrastructure services, data analytic services, and data.   

The intangibles framework thus covers most, if not all, forms of data intelligence as virtually all 

assets in the intangibles framework are potentially data driven. The perspective offered by the 

framework also informs the development of empirical estimates of data intelligence.  Other 

approaches that adopt a value chain approach to measure data assets have missed some key 

application areas of modern data science. For example, the Statistics Canada (2019a, b) 

 
9 National accounts of most countries do not publish databases as a unique asset category.  The combined 
“software and databases” measure, however, covers investments in digital tools used to create data assets. 

 
10. Employer-provided training 

 
No 

 

Operating models and platforms, supply chains 
and distribution networks, and management 
and employee practices 
 
Firm-specific human capital 

 Note. Column 3 indicates whether the asset type is currently included as investment in national accounts (NA). 
Source: Updated version Corrado, Hulten and Sichel (2005) as set out in Corrado (2021). 
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implementation covered financial and marketing forms of data-derived intelligence but did not 

include data-driven industrial and computing engineering design. 

A meta-analysis of the joint evolution of engineering design (ED) and data science reports that, 

although ED is recognized as a key element of the innovation process at-large, only in recent 

years has data-driven engineering design become more prominent due to developments in AI 

(Chiarello, Belingheri, and Fantoni 2021). The emergence of digital platforms that use bigdata to 

design cost-efficient routes/processes for manufacturing parts production is a related 

development (Mandel 2019).  Underlying factors affecting the increased accompaniment of ED 

with data include increased competition and digitization of manufacturing, coupled with new 

methodologies to collect data on product characteristics, product performance and customer 

requirements. 

That modern data systems are AI-based and 

hosted in the cloud suggests looking at 

elements of intangible capital that may be 

picking up the increased use of data.  This is 

provided in figure 4, which shows two series 

that arguably capture the data-driven demand 

for cloud services (Byrne and Corrado 2017).  

The two series are business R&D in IT services 

and software development and purchases of 

computer and network design consulting 

services; these are underlying components of 

the R&D and business process investment 

intangible investment categories listed on 

table 1 (lines 3 and 9, respectively).   

As may be seen, these data driven 

components of intangible investment have 

grown enormously, nearly tripling relative to private sector GDP over the period shown. This 

share relative to total GDP is 1.2 percent in 2018, which would not include public funding for AI 

research, suggesting that the true contribution of AI software research to total GDP is higher.   

In summary, beyond the main message of this section that data capital is largely covered in 

intangible capital, key findings regarding the measurement of data capital are as follows: 

• Data value creation involves the generation of data assets--data stores, databases, and 

data intelligence.  This is in addition to the design and production of the digital tools 

used to create them. 

4 
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• Data intelligence is the most valuable, and final, stage of the data value chain as it 

pertains to investments in modern digital business practices and engineering design. 

• Data intelligence has many forms—operations, marketing, engineering, and scientific—

and not all forms have been included in measurement schemes of previous works. 

• Data stores, purchased databases, and most forms of data intelligence are not captured 

in official statistics.  

3. DATA CAPITAL AND INNOVATION 

If firms are to use data assets, the capital must be produced, and its owners rewarded.  GDP is 

designed to capture market production in a society, so how does data value creation fit into 

GDP?   

An economic model10   

Activity in the economy consists of (a) an “upstream” “innovation” or “commercialization” 

sector and (b) a “downstream” or “production” sector that uses the knowledge generated by 

the upstream sector to produce final output.11  The upstream sector produces new ideas that 

can be monetized, e.g., a new system for organizing production or a software program adapted 

to the needs of the organization; upstream sector output each period is denoted ! and its 

value "!!.   

The outstanding stock of commercial knowledge # reflects the accumulation of the upstream 

sector’s supply, after adjusting for losses due to aging, and the income earned by the owners # 

is ""#.  The stock # consists of multiple assets, each type denoted $, and the filtering of time 

series for the real supply of new knowledge of type $ at time %, !#,% , into stocks is assumed to 

follow a perpetual inventory relationship,  ##,% = !#,% + (1 − +#")##,%&', a calculation that 

assumes depreciation of each asset is geometric and constant across all vintages of the asset.12 

As explained in a series of works by the authors, the depreciation rate for intangibles reflects 

the “service life” of their income generating capacity. 

The commercial knowledge stock is non-rival and appropriable, but appropriability is partial, 

i.e., lasting only for the time during which the producer/innovator can sell or rent it at a 

 
10 Based on Corrado, Hulten, Sichel (2005, 2009) as adapted and termed “upstream/downstream” in Corrado, 
Haskel, and Goodridge (2011). The upstream/downstream model was initially set out for the analysis of innovation 
and intangible capital; its applicability to the analysis of data capital does not require further adaption. 
11 “Final” output is output for sale to consumers or for investment, i.e., for simplicity we ignore intermediate inputs 
and assume a closed economy.   
12 It also assumes that once each !!,#for an industry is obtained, the usual procedures for aggregating over assets 
and industries apply.  For a discussion of the determinants of the longevity of individual assets and the applicability 
of the perpetual inventory method to sums of spending streams by firms that compete against one another, see 
Corrado, Haskel, Jona-Lasinio, and Iommi (2022). 
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monopoly price to the downstream sector, which is a price-taker for knowledge. That 

innovators hold temporary product market power is a common feature of economic models of 

innovation.  We write the production and income flows in this economy as: 

(1a)																														! = .!/!(0! , 2! , #(#)*+);      "!! =	",0! + "-2! + 3! 

(1b) 																												4 = 	../.(0.	, 2. , #);               ".4 = 	",0. + "-2. +	""#  

where 3! is the upstream sectors’ pure rents from innovation, rents that are then embedded in 

"!and "". 

The downstream sector is assumed to be competitive, i.e., product prices ". are competitive 

prices (given payments for the use of new commercial knowledge ""#) and ",and "-are 

competitive factor prices for labor and capital unit inputs, respectively.  Basic scientific 

knowledge, generated via public funds for basic research performed at universities, say, is 

represented as the input #(#)*+  in the upstream production function (1a). Though basic 

knowledge plays a role in the production of !, as seen to the left in (1a), there are no factor 

payments to #(#)*+  because its services are assumed to be freely available. 

This model’s depiction of the two sectors, though stylized, captures business innovation in 

modern economies in some important ways. The upstream sector may be considered as firms 

that are almost fully reliant on the production of innovations in the form of data capital, e.g., 

biotech startups using massive data experiments to produce new formulas for drugs, with the 

downstream sector comprising producers that acquire the use of the innovations via outright 

purchase ("!!)  or licensure agreements with annual payments (""#).  Firms may also have 

their own “innovation labs” and “business strategy teams” that produce and commercialize 

new ideas for downstream production. These innovation labs and strategy teams are then 

upstream knowledge producers residing within larger organizations with ""# representing the 

contribution of these “factories within a factory” to total firm revenue.  For example, many 

banks have teams of software writers developing software to run, for example, mobile banking 

apps.  Such a team sits within the bank, where note RBASIC would capture the fact that many 

banking apps use, in part, open-source software.  

The asset price of commercial knowledge "! and the price of its services for a year ""  are 

linked via the Jorgenson (1963) user cost expression in this model. The upstream/downstream 

model is then closed via arbitrage of after-tax returns to investments in innovation (that build 

data/intangible capital #) with returns to alternative long-term investments (that build tangible 

capital 2). This arbitrage also operates as an intertemporal constraint, implying the existence of 

“abnormal” innovator (i.e., firm-level) profits for periods of time but zero profits (i.e., 3! = 0) in 

long-term equilibrium.   
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Data capital in GDP and growth accounting 

Without the capitalization of intangibles, GDP consists solely of downstream sector output 4, 

but when investments in data capital/innovation are capitalized, aggregate value added 5 

reflects production in both sectors: 

(2)        "/5 =	".4 + "!! =	"06 + "17 + "!!	 

																										≡ ",0 + "-2 + ""# 

As seen in the first line to the right, investment in final demand is expanded to include data 

value creation, i.e., spending on intangibles is no longer treated as intermediate expenditure 

and thus GDP is larger, a first order impact of capitalizing spending on intangibles.  Factor 

income, the second line, accounts explicitly for returns to data and other intangible assets in 

total capital income.  The term may contain monopolistic returns to innovation as discussed 

above. 

When Solow’s sources-of-growth decomposition is applied to GDP with investment expanded 

to cover data value creation, the usual log differentiation cum constant returns yields  

(3)           9: = 	;/29< + ;/"9= + 9$   

for output growth where ;/2 is the combined factor income share for conventional inputs 0 and 

2 in total production and	;/"   is the factor income share attributed to owners of intangible 

capital.13  This decomposition says that output growth consists of a contribution from 

conventional inputs ;/29<, a contribution from paid-for, commercially valuable knowledge 

;/"9=, and total factor productivity growth 9$.  In practice, total factor productivity growth is 

calculated as residual from equations such as (3). 

To return to the banking example, suppose a bank has a software writing team that ingests 

data, and a machine learning team that uses that data to develop improved marketing and 

credit-scoring processes.  The use of open-source software is captured by da.  The commercially 

written software and improved marketing and credit-scoring, if they are appropriable to a 

particular bank, is captured by ;/"9=.  When such knowledge diffuses then it becomes part of 

da.  If there are economies of scale/scope in the joint intra-firm use of data, software, and 

analysis, this is in da because capital factor shares in (3) (and usual conventions) are based on 

constant returns.  

 
13 The notation used in equation (2) is as follows: “"#” the log change in “$” where $ is any variable in the model. 
Conventional inputs % and & combined as ' are weighted appropriately. 
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What is different in the model with intangibles then—and its major implication—is that the 

contribution of paid-for, commercially valuable knowledge ;/"9= becomes an accountable 

source of growth. And because this knowledge is nonrival and only partially appropriable, 

intangible capital is also determinant of measured 9$ in (3) via the increasing returns 

mechanism featured in modern growth theory (Romer 1990, Jones 2005).  This feature will be 

apparent in measured 9$ to the extent that the innovations embodied in current and past 

vintages of # diffuse across firms and industries in an economy, e.g., via patent expiration, loss 

of first-mover advantage, etc., as	# is filtered through an economy’s innovation ecosystem 

(Nelson and Rosenberg 1993; Moore 1993).14  

If the ecosystem’s filtering process shuts down (for whatever reason), this would imply an 

enhanced earning potential of investments in # for investor/owners. The direct effects of this 

as they pertain to productivity statistics would be that (a) data capital would have a relatively 

longer service life compared with “traditional” intangible assets, and that (b) measured growth 

of total factor productivity would be lower due to fewer spillovers. 

Interpretation of Innovation 

When considering innovation, economists typically reach for TFP as a measure of underlying 

technical progress.  It seems clear that TFP as a production function “shifter” is capturing 

innovation, being a residual after subtracting share-weighted paid-for inputs from output, but it 

is rather hard to talk meaningfully about a residual with others interested in innovation.  

Innovation analysts typically focus on how firms innovate (e.g., develop a new business model) 

and consider the resource cost necessary to bring about new products and change—aspects of 

innovation consistent with the intangible capital approach that sets out these activities as 

sources of growth.   

Whether this connection helps depends on one’s definition of innovation. In his evidence to the 

Gutierrez commission (Schramm et al. 2008), Dale Jorgenson explained growth by stressing 

innovation versus duplication.  Consider this by asking, how might the firm Peloton make more 

sales? One way would be to employ more 2 and 0 to produce more bikes and treadmills, i.e., 

growth via duplication. The other path would be to get more sales from existing 2 and 0: 

mixing new exercise music, developing new software, re-engineering the supply process. 

Jorgenson called this growth via innovation.  The intangible capital framework gives this a 

natural interpretation: Innovation is output less the contribution of 2 and 0, suggesting that 

innovation reflects the final two terms in (3) or that: 

(4)    7>>?@$%A?> = 	;/"9= + 9$ 

 
14 For a recent review, articulation, and examples of innovation ecosystems, see Granstrand and Holgersson 2020). 
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This implies that when considering innovation, residually calculated TFP should not be the sole 

focal point of analysis.  Rather an understanding of the intangible resources being deployed at 

firms, be they paid-for or “borrowed”, enables links to literatures that analyze business 

practices, trends in entrepreneurship, and the like.  

Data capital and intangible asset prices 

As previously indicated, modern data use via the cloud fosters faster, more efficient 

experimentation and feedback in many business functions (R&D processes, industrial 

production processes, marketing research, etc.) and can be thought of an innovation in the 

method of innovation. How does this affect the workings of the upstream/downstream model?  

Consider first the upstream innovation sector.  Solving for the log change in intangible asset 

prices 9B! using the production and factor payment equations in (1a) yields  

(5)     9B! =	;!,9B, + ;!-9B- + ;!393! − 	9$! , 

which expresses 9B! as a weighted average of changes in input costs (the first two terms), plus 

changes in innovator profits, offset by changes in the efficiency of upstream production.  

When input costs are expressed in “transactions units”, changes in factor input quality are an 

offset to costs. Consider labor input. In the upstream sector 0! is an aggregate of services 

provided by a range of worker types, which implies that 0! differs from aggregate hourly input 

C! (its “transactions unit” equivalent) by a composition effect, Θ!, that accounts for 

differences in the marginal productivity of different worker types employed in production, i.e., 

we have, 0! = Θ!C!. This implies that if we ignore capital inputs—attributing the impact of 

the ease with data can be processed and utilized via cloud services to (redefined) upstream 

TFP—equation (5) can be rewritten as: 

(5’)   !"! = ;45 (!% − !'!)+ ;46934 − 	9$′
4

 

where the impact of upstream labor composition changes on data/intangible asset prices is 

explicit. Note that upstream labor composition effects are likely to reflect moves within the 

usual grouping of workers termed “high-skilled” and may not be accounted for in measures of 

labor composition used in growth accounting, which are developed using broad groupings of 

employment by worker type. All told then, equation (5) suggests that the data intensity of 

intangible capital will have, first, a restraining impact on price change for intangible assets 

through improvements in data asset production efficiency (9$′!), and second, that upgrades to 

the productivity/skill base of upstream workers (!'!) are likely to offset associated requisite 

increases in wages paid.  
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Working against the restraint exerted by data technologies via increased data use on the full 

passthrough of costs to 9B!is the contribution of markups, expressed here as changes in 

innovator rents (;!393!). Measuring this term directly is highly problematic: markups may be 

transitory, and they are hidden via the typical exclusion of intangible assets from company 

financial accounts.  

Direct evidence that employer demand for skills related to automation, AI, data connectivity, 

and cloud storage/computing is reshaping IT work—thus boosting !'!—is suggested by figure 

5, which shows that the demand for these skills accelerated the fastest among IT roles during 

the pandemic (figure 5), consistent with increased data use offsetting wage cost pressures on 

asset prices for data capital. 

 Figure 5. Emerging skill clusters including Artificial Intelligence and Cloud Solutions  
 relative to other tech occupations 
 Percent change in the share of selected skill cluster mentions in job ads for tech occupations 
 from 2019 to the last 12 months ending in February 2021 

 

 
                   Source: The Conference Board®-Burning Glass® Help Wanted OnLine® (HWOL) data series 
 

Many studies document improvements in the efficiency of modern data systems ability to 

ingest, store, process and analyze large quantities of data (e.g., Byrne, Corrado, and Sichel 

2021, Coyle and Nguyen 2018). The findings are consistent with a strong impetus to 

productivity growth emanating from 9$7!, an effect that will show through in productivity 

estimates only insofar as asset prices for data capital capture the impacts of these changes in 

data processing costs.  Hard-to-measure services price research typically does not address 
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intangible asset-producing activities—R&D labs, marketing teams, engineering design 

projects—nor are these activities viewed as hotbeds of rapid quality change missed by price 

collectors in assessments of productivity mismeasurement.  But with the digital transformation 

of economies, rise of digitally enabled business models, and increased use of data in business 

more generally, the nature and efficiency of intangible asset-producing activities is arguably 

driving down costs and effective prices of these activities.  

How much are these cost efficiencies?  In terms of training a contemporary image recognition 

system, the answer, according to tests shown in the AI Index Report (2021, page 49), is “a few 

dollars in 2020, down by around 150 times from costs in 2017” (figure 6a). This representing 

progress in both algorithm design and drops in the costs of cloud-computing resources.  Similar 

factors in conjunction with accumulating data on consumer buying patterns and tastes have 

affected (directly and indirectly) the advertising media costs of marketing (figure 6b).15 

Figure 6 Data-driven cost efficiencies affecting intangible asset prices 

(a) Training cost of image recognition   (b) Advertising media costs 

                  

 

Data capital and “potential” labor productivity growth 

Though we are still in the early stages of pinning down data capital in macroeconomic statistics, 

the foregoing suggests that the contribution of data capital to potential labor productivity 

growth can be calibrated using assumptions for data capital income shares and asset price 

change, ;/"  and 9B!.  The utility of such a calibration sets the stage for the empirical sections of 

 
15 For further discussion of the how AI “fits” into the intangible framework, see Corrado, Haskel, and Jona-Lasinio 
(2021). The media cost price indexes are developed from detailed BLS input cost indexes aggregated using 
information from the Census Bureau and industry sources; see Corrado (2021) for further discussion. 
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this paper where we address how data capital can be measured and how much of its potential 

actually can be “seen” in the available statistics. 

The long-term growth-promoting potential of a capital input depends on the extent to which its 

volume rises more rapidly than its relative price falls (i.e., that the input shares continue to 

rise).  Though this is ultimately an empirical question about the degree of substitutability 

between data/AI and human efforts, the limits to which are discussed in Nordhaus (2021), 

section 2 suggests we can approach a calibration of data capital’s potential impact on labor 

productivity using measured input shares for intangible capital as a guide.  Ignoring spillovers, 

the impacts of data capital can then be calibrated using estimates of two effects, a “use” effect 

determined by input cost shares and relative prices, and a “production” effect determined by 

production shares and relative prices.  

This approach has been a mainstay of productivity analysis with IT capital.  As business services 

derived from IT equipment have shifted to the cloud, however, domestic production effects (via 

IT services production) have become more pronounced in calibrations of IT impacts on an 

economy (Byrne and Corrado 2017).  When thinking about data capital, production effects are 

also likely to loom large because much production of data capital occurs within using firms.16  

The results of the calibration exercise are reported in table 3, which shows alternative scenarios 

for the productivity-enhancing impact of data capital.17  The scenarios vary according to the 

breadth of investments in data capital in an economy (broad or limited diffusion), the extent to 

which data assets are domestically produced, and the productivity advantage of data assets and 

data technologies (based on their relative price).  The capital income share of data capital 

captures diffusion via use and is assumed to be less than the corresponding total intangible 

capital income; the ranges used in the table are based on actual shares in high vs low 

intangibles-intensive countries. The production share is assumed to be the capital income share 

+/- 10 percent, roughly the range for net exports of corresponding intangible investment 

services in high vs low intangibles-intensive countries. 

 
16 The available estimates for U.S. total intangibles suggest that about one-half are produced for use with the same 
organization (Corrado 2021). 
17 The calculations are based on the steady-state solution to the two-sector upstream/downstream model 
consisting of a data capital producing sector and all other goods and services producing sector.  In this model, the 
contribution of the data sector to labor productivity equals the sum of the use effect, ()$ ()%* 	(−.̇) plus the 
production effect, 12&(−.̇), where ()$ and ()% are steady state income shares of data capital and labor, 12& is the 
production share of data investments, and  (−.̇) is the relative productivity of data capital measured as the rate of 
decline in the relative price of data assets (sign reversed, i.e., - (".' − ".()) using upstream/downstream 
notation. The calculations in the table assume labor’s share of total income equals .7.  For a derivation, see Oulton 
(2012) or Byrne and Corrado (2017). 
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Table 3.  Productivity Scenarios: Contribution of data capital to 
potential labor productivity growth (percentage points) 
 Productivity advantage 
 (relative asset price growth differential) 
 
 

Narrow edge 
1 percentage point 

Large edge 
5 percentage points 

Broad use     
 (and net exporter of data services) 0.25  1.26 
   10 percent capital income share    
   11 percent production share    

     
Limited use     
 (and net importer of data services) 0.12  0.58 
   5 percent capital income share    
   4.5 percent production share    

Note: Contributions include the sum of the use and production effects of data capital. 
 

The lower bound for the productivity advantage is drawn from recent evidence on the relative 

price differential implied by an intangible investment price index designed to capture the 

impacts of digitization on investments in brand and the IT consulting and marketing 

subcomponents of organizational capital, about 1 percentage point per year (Corrado 2021).  

This deflator takes many national accounts prices as given, notably asset prices for R&D, 

software and gross output deflators for industrial design and training, and thus is a lower bound 

in that these deflators do not incorporate efficiency gains due to increased application of AI 

methods or use of open-source content.  The upper bound is guided by the long-term relative 

price decline of conventionally defined IT capital of about 15 percent per year (based on the 

estimates reported in Byrne and Corrado, 2017).  It is conservatively set at one third of that, 

i.e., 5 percentage points per year. 

All told, estimates of the contribution of data capital to labor productivity growth range by 

more than a factor of 10—from 0.12 percentage point per year to 1.26 percentage point per 

year.  The range highlights the synergies among data capital efficiency and an economy’s 

breadth of use and capability for digital transformation, which implies much scope for policies 

to affect outcomes. Promoting diffusion through the use effect (i.e., encouraging both data 

investments and data sharing) is very important, and a typical focus of traditional IT policies.   

The table further implies that the course of data productivity is “doubly” important, operating 

as it does through both the use and production channels given that much data value creation 

occurs within firms and international trade in data assets and data asset services remains 

limited. Facilitating the creation of new scope economies within firms (more data-driven 

business functions) and new data-enabled firms will boost this potential, as would the 

development of well-functioning markets for data assets and data asset services. 
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4. MEASURING DATA  

How much value do firms derive from data? And how is this related to the value of personal 

information or to costs sustained by firms to obtain the data that are used and/or created via 

the data stack?  In this section we review methods and approaches that have been used to 

measure data and then present our own application. 

Part 1: Methods and Approaches 

In addressing these questions, one encounters different perspectives and different 

measurement approaches to the valuation of data. The economics literature has taken three 

main directions to develop estimates of the value of data.  As depicted in the middle panel of 

figure 7, these include approaches based on individual firm valuations, approaches based on 

consumers’ valuations, and approaches based on sector (and/or industry) economic costs.  The 

bottom panel of the figure indicates methods used under each approach.  Surveys and 

economic experiments (the middle box in the bottom panel) are of course methods that are not 

unique to a given approach, as the figure indicates.   

 Approaches aimed at valuing consumers’ personal information will not encompass the full data 

value chain of figure 2, which covers the production of digitized information for all sectors of an 

economy.   Our review of methods is targeted at methods that can yield comprehensive 

coverage of data use in market activities in economies, and we thus proceed as follows:  We 

first discuss methods that have 

been to estimate the value 

of data for individual firms 

and/or based on individual 

firm-level data.  That is 

followed a discussion of 

stated preference methods 

applied to measure the 

value of data used in 

business—a little 

appreciated niche in this 

literature, though long used 

by market researchers to 

study consumer preferences 

and recently employed by Brynjolfsson, Collis, and Eggars (2019) to estimate the value of free 

digital goods. 

              Figure 7. Approaches to the Valuation of Data 
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We then briefly summarize the gist of the sector cost approach as deployed by national 

accountants.  This approach, also called the sum-of-costs approach, is used to develop the 

experimental estimates of data reported in part 2 of this section. 

Methods Based on Firm Valuations 

Below we review data valuation approaches used and/or emerging in financial reporting, 

followed by a review of methods used in key studies.  These studies provide essential insights 

on measuring the value of data, even if their methods cannot be readily adapted to compile 

macroeconomic statistics sufficiently comprehensive to inform economic policy analysis. 

• Business reporting 

There is a growing consensus in the business literature that building a framework to 

discover and realize the potential of data is critical for increasing the value provided to 

shareholders (Deloitte 2020 and PWC 2019). The starting point for designing a data strategy 

is to assign a value to data as an asset, which requires i) completing an inventory of current 

data assets; ii) identifying how the organization is currently utilizing them and their possible 

alternative uses; iii) selecting a valuation method. 

Most of the approaches adopted for valuing data in the business context consist of an 

implementation of the three traditional valuation methods used to value any asset type: 

income, market, and cost approaches. The income methodology measures the incremental 

cash flows (increased revenues and/or reduced costs) that the data are expected to 

generate in the future. The market approach captures the value of a given data asset using 

the information about the value of a comparable data asset whose value is observable in an 

active market or transaction. The cost approach estimates the value as the cost for 

recreating a replica of the data or replicating the data’s utility. 

The growing importance of intangibles in corporate activity and the evidence that they do 

not fit very well in the current financial reporting has generated a debate among the 

accounting community about the opportunity to deliver more information on intangibles 

promoting its disclosure of financial reporting (see, for instance, UK Financial Reporting 

Council 2019 and the assessment by CPA Ontario 2022) or by capitalizing intangibles as 

assets in balance sheets (ACCA 2019, Lev 2019). The UK Financial Reporting Council (2019) 

proposes two ways to get more information on intangibles in financial reporting. One is to 

revise the statement of profit or loss to provide information on expenditure on future-

oriented intangibles, analyzed by nature. The other is the provision of more details on 

intangibles in the narrative sections of financial reporting.   



 23 

The first option is more beneficial for compiling business statistics and for economic analysis 

based on firm-level data. First, it would facilitate gathering information via business surveys. 

Based on current financial reporting standards, respondents to business surveys would 

typically be unable to identify expenditures for data and several other intangibles 

separately. Second, improved and more comprehensive disclosure of spending on 

intangibles (in addition to the value of existing stocks) would be consistent with the needs 

of national accounts compilers of collecting information on outlays (not on the value of the 

assets). Finally, more precise information on expenditure for intangibles and data would be 

available to firm-level data users. 

• Revenue-based approaches   

Another interesting approach suggested by Nguyen and Paczos (2020) aims at capturing the 

value of data based on the revenue shares driven by data monetization across different 

types of firms (e.g., manufacturers, utility providers, banks, or online platforms). Nguyen 

and Paczos (2020) adopt a stylized taxonomy of business models distinguishing two main 

categories: data-enhanced or data-enabled. Their assumption is that by looking at the 

business models adopted in different productive sectors it is possible to identify specific 

characteristics from which to infer a general measure of the value of data at the industry 

level. This approach can be easily implemented even if it requires additional efforts from 

national statistical institutes to conduct ad-hoc economic surveys and coordinate 

internationally to guarantee comparable results across countries.  

• Depreciation-based approach 

Coyle and Li (2021) develop a demand-side methodology for estimating the size of data 

markets using the recent finding that an online platform’s entry can disrupt incumbent 

firms’ organizational capital by affecting its depreciation rate (Li and Chi 2021). They 

calculate the stocks of organizational capital based on before-entry and after-entry 

depreciation rates. This difference captures the loss due to the failure of using data to cope 

with changes in competition due to the entry of an online platform. Thus, it can be used to 

measure the potential size of the demand for data by incumbent firms in the industry 

sectors disrupted by online platforms. In other words, they use the loss of the value 

incumbent firms’ organizational capital to measure firms’ maximum willingness to pay for 

the access to data. Coyle and Li (2021) apply their model to study the impact of the entry of 

Airbnb on existing firms in the hospitality industry. They find that the market size for data in 

the global hospitality sector is USD 43 billion in 2018 and that this data market has also 

grown rapidly at an average growth rate of 35%, meaning that its size has been doubling in 

under three years.  
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Consistent with the existing literature on 

measuring intangible capital from firm-level 

data, Coyle and Li (2021) use the selling, 

general, and administrative (SG&A) 

expenses as a proxy for a firm’s 

investment in organizational capital. This 

includes expenditures for employee 

training costs, brand enhancement 

activities, consulting fees, and supply 

chains’ installation and management 

costs, thus covering the economic 

competencies category in the list of 

intangibles as set out in table 2. On this 

basis, they estimate the value of data 

considering the extent to which online 

platform entry can disrupt incumbent firms’ economic competencies assets.  

• Market prices 

Market prices paid and received in actual transactions are the best proxy for quantifying the 

value of data. However, adopting this approach faces many obstacles. First, there is no well-

defined market for many types of data, and, when available, transaction-based valuations 

may stem from obsolete information. Second, as the value of data is highly context-

dependent, the same dataset might be valued differently across different data suppliers, 

users, and regulators (Nguyen and Paczos 2020). Finally, market transactions in 

unprocessed data would only capture the input data and not the entire transformation 

chain necessary to generate digitized information (Reinsdorf and Ribarsky 2019). 

Large-scale market transactions typically exist primarily for third-party data produced by 

data brokerage or data aggregator companies. These companies usually collect information 

from publicly available personal records and then aggregate, store, and sell it to different 

customers through licensing subscriptions or contractual arrangements. As third-party data 

is widely accessible, they are less valued than first and, to a lesser extent, second-party data 

(Reinsdorf and Ribarsky 2019).  

It is also illustrative to examine financial indicators per record from companies that derive 

most (or all) of their income from advertising linked to personal data, e.g., Facebook/Meta. 

Figure 7 shows that the value of an individual (active) record currently is more than 300 

USD.  The firm’s valuation is approaching 1 trillion USD.  Ahmad, Ribarsky, and Reinsdorf 

Figure 7. Facebook/Meta Market Cap per Active 
User, 2012-2021 
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(2017) calculate a value equivalent to around 0.02 percent of global GDP for the user data 

collected by five major digital services (Facebook, Twitter, Instagram, LinkedIn, and Gmail) 

based on the number of active users and assumed prices of a user profile.  

Stated Preference Methods 

Some studies have provided estimates of data value using stated preference methods 

(including contingent valuation, conjoint analysis, and discrete choice analysis). This approach 

asks surveys participants to directly report their willingness to pay (WTP) to obtain a specified 

good or willingness to accept (WTA) to give up a good. The value of a non-market good or 

service is the amount that users are “willing to pay” for it, or “willing to accept” in return for 

not having it. Contingent valuation methods are widely used to understand consumer 

valuations and preferences in contexts with no monetary prices, such as environmental or 

cultural goods (see, e.g., Carson, Flores, and Meade, 2001 and McFadden and Train, 2017 for 

surveys).  

An excellent example to illustrate the use of stated preference methods for business valuation 

of data is the case of Landsat. The Landsat program consists of a series of Earth-observing 

satellite missions jointly managed by NASA and the US Geological Survey. Landsat data products 

are processed and made available for download to all users at no cost. Based on surveys of data 

users, Miller et al. (2013) estimated the economic benefit of Landsat data for the year 2011 to 

be $1.79 billion for US users and $400 million for international users. The annual benefit to US 

users is two times greater than the cost of building and launching Landsat-8, the Landsat 

satellite launched in 2013 and still operating. 

From a different perspective, a growing literature relies on stated preferences methods to 

study the monetary valuation of privacy. Prince and Wallsten (2020) conducted a discrete 

choice survey across six countries: the United States, Mexico, Brazil, Colombia, Argentina, and 

Germany. They find that Germany places the highest value on privacy compared to the US and 

Latin American countries. Across countries, people place the highest value on keeping financial 

and biometric information private.  

Stated preference methods are also used to assess the value of public information assets, e.g., 

official statistics. The United Nations Economic Commission for Europe (UNECE 2018) has called 

on national statistical agencies to develop approaches to calculate the monetary value of 

official statistics, which cannot be measured using market prices as many official statistics 

datasets are accessible under public license with no monetary price.  UNECE (2018) 

recommends various possible valuation methods, including using the stated preference method 

and reports that it was used to explore the economic value of the UK Economic and Social Data 

Service (ESDS). ESDS is a distributed service that aims to promote the broader and more 
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informed use of data for research and teaching in social sciences. In the study, respondents 

were asked to express their willingness to pay in terms of an annual (subscription) fee and on a 

pay-per-access basis. This resulted in an estimated willingness-to-pay of around £25 million per 

annum among the survey population.   

Sum-of-costs approach 

National accounts estimate investment by asset type based on a sum-of-costs approach. 

Though the approach differs substantially in context and application from the cost-based 

valuation method used in financial accounting, the concepts do overlap. National accounts aim 

at consistently recording investment flows and capital stocks every year and doing so involves 

estimating values for all sources of supply for each asset and deriving the asset valuations and 

quantities using information on price change in newly produced assets and information on the 

rate at which an asset’s value declines as it ages.   

If firms purchased all or most data from market transactions, as they do with tangible assets, 

measuring the cost of data would be like measuring expenditures for a construction firm’s 

purchase of excavators and concrete mixers. Instead, most digitized information used by 

businesses (and other intangibles such as software and R&D as well) is not transacted on 

markets but produced in-house. Thus, national accounts compilers must come up with two 

components for intangible investments, own-account investment (when data are produced and 

used in-house) and purchased investment (when data are bought and sold in market 

transactions), for measuring nominal investment flows in data assets.  Consider now how each 

component might be estimated. 

• In-house production: the “factory within a factory” 

The approach to in-house production is as follows: Imagine a firm having a “software 

factory” or “R&D factory” inside it—and the task at hand is to estimate the gross output of 

this hypothetical factory based on the market value of the payments made to factors 

employed by it (labor, capital, and intermediates).  In practice, the key to accomplishing this 

task is to identify the occupations of workers employed in the factory and to estimate their 

compensation. Based on knowledge of the compensation paid to these workers, the total 

payments made to all factors involved in the in-house production is then estimated (i.e., 

capital and intermediate costs are added to labor costs).  The identified workers may not be 

involved in producing new assets their entire workday; for example, the conventional 

approach to measuring in-house software production in national accounts is to assume that 

software developers spend just 50 percent of their time working in their firm’s “software 



 27 

factory” to produce original code.  In-house production of data assets is estimated in a 

similar fashion. 

The SNA explicitly recommends that national statistical offices use the sum-of-costs 

approach to estimate software and databases (unless produced for sale) and R&D (unless 

the market value of the R&D is observed directly) and the own-account component of any 

product for which it is not possible to find the price of a similar product. The INTAN-Invest 

database uses a sum-of-costs approach to estimate the own account component of non-

national accounts intangibles.  

• Purchased data assets 

Purchased data should be valued at the transaction price. Although conceptually simple, 

measuring the purchased component of data investment is challenging because 

comprehensive data sources are scant.  All told, information about the expenditures on 

data usually is missing in surveys of production or capital spending, and the national 

accountant’s total supply approach is difficult to implement. Ker and Mazzini (2020) 

considered business statistics sources and looked at the revenues generated by firms that 

create explicit value from data (those collecting, compiling, and selling databases). But they 

found that focusing mainly on industry classifications is likely to generate an inexact 

identification of these activities. For example, Zillow sells its data on home real estate 

valuations, Nielsen sells it survey data, as do credit agencies such as Experian, but these 

firms are in widely different industries. Also, monetizing databases is not necessarily the 

primary line of business for many firms who charge for purchased databases or are in the 

business of producing data intelligence (e.g., Gartner, McKinsey). 

 

This study vs prior studies using sum-of-costs approach 

Statistics Canada (2019a, 2019b) prepared experimental estimates of in-house investments in 

data based on a sum-of-costs approach, counting in effect all production as in-house 

production. Occupational groups were selected from among those generally associated with 

converting observations into digital format (the process of digitization). Their estimated values 

for investments in all three data types ranged from 1-3/4 to 2-1/4 percent of the country’s GDP 

in 2018.   

Goodridge at al. (2021) took the same approach and estimated the combined value of software 

and databases (from national accounts) and other data capital investments for 16 EU countries 

using essentially the same implementation in terms of occupations covered. Their results 
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suggest that including the Statistics Canada grouping of occupations engaged in producing data 

stores and data intelligence (which they refer to as data transformation and knowledge 

creation) raises own-account GFCF by around 60 percent compared to own-account investment 

in software and databases measured in EU official national accounts.  

In the next section, we implement a sum-of-costs approach to estimate in-house production of 

three types of data assets.  Our identification of workers engaged in producing data intelligence 

yields a broader list of occupations than used in previous works. In line with the intangible 

capital framework, our estimates of data intelligence include business and marketing strategy 

and data-driven engineering design. These forms of data intelligence were not included in prior 

works.  

Part 2: Value of Data in Selected European Countries 

We implement a cost-based approach based on the value chain framework illustrated in 

section 2 and report experimental estimates of (domestically-produced) investment in data 

stores, databases, and data intelligence for the market sector of 9 European, mainly western, 

economies for the years 2010 to 2018; these countries include Denmark (DK), Germany (DE), 

Finland (FI), France (FR), Italy (IT), Netherlands (NL), Spain (ES), Sweden (SE) and the United 

Kingdom (UK).18 To the best of our knowledge, these are the first harmonized and 

internationally comparable measures of data investment produced so far for these countries. 

Although the estimates are experimental and preliminary, our conceptual approach emphasizes 

the use of a measurement framework consistent with national accounts for computing time 

series of investments in data assets, including estimates in volume terms (i.e., adjusted to 

consider price changes) and data capital stock measures.  

Measures of data have been generated using the information on total in-house costs incurred 

for transforming raw digitized information into data assets by considering the occupation types 

engaged in producing the three data asset types set out in section 2. A similar exercise is 

conducted for software. The software estimates are valuable for comparative analysis with 

national accounts, which combines software and databases, and with intangible investment, 

which uses national accounts estimates for these assets. 

Our measures of data assets and software capture the value produced in the market sector 

regardless of whether the produced output is intended for own final use or final sale. In what 

follows, we consider the produced value of data as a good proxy for data capital investment in 

 
18 We define market sector as all industries excluding NACE sections O (public administration and defense; 
compulsory social security), P (education), Q (human health and social work activities), T (activities of households 
as employers; undifferentiated goods - and services - producing activities of households for own use), and the 
imputed rents of owner-occupied dwellings component section L (real estate activities).  
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the market sector assuming that data transactions between the government and the market 

sector are rather small. Strictly speaking, estimating market sector investment would require 

adjusting the estimates of in-house produced output for data transactions between 

government and the market sector as well as for imports and exports data flows.  As previously 

indicated, information on transactions in data stores and databases, whether domestic or for 

international trade, are not apparent in official statistics.  

An appendix to this paper details the procedures and data sources used to develop our 

estimates of the value of data asset production in the 9 European countries listed above.  

Results 

Our main results regarding the relative size and growth of market sector data asset production 

and intangible investment are shown in figures 8a–d.  Data asset production is shown according 

to the three segments in the data value chain in figure 8a.  The total data value chain averages 

5.3 percent relative to market sector GVA in the covered countries and years (2010–2018). The 

United Kingdom is the most data intensive of the countries included (6.5 percent), and Italy and 

Spain are the least (3.8 percent). Data intelligence is estimated to be the largest segment in the 

data value chain. 

Figure 8b shows that resources allocated to data asset production in 2018 was rather less than 

intangible asset production (60 percent less). And figure 8c shows that nominal data production 

grew just a tad faster than intangibles, and at that, only until the final two years of the analysis. 

As stressed in the previous section, however, the cost efficiencies enabled by data-driven forms 

of intangible investment imply that the real growth of data assets likely eclipsed that of overall 

real intangible investment.  When we examine results for the information and communications 

services producing sector (NACE industry sector J, not shown), we find that its data asset 

production share is a tad higher and grows slightly faster in relation to its intangible investment 

than comparable statistics for the overall market sector. 

Owing to the complementarity between data and software tools, Figure 8b also shows a sum-

of-costs estimate of domestic software production, which averages 25 percent of the data value 

chain plus software. To put this in perspective, figure 8d shows the relationship between the 

percent change over the sample period for the sum-of-cost estimate of software and databases 

with the national accounts software investment (which includes own-account production of 

databases and imports and exports, as previously discussed). As may be seen, production 

shares expand a bit less than investment shares, and production shares are, on average, less 

than investment shares (2.6 percent versus 3.1 percent). 
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Figure 8a Estimates of the Data Value Chain for 9 European Countries, 2010-2018 average 

                         Figure 8b Data and software asset production versus intangibles, 2018 

 

Figure 8c Relative growth (2010=100)    Figure 8d Software & databases, this paper 
                 versus national accounts (% chg. GVA share)  
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Figure 9 Data Capital Production and Intangible Investment by Broad Category 2010 to 2018 
(average shares on the left, growth rate of shares on the right) 

9a – Data and Digitized Information 

 

9b – Data and Innovative Property 

 

9c – Data and Economic Competencies 
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Figure 9 shows empirical results on cross-country relationships between the data value chain 

and intangible investment components. Data shares of market sector GVA are found to 

correlated with shares of the three broad groups of intangibles: digitized information, 

innovative property, and economic competencies (the right panels in the figure).  And growth 

rates of data shares are strongly correlated with investments in the innovative property and 

economic competencies groups of assets. All told, the correlations are strongest for the 

economic competencies grouping, as suggested by the discussion of the relationship between 

the data value chain and intangible capital in section 2. 

Tables in the paper’s appendix 3 report detailed results of correlations among aggregates and 

components of the data value chain, our software production sum-of-costs estimate, and 

detailed components of intangible investment. 

5. DATA CAPITAL AND TOTAL FACTOR PRODUCTIVITY 

To calculate total factor productivity, we use the recently issued EUKLEMS & INTANProd 

database, which reports productivity data including investment streams for the intangible 

assets listed in table 2 for most of Europe, as well as for the United States and Japan.19  The 

investment and capital estimates for assets not regularly capitalized in national accounts are 

developed using national accounts-consistent methods, i.e., they are not calibrations of a 

model or developed from data in company financial reports.20  

Below we report and analyze estimates of total factor productivity that cover the nine 

European countries included in the empirical analysis of the data value chain and the United 

States from 1998 to 2018.  The results for Europe are aggregated using production-side 

purchasing power parities (PPPs) to facilitate comparative analysis with the United States.21  It 

should be noted that INTANProd includes estimates of intangible investment for all 27 EU 

countries (though histories are short for some); the limitation on countries included in this 

 
19 This update/expansion is funded by the European Commission’s Directorate General for Economic and Financial 
affairs. 
20 Methods used to develop the harmonized estimates of intangible investment are documented in Bontadini et al 
(2022), available on the EUKLEMS & INTANProd portal at https://euklems-intanprod-llee.luiss.it.  Compared with 
previous estimates issued via the INTANInvest database and website (www.intaninvest.net), current figures reflect 
significant improvements to the own-account components of intangible investment and to intangible asset price 
deflators for non-national accounts components.  As in previous work that developed productivity estimates using 
INTANInvest, these estimates reflect price deflators for IT equipment and software whose product quality change 
component is harmonized across countries.  These deflators are developed and supplied by the OECD. 
21 Productivity comparisons at the industry level should use PPPs that adjust for differences in industry product 
output and input prices across countries rather than overall prices derived from expenditure component of final 
demand. Methods for obtaining production side PPP estimates from unit value production statistics and adjusted 
expenditure PPPs are set out in van Ark and Timmer (2009) and Inklaar and Timmer (2008). Updated production-
side PPPs will be produced as part of the EUKLEMS & INTANProd project and released this summer. 
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analysis rather mainly the availability of 20 years of requisite growth accounting data by 

industry. The EUKLEMS & INTANProd data used here are preliminary; statistics for recent years 

will be updated and the database enhanced this summer. 

For international comparability, the intangible capital estimates reflect the incorporation of 

price deflators for brand and marketing that are harmonized to include the drop in advertising 

media marketing costs shown in figure 6b. (Similarly, the deflators for computer, and 

communications equipment and software are harmonized). 

Growth decompositions  

The growth accounting reported below is in per hour terms, i.e., it decomposes the growth in 

output per hour for both the European aggregate and the United States.  The accounting for 

the European aggregate is developed at the country-industry level, where industries are 

aggregated to “market” sector aggregates for each country and then weighted accordingly to 

form the European aggregate.  Market sector aggregates used here exclude the public sector 

and majority-public (or heavily subsidized) industries, resulting in coverage that is broadly 

similar, though not identical to the nonfarm business sector used for headline productivity 

statistics in the United States.22   

As commonly understood, country-

level output per hour reflects both 

“within” and “between” industry 

sector effects, with the 

reallocation of labor across sectors 

(the “between” effect), e.g., out of 

agriculture to manufacturing in 

developing economies, an 

important factor driving change in 

low-income countries. Though 

reallocation may also affect 

modern economies as jobs move 

from manufacturing to services, 

figure 10 shows that the 

 
22 The market sector aggregates are formed using 25 individual industries that cover 10 NACE letter-level industry 
sectors: B (Mining), C (Manufacturing), F (Construction, G (Wholesale and retail Trade; repair of motor vehicles), H 
(Transportation and storage), I (Accommodation and food S=services), J (Information and Communication 
activities), K (Finance and insurance activities), M (Professional, scientific, and technical activities), N 
(Administration and support activities).  NACE is an international system for industry classification used in Europe; 
for a concordance to the NAICS system used in North America, see the Bontadini et al. (2022) documentation on 
the EUKLEMS & INTANProd project portal.  
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reallocation of hours across market sector industries has had a negligible impact on broad 

changes in market sector output per hour in Europe and the United States in recent decades.  

The rate of change in labor productivity thus dropped precipitously in market-dominated 

industries of both regions with the onset of the global financial recession in 2008 due to its 

“within” effect—despite the likely boost of .1 to .2 percentage points from data capital based 

on estimates reported in table 3 and section 4 (and assuming the contribution of data capital 

was nil in the prior period).  

 

Figure 11 sets out decompositions of the within-industry change in labor productivity.  

Comparing the first set of columns in figure 11 for each region with the last set, the drop in 

growth of output per hour (OPH) is seen to be mainly accounted for by a substantial slowdown 

in total factor productivity (TFP) growth, i.e., the 9$ in equation (3) is 0.9 percentage point less 

per year in the period after 2007 compared with prior years in Europe and .7 percentage point 

less in the United States.  The contribution of the second set of bars (labor composition) reflects 

the per hour contribution of increases in (employed) human capital, i.e., the contribution to the 

change in OPH of changes in the proportion of high-skilled/high wage jobs in an economy.  

Though this effect works in opposite directions in Europe vs the United States, its contribution 

to explaining developments in productivity growth in these regions during the past 20 years is 

relatively small. 
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The terms in capital deepening are part of the slowdown story, directly and indirectly. A drop in 

tangible capital deepening directly explains 22 percent of the drop in OPH in Europe and 

whopping 44 percent of the drop in the United States.  The rate at which workers in both 

regions were equipped with intangible capital was maintained, or edged up a tad, over the 

entire period, however. That resources continued to be invested in innovation in both regions 

during the period of the slowdown in productivity suggests that the slowdown story must be 

about, at least in part, changes in the costless diffusion of innovations across firms and 

industries in these economies. Before turning to discuss this, consider first that GDP 

measurement may also be a contributor to the productivity slowdown depicted in figure 11.  

Besides missing intangible investments that, note, cover AI R&D and most business applications 

of AI, many believe that official statistics miss major aspects of how consumers benefit from the 

digital economy. The falling cost of consumer digital content delivery, i.e., the value consumers 

obtain from their paid-for wireless data and video subscription services, is chief among them.23  

Available research quantifies both very fast drops in prices for consumer digital services (esp. 

mobile data and streaming) and increased shares of consumer spending allocated to 

subscriptions for these services—telltale signs that the missed price drops have an increasing 

deflationary impact on consumer price inflation.  The missed price drops are in fact estimated 

to have overstated consumer price change by 0.3 percentage points per year from 2007 to 

2018, which when translated to figure 4, potentially explains about 1/3 of the estimated drop in 

TFP growth in Europe and nearly half of that in the United States.24  

Diffusion of commercial knowledge and increased productivity dispersion 

The diffusion of commercially valuable knowledge is the primary determinant of total factor 

productivity growth (measured 9$) according to the upstream/downstream model set out in 

section 3.  A relationship also is a regularity in past productivity data, insofar as cross-country 

and firm-level econometric work have estimated increasing returns (or knowledge spillovers) to 

intangible capital.  In simple terms, these works imply that a proportional relationship, 

 
23 That consumers also benefit from free content delivered via their paid-for digital services (e.g., value derived 
from user-generated content in social media) is a related matter, but however significant, its impacts fall outside 
the market activity scope of the productivity analysis reported in figure 11. 
24 The aggregate estimate is from Byrne and Corrado (2020, 2021), which applies to the United States and covers 
mobile voice and data, internet access, cable TV, and video streaming; this estimate is consistent with Abdirahman, 
Coyle, Heys, and Stewart (2020), who find comparable, rapid rates of price drops for mobile voice and data in the 
United Kingdom, and Edquist, Goodridge, and Haskel (2021), who document very rapid drops in global prices for 
music streaming. 
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expressed as 9$ ≈ .2	9=, could be used to represent the costless diffusion of commercially 

valuable knowledge in an economy.25   

As 9= (per worker) did not slow after 2007, the logical (endogenous) explanation for the 

slowdown in measured 9$ is that factors driving these increased returns ceased to operate as 

strongly as they previously had.  Despite their nonrival character, the potential for productivity 

spillovers to intangible investments is determined by an innovation ecosystem, e.g., 

competition intensity and regulation, intellectual property rights and their enforcement, privacy 

laws, broadband access, etc.  It is very difficult, however, to see how the workings of this 

ecosystem could change so seriously and suddenly on both sides of the pond (though a possible 

worrisome decline in competitive intensity in the United States is under active debate).   

On the other hand, the composition of knowledge assets directly affects the strength of the 

diffusion process. Data capital and software code tend to be regarded as trade secrets, 

intentionally undisclosed and thus difficult to replicate. Moreover, though a data-enabled 

business model may be apparent to competitors, and the model’s training data are not. As the 

digital economy has boosted real investment in data-intensive forms of intangible capital, the 

mechanisms that generate increasing returns to the macroeconomy via the “free” diffusion of 

innovations arguably have weakened.  

As intangible capital has become, in effect, data capital, there also has been an increase in 

dispersion of firm-level productivities within industry groups attributed, at least in part, to 

increased investments in economic competencies by market services industries.26  The changed 

composition of intangible investment then likely has also led to scale economies within certain 

firms, e.g., data agglomeration effects in digitally enabled firms, that affected competition.  

The data capital framework set out in this paper frames the maximum impact of these 

developments on market sector productivity as follows: With post-2007 growth of intangibles 

averaging 2-3/4 percent per year in the European countries and more than 3-1/2 percent per 

year in the United States, a complete cessation of the diffusion mechanism could shave as much 

as .5 to .6 percentage point per year off measured 9$ for these regions.  These are rather 

sizeable impacts. 

 
25 This refers to the aggregate implications of estimates for R&D spillovers reported by Griliches for manufacturing 
(e.g., Griliches 1992) and for nonR&D intangibles (especially, the industrial design, employer-provided training, and 
organizational capital components) by Corrado, Haskel, and Jona-Lasinio (2017).  
26 This was documented globally in Andrews, Criscuolo, and Gal (2016), who characterized the development as a 
worrisome decline in the global diffusion of new ideas and technologies since 2000.  The growing relative 
importance of intangible assets was identified as a mechanism behind increased firm-level productivity dispersion 
in follow on work (Corrado, Criscuolo, Haskel, Himbert, and Jona-Lasinio 2021). 
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Productivity growth via the costless replication of commercial knowledge is highly unlikely to 

have ceased entirely, however, and other factors including structural or policy-induced factors 

may have contributed to its slowdown.  But our analysis of the data intensity of intangible 

capital, combined with the tendency for data assets to be closely held, suggests that spillover 

effects that prevailed in the past likely have diminished with the increased use data and slowed 

the growth in total factor productivity. 

6. CONCLUDING REMARKS 

We have used an intangible assets approach to the question of how much data might affect 

productivity.  We argue that data, or more accurately transformed raw digitized records, and 

the capital services derived therefrom fit neatly into both the management/technology 

literature on the data stack and the economics literature on intangible assets. We outlined a 

simple two-sector growth accounting framework to articulate how much the relative 

technology gains from the use of data might have affected overall productivity growth. And 

using a new data set, we documented and analyzed the slowdown in total factor productivity 

growth in major developed economies.   

A full explanation for the recent productivity slowdown perhaps remains elusive, but we are 

hopeful that the methods outlined, along with improved measurement, have demonstrated 

that the increased importance of data assets in intangible capital is a factor in the explanation.  
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APPENDIX 1– Data Sources and Estimation Method for Data Assets and Computer Software 

In this appendix, we describe the cost-based approach and the data sources we have used to 

estimate market sector investment in data stores and data intelligence (the components of 

data not currently included in official national accounts), databases and computer software. 

The same method is used to estimate the own-account brand, design, organizational capital, 

and new financial products in the EUKLEMS & INTANProd database.  

In broad terms, cost-based estimates of output for any given asset can be derived as follows: 

Estimated value of output at basic prices 

equals 

Labour costs of relevant personnel (compensation of employees) 

plus 

Intermediate costs used in these activities 

plus 

Cost of capital services used in these activities (gross operating surplus)  

plus 

Net taxes on production related to these activities 

 

The standard way to implement the above calculation is to first estimate the labor cost 

component as:   

Labour costs of relevant personnel 

equals 

Total number of employees working on producing the relevant asset  

times 

Average remuneration  

times 

Proportion of time spent on these activities 

 

Then, gross output at basic prices is obtained as: 

Gross output at basic prices 

equals 

Labor costs of relevant personnel 
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times 

Blow-up factor 

 

For each asset, the calculation requires i) a detailed list of occupations; ii) occupation-specific 

(and industry-specific, if relevant) assumptions on the share of time spent in producing the 

asset; iii) data on the number of employees for the relevant occupations and their 

compensations; iv) blow-up factors to account for other cost components (intermediate 

consumption and gross operating surplus) to derive an output measure consistent with national 

accounts definitions. 

Occupations identified from the ISCO-08 as engaged in data assets and computer software 

capital formation are presented in Table A1, along with time-use assumptions.  

The selection of relevant occupations is constrained by the level of detail of the available data 

sources. For this paper, we use micro-data of the EU Structure of Earnings Survey (SES) for 

2010, 2014, and 2018 and the EU Labour Force Survey (LFS) for 2008-2019. The SES provides 

information on the number of employees by occupation (at the three-digit level of the 2008 

International Standard Classification of Occupations, ISCO) and economic activity and their 

annual earnings. The LFS, instead, only provides data on employment with no information on 

wages. In the LFS, occupations are available at the three-digit level of ISCO for all countries, 

while SES data for 11 countries are available at two-digit. We have disaggregated two-digit ISCO 

into three digits for these countries based on the share of each relevant three-digit occupation 

from the LFS. 

In the LFS, occupations are available at the three-digit level of ISCO for all the six countries, 

while SES data for Finland, Germany, Netherland, Spain, and Sweden are available at two-digit. 

We have disaggregated two-digit ISCO into three digits for these five countries based on the 

share of each relevant three-digit occupation from the LFS.   

Some occupational groups relevant for data-related asset production are only identifiable at 

the four-digit level. Thus, we have tweaked our assumptions on the time-use factors 

accordingly to consider that the occupational groups include workers not engaged in data 

assets production.  

For each asset, the calculation for 2010, 2014 and 2018 (the years for which we have the SES) is 

as follows: 

1. Calculate total employment for each relevant occupational group involved in producing the 

asset (identified at three-digit ISCO) 
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2. Apply occupation-specific time-use assumptions to each occupation's employment  

3. Calculate total wages for each (time-use adjusted) relevant occupation. 

4. Calculate the total share of all occupations involved in producing the asset in total wages 

from the SES  

5. Calculate labor cost component consistent with national accounts by applying the share 

calculated at step 4 to national accounts' compensation of employees. 

6. Calculate gross output by applying blow-up factors to the labor cost component derived at 

step 5. We have used blow-up factors equal to 1.6 for organizational capital and 1.8 for the 

other assets.   

We have derived the wage shares of the intervening years (when the SES is not available) based 

on information from the LFS. For each country, we have calculated the share of (time-use 

adjusted) relevant occupations in total employment for 2010-2018 from LFS. We have then 

used the employment share as an indicator to extrapolate/retropolate the wage shares 

obtained from the SES.  

We have made the calculations by industry, at the level of Nace sections, and then aggregated 

the result to the market sector, defined as all industries excluding Nace sections O (public 

administration and defense; compulsory social security), P (education), Q (human health and 

social work activities), T (activities of households as employers; undifferentiated goods - and 

services-producing activities of households for own use), and the imputed rents of owner-

occupied dwellings component section L (real estate activities). 

 

TABLE A1. RELEVANT OCCUPATIONS IN MEASUREMENT OF INVESTMENT IN DATA ASSETS AND COMPUTER 

SOFTWARE AND TIME-USE ASSUMPTIONS   

ISCO-08 sub-
major group 

ISCO-08 
minor 

group 

Occupation 
description 

Time-use (%) 

Data 

Stores 

Data 

Intelligenc
e 

Database

s 

Software 

21 - Science 
and 

211 Physical and 
earth science 
professionals 

10 25 0 0 
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engineering 

professionals 

212 Mathematicians, 
actuaries and 
statisticians 

10 25 0 0 

213 Life science 
professionals 

10 25 0 0 

214 Engineering 
professionals 
(excluding 
electrotechnolog
y) 

10 25 0 0 

215 Electrotechnolog
y engineers 

10 25 0 0 

216 Architects, 
planners, 
surveyors and 
designers 

10 10 0 0 

24 - Business 

and 
administration 

professionals 

241 Finance 
professionals 

10 25 0 0 

242 Administration 
professionals 

0 10 0 0 

243 Sales, marketing 
and public 
relations 
professionals 

10 10 0 0 

25 - 
Information 

and 
communication

s technology 
professionals 

251 Software and 
applications 
developers and 
analysts 

10 0 10 50 

252 Database and 
network 
professionals 

10 0 50 10 

33 - Business 

and 
administration 

associate 
professionals 

331 Financial and 
mathematical 
associate 
professionals 

10 25 0 0 
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35 - 

Information 
and 

communication
s technicians 

351 Information and 
communications 
technology 
operations and 
user support 
technicians 

10 0 0 0 

41 - General 

and keyboard 
clerks 

413 Keyboard 
Operators 

5 0 0 0 

42 - Customer 
services clerks 

422 Client 
information 
workers 

5 0 0 0 

43 - Numerical 

and material 
recording 

clerks 

431 Numerical clerks 5 0 0 0 

432 Material-
recording and 
transport clerks 

5 0 0 0 

 

Note: 413 includes data entry clerks (4132); 422 includes survey and market research 

interviewers (4227); 431 includes statistical, finance and insurance clerks (4312). 

 

APPENDIX 2– Data Sources and Estimation Method for the Domestic Component of Intangible 

Investment 

In this appendix, we describe how we have estimated the domestically sourced component of 

intangible investment. 

We have estimated domestically produced investment in R&D and computer software and 

databases based on data from national supply and use tables. We have calculated the share of 

gross output in total resources for domestic use, SGOD, as follows: 

SGODi = (GOi – EXi) / (GOi – EXi + IMi) 

where GOi, EXi and IMi are gross output, exports and import of product i (i= CPA_M72 for R&D, 

and CPA_J62-63 for computer software and databases). 

Then, we have estimated the domestic component for each of the two assets, multiplying 

national accounts investment by the corresponding share of gross output in total resources for 
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domestic use. The calculation assumes that the share of the domestic component is the same 

across different uses (intermediate consumption, final consumption, and investment).        

For non-national accounts intangibles, we have calculated the domestic component of brand, 

design, and organizational capital as the sum of own-account investment and an estimate of 

the domestically sourced purchased component. New financial products are only domestically 

produced. No data sources for estimating imported training are available, but we deem that the 

imported component is very small and can be ignored. 

Domestically sourced purchased component of brand, design and organizational capital has 

been calculated based on information from the world input-output tables available from World 

Input-Output Database (WIOD, available at 

https://www.rug.nl/ggdc/valuechain/wiod/?lang=en). For each industry in a country, world 

input-output tables report intermediate use of domestic output and intermediate use of 

imports from other countries disaggregated by product. Based on these tables, we have 

calculated the share of domestic output in market sector intermediate consumption of the 

following products: advertising and market research services (CPA M73), architectural and 

engineering services, technical testing, and analysis services (CPA M71) and legal and 

accounting services, services of head offices and management consulting services 

(CPA_M69_70). Finally, we have calculated the domestically sourced purchased component of 

brand, design and organizational capital multiplying purchased investment by the share of 

domestic output in total intermediate consumption for the relevant products (CPA M73 for 

brand, CPA_M71 for design, and CPA_M69_70 for organizational capital). 

The 2016 WIOD release provides an annual time-series of world input-output tables from 2000 

to 2014. For the most recent years, we have extrapolated the shares regressing 2000-2014 

shares on a linear time trend. 
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   Appendix 3 Correlation Tables 
 

Appendix Table A2 Shares of value added 
 

 Databases_P Data_Stores_P Data_Intelligence_P Data_capital_P Intangibles_I Intangibles_NonNatAcc_I Intangibles_NatAcc_I Software_P Software_DB_I R&D_I Org Cap_I NFP_I Design_I Brand_I 

Databases_P 1     

Data_Stores_P 0.393*** 1     

Data_Intelligence_P 0.382*** 0.861*** 1     

Data_capital_P 0.602*** 0.917*** 0.954*** 1     

Intangibles_I 0.612*** 0.482*** 0.549*** 0.629*** 1    

Intangibles_NonNatAcc_I 0.579*** 0.624*** 0.676*** 0.740*** 0.914*** 1    

Intangibles_NatAcc_I 0.484*** 0.149 0.219* 0.299** 0.833*** 0.536*** 1   

Software_P 0.647*** 0.726*** 0.805*** 0.865*** 0.872*** 0.898*** 0.589*** 1   

Software_DB_I 0.587*** -0.0000921 0.0745 0.194 0.762*** 0.564*** 0.815*** 0.593*** 1   

R&D_I 0.268* 0.202 0.186 0.241* 0.599*** 0.304** 0.833*** 0.337** 0.389*** 1   

Org Cap_I 0.649*** 0.528*** 0.491*** 0.619*** 0.863*** 0.935*** 0.520*** 0.832*** 0.666*** 0.227* 1   

NFP_I 0.141 -0.168 0.2 0.102 -0.0468 -0.104 0.0445 0.0661 0.0885 -0.05  -0.221* 1   

Design_I 0.0759 0.132 0.216 0.188 0.571*** 0.348** 0.713*** 0.341** 0.358** 0.721* 0.18 -0.011 1  

Brand_I 0.211 0.572*** 0.608*** 0.589*** 0.416*** 0.687*** -0.0728 0.565*** 0.0398 -0.18 0.568*** -0.128 -0.189 1 

="* p<0.05 ** p<0.01 *** p<0.001" 
 
 
Appendix Table A3 Shares of value added (percentage changes) 

 
 Databases_P Data_Stores_P Data_Intelligence_P Data_capital_P Intangibles_I Intangibles_NonNatAcc_I Intangibles_NatAcc_I Software_P Software_DB_I R&D_I Org Cap_I NFP_I Design_I Brand_I 

Databases_P 1     

Data_Stores_P 0.365*** 1     

Data_Intelligence_P 0.697*** 0.659*** 1     

Data_capital_P 0.728*** 0.857*** 0.921*** 1     

Intangibles_I 0.0770 0.144 0.150 0.150 1    

Intangibles_NonNatAcc_I 0.255* 0.557*** 0.608*** 0.589*** 0.374*** 1    

Intangibles_NatAcc_I -0.0275 -0.0631 -0.0784 -0.0724 0.931*** 0.0562 1   

Software_P 0.707*** 0.610*** 0.751*** 0.766*** 0.158 0.452*** -0.0158 1   

Software_DB_I 0.00481 -0.0491 -0.0299 -0.0333 0.759*** 0.0256 0.796*** 0.0173 1   

R&D_I -0.0684 -0.0789 -0.104 -0.105 0.859*** 0.0586 0.957*** -0.0361 0.645*** 1   

Org Cap_I 0.213 0.297** 0.381*** 0.365*** 0.353** 0.754*** 0.101 0.367*** 0.147 0.0511 1   

NFP_I 0.559*** 0.432*** 0.730*** 0.661*** 0.0450 0.275* -0.0671 0.526*** 0.0333 -0.107 0.0741 1   

Design_I 0.0818 0.417*** 0.319** 0.361*** 0.0874 0.611*** -0.117 0.192 -0.192 -0.067 0.342** 0.133 1  

Brand_I 0.158 0.487*** 0.497*** 0.474*** 0.299** 0.741*** 0.0827 0.330** 0.0621 0.103 0.365*** 0.230* 0.125 1 

 


