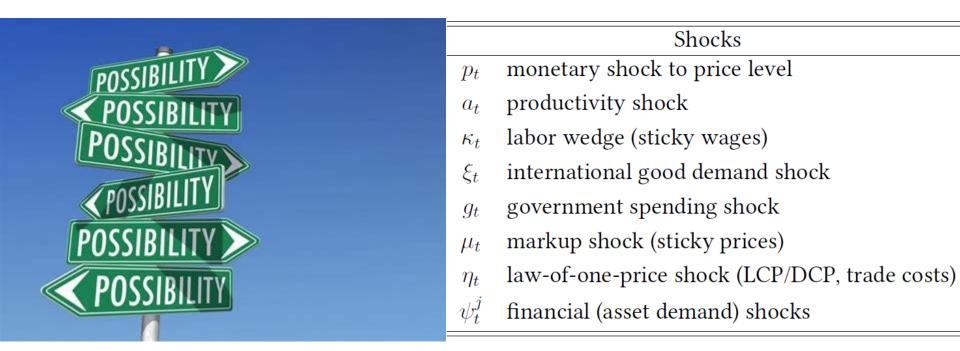
What drives the Exchange Rate? by Oleg Itskhoki and Dmitry Mukhin

Discussion


Harald Hau
University of Geneva
Swiss Finance Institute

Structure of Discussion

- Summary of the Paper
- General Appraisal
- Comment I: "Financial Disconnect"
- Comment II: Future research
- Comment III: Volatility variation

Summary of the Paper

Which candidates shocks can we eliminate?

- Consider a candidate set of shocks for FX effects
- But which ones are compatible in the autarky limit with

i) Macro disconnect
$$\lim_{\gamma \to 0} \frac{dMacro Variable}{dShock} = 0$$

ii) FX effect $\lim_{\gamma \to 0} \frac{dExchange Rate}{dShock} \neq 0$

Prop. 1: Disconnect Violations

	Shocks
p_t	monetary shock to price level
a_t	productivity shock
κ_t	labor wedge (sticky wages)
ξ_t	international good demand shock
g_t	government spending shock
μ_t	markup shock (sticky prices)
η_t	law-of-one-price shock (LCP/DCP, trade costs)
ψ_t^j	financial (asset demand) shocks

- Price, productivity, labour wedge, government spending and mark-up shocks all impact output or consumption and the exchange rate.
- They do not pass the disconnect test!
- These shocks do not become irrelevant to macro variables in the autarky limit $\lim_{\gamma \to 0}$

Prop. 2: Sign Restrictions

$\frac{\text{Shocks}}{\xi_t} \quad \text{international good demand shock} \\ \eta_t \quad \text{law-of-one-price shock (LCP/DCP, trade costs)} \\ \psi_t^j \quad \text{financial (asset demand) shocks}$

- Only asset demand shocks imply in the autarky limit
 - i) a positive correlation between the terms of trade and the real exchange rate
 - ii) a negative correlation between relative consumption growth and the real exchange rate
 - iii) a UIP deviations.

Prop. 3: Financial Disconnect as Selection Criterium

Financial Disconnect:

$$lim_{\gamma \to 0} \frac{dAsset\ Price}{dShock} = 0$$
 and $lim_{\gamma \to 0} \frac{dExchange\ Rate}{dShock} \neq 0$

- Most news shocks about persistent dividend or discount factor changes does not fulfil this condition.
- Contemporaneous asset demand shocks ψ_t^j (under domestic asset price determination) are accommodate by adverse exchange rate change.
- Euler eq.: $\Theta_t^j = \mathbb{E}_t \sum_{\tau=1}^{\infty} \mathcal{M}_{t,t+\tau} \mathcal{D}_{t+\tau}^j e^{-\Psi_{t,t+\tau}^j},$ $\frac{\Theta_t^j}{\mathcal{E}_t} = \mathbb{E}_t \sum_{\tau=1}^{\infty} \mathcal{M}_{t,t+\tau}^* \frac{\mathcal{D}_{t+\tau}^j}{\mathcal{E}_{t+\tau}^j} e^{-\Psi_{t,t+\tau}^{*j}},$

$$\frac{\Theta_t^j}{\mathcal{E}_t} = \mathbb{E}_t \sum_{\tau=1}^{\infty} \mathcal{M}_{t,t+\tau}^* \frac{\mathcal{D}_{t+\tau}^j}{\mathcal{E}_{t+\tau}} e^{-\Psi_{t,t+\tau}^{*j}},$$

$$\mathcal{M}_{t,t+\tau} \equiv \beta^{\tau} \left(\frac{C_{t+\tau}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+\tau}} \text{ and } \mathcal{M}_{t,t+\tau}^* \equiv \beta^{\tau} \left(\frac{C_{t+\tau}^*}{C_t^*}\right)^{-\sigma} \frac{P_t^*}{P_{t+\tau}^*}$$

Appraisal and Comments

General Appraisal

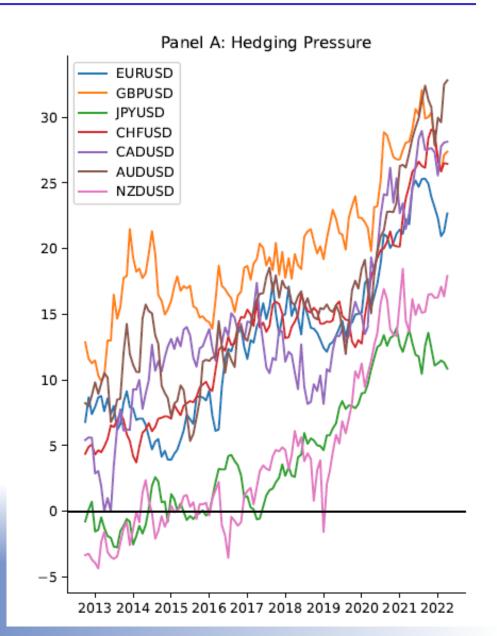
- GE research often fail to have a clear message
- Sharp focus on autarky limit cuts through a lot of complexity

- Message: Asset demand shocks only suitable candidate for explaining exchange rate disconnect and volatility "near" autarky
- Provocative and insightful
- Helpful simplicity like in the "Redux Paper"

Specific Comment I: "Financial Disconnect"

- Financial Disconnect is <u>not a</u> <u>stylized fact</u>
- Example: Covered EquityParity
 - International equity return differences relate to nominal exchange rate movement (Hau and Rey, 2006, 2022)
 - Globalization of asset markets:
 Many asset markets have large participation of foreign investors, which suggests that foreign investors matter for asset price
- Which shocks do create the observed financial correlations?

$\operatorname{corr} \left[-dE_t, \right.$	$\left(dR_t^{f^*}\right)$	$-dR_t^h\Big)/\overline{P}\Big]$
---	---------------------------	----------------------------------

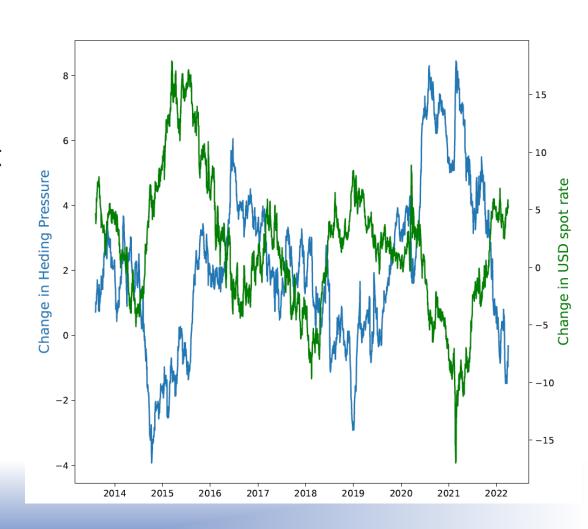

(a) January 1980– December 2001

Australia	0.1796***
Austria	-0.1020
Belgium-Luxembourg	-0.2508^{***}
Denmark	-0.2179^{***}
Finland	-0.1580^{**}
France	-0.1230**
Germany	-0.1409**
Ireland	-0.2710^{***}
Italy	-0.1308**
Japan	0.6590
Netherlands	-0.3403^{***}
Norway	-0.0936
Portugal	-0.0763
Spain	-0.1250**
Sweden	-0.2287^{***}
Switzerland	-0.1761^{***}
U.K.	-0.1187^*
Mean	-0.1009
SD	0.2248
Pooled data	-0.1232***

Specific Comment II: Future FX Research

Which type of financial asset demand shocks matters most?

- Time varying hedging by funds in FX derivative markets (FX swaps, FX forwards)?
- Positive net dollar bond positions by foreign funds create large (time-varying) net hedging demands for dollar short positions
- Liao and Zhang (2020),
 Bräuer and Hau (2022)



Specific Comment II: Future FX Research

- Global dealer banks accommodate foreign demand for FX dollar hedge, but cover their risk by dollar selling in spot market (synthetic hedge)
- High correlation of

 -0.66 between
 hedging pressure

 and dollar spot rate index

Specific Comment III: Volatility Variation

- Uncertainty and asset volatility play a role in known FX transmission channels:
 - VIX => Portfolio rebalancing
 - VIX => Hedging demand by funds
 - VIX => Flight to quality (EM)

- Main variables in GE models are <u>not</u> VIX sensitive: <u>model variable disconnect</u>
- Difficult to incorporate time-varying uncertainty into GE models

Thank you!

References

- Bräuer, Leonie, and Harald Hau (2020) "Can Time-Varying Currency Risk Hedging Explain Exchange Rates?," SSRN working paper https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4273439
- Camanho, Nelson, Harald Hau, and Hélène Rey (2022) "Global Portfolio Rebalancing and the Exchange Rates," The Review of Financial Studies, Vol. 35, pp. 5228–5274.
- Hau, Harald and Hélène Rey (2006) "Exchange rates, equity prices, and capital flows," The Review of Financial Studies, Vol. 19, pp. 273–317.
- Liao, Gordon and Tony Zhang (2021) "The hedging channel of exchange rate determination," International Finance Discussion Paper 1283.