Corporate Debt Structure with

Home and International Currency Bias

Matteo Maggiori Brent Neiman Jesse Schreger
Stanford Chicago Columbia

November 2023

IMF Annual Research Conference
in Honor of Ken Rogoff
Global Bond Issuance with Segmented Capital Markets

- Key feature of global bond portfolios: Home Currency Bias (Maggiori, Neiman and Schreger (2020))

- When investors don’t lend in their home currency, they tend to do it in the dollar: International Currency Bias

This paper: implications of investor currency bias for currency composition of corporate debt

- Stylized facts of corporate bond issuance and holdings
- Simple model with investor segmentation by currency
- Quantity dimension of the Exorbitant Privilege
Related Literature

- **International role of currencies:** Ilzetzki, Reinhart and Rogoff (2019) and Ilzetzki, Reinhart and Rogoff (2022), Gourinchas et al. (2011), Eichengreen (2011), Gourinchas and Rey (2007), Coppola et al. (2023), Jiang et al. (2021), Farhi and Maggiori (2018), He et al. (2019), Gopinath and Stein (2018), and Hassan (2013)

- **International finance and macroeconomics with segmented financial markets:** Gabaix and Maggiori (2015), Greenwood et al. (2023), Gourinchas et al. (2022), and Maggiori (2022)

- **Currency composition of corporate borrowing:** Bruno and Shin (2017), Salomao and Varela (2022), Kalemli-Ozcan et al. (2016), Du et al. (2020), Eren et al. (2022), Tietz (2020), Calomiris et al. (2019), and Hale and Obstfeld (2016)

- **Hedging of currency risk:** Liao (2020), Sialm and Zhu (2021), Alfaro et al. (2021)

- **Global capital allocation:** Florez-Orrego et al. (2023)

- **Heterogeneous firms in trade:** Melitz (2003)
Use a portion data assembled by the Global Capital Allocation Project (GCAP)

1. Universe of security-level portfolio holdings of mutual funds and exchange-traded funds (ETFs) from Morningstar, US insurance holdings, sovereign wealth funds

2. Global bond issuance data from Coppola et al. (2021)

3. GCAP aggregation algorithm introduced in Coppola et al. (2021) to map the universe of debt securities issued worldwide to the identity and geography of their ultimate parent issuer
Share of Corporate Bond Investment by Investor and Currency Type

Maggiori et al. (2020) and Florez-Orrego et al. (2023)
Home and International Currency Bias

Share of Cross-Border Corporate Bond Investment by Currency

USD GBP CHF EUR CAD

Home Currency Issuer Rest of World Rest of World, excl. Issuer
Home Currency Bias Regressions

\[s_{j,p,c} = \alpha_{j,p} + \beta_j 1_{\text{Currency}_i = \text{Country}_j} + Controls + \epsilon_{j,p,c} \]

<table>
<thead>
<tr>
<th>Currency</th>
<th>CAN</th>
<th>EMU</th>
<th>GBR</th>
<th>SWE</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currency</td>
<td>0.849***</td>
<td>0.622***</td>
<td>0.479***</td>
<td>0.609***</td>
<td>0.690***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.017)</td>
<td>(0.076)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Obs.</td>
<td>31,266</td>
<td>31,266</td>
<td>31,266</td>
<td>31,266</td>
<td>31,266</td>
</tr>
<tr>
<td># of Firms</td>
<td>3,201</td>
<td>3,201</td>
<td>3,201</td>
<td>3,201</td>
<td>3,201</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.947</td>
<td>0.870</td>
<td>0.822</td>
<td>0.876</td>
<td>0.894</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Maggiori et al. (2020) and Florez-Orrego et al. (2023)
Size-Dependent Selection into Foreign Currency Issuance

Issuer's rank by total borrowing

(a) United States
(b) Euro Area
(c) United Kingdom
(d) Canada
Currency Denomination of Bonds by Large Firms

(a) United States

(b) Euro Area

(c) United Kingdom

(d) Canada
A Simple Model of Corporate Bond Issuance

- Firms issue bonds to purchase capital and produce
- Investors segmented by currency, downward sloping demand in each currency
- Currencies differ by slope of interest rate schedule
- Firms pay a fixed cost to borrow in foreign currency
Firm Issuance Decision

Firms choose debt issuance to maximize profits net of borrowing costs and fixed cost of foreign currency (FC) issuance

\[
\max_{\{Q_{k,p}\}_{k=1}^N} \quad Y_p - \sum_{k=1}^N R_{k,p} Q_{k,p} - c_{kp} \quad 1\{FC_p\}
\]

s.t. \(Y_p = A_p K_p; \quad K_p = \sum_{k=1}^N Q_{k,p}, \)

\[
R_{k,p} = \bar{R}_p + \Gamma_k Q_{k,p}.
\]

where

- \(Q_{k,p} \) bonds issued by firm \(p \) in currency \(k \) and \(R_{k,p} \) corresponding interest rate
- \(\Gamma_k \) is the slope of interest rate schedule in currency \(k \)
- \(c_{kp} \) is fixed cost of FC borrowing
Firm Issuance Decision: Local Currency (LC) Only Borrowers

- Firms choose debt issuance in their own currency $Q_{k,p}$ to maximize profits net of borrowing costs

$$\max_{Q_{k,p}} \ Y_p - R_{k,p}Q_{k,p}$$

s.t. \ \ \ \ Y_p = A_pK_p; \ \ \ K_p = Q_{k,p};\\
 R_{k,p} = \tilde{R}_p + \Gamma_kQ_{k,p}.$$

- Optimal Issuance in LC

$$Q_{k,p_{LC}} = \frac{A - \tilde{R}_p}{2\Gamma_k}$$

where here k denotes the local currency of firm p
Firm Issuance Decision: Multi-Currency (MC) Borrowers

- Two Stage problem. (1) **Optimal composition** (2) Total borrowing in MC

\[
\min_{\{\omega_{k,p}\}_{k=1}^N} \sum_{k=1}^N R_{k,p} \omega_{k,p} \\
\text{s.t. } \sum_{k=1}^N \omega_{k,p} = 1, \\
R_{k,p} = \bar{R}_p + \Gamma_k \omega_{k,p} Q_p.
\]

- Optimal Composition

\[
\omega_{k,p} = \frac{\Gamma_k^{-1}}{\sum_{i=1}^N \Gamma_i^{-1}}
\]
Firm Issuance Decision: Multi-Currency (MC) Borrowers

▶ Two Stage problem. (1) Optimal composition (2) Total borrowing in MC

\[
\max_{Q_{p_{MC}}} Y_{p_{MC}} - R_{w,p} Q_{p_{MC}}
\]

\[
R_{w,p} = \tilde{R}_p + \Gamma_w Q_p,
\]

\[
\Gamma_w = \omega_{k,p} \Gamma_k = \frac{1}{\sum_{i=1}^{N} \Gamma_i^{-1}}.
\]

▶ Optimal Borrowing

\[
Q_{p_{MC}} = \frac{A - \tilde{R}_p}{2 \Gamma_w}
\]
Most Productive Firms Borrow in Multiple Currencies

- Threshold for borrowing in foreign currency when

\[\pi_{pLC} = \pi_{pMC} \]

- Delivers productivity threshold

\[
\hat{A}_p^* = \left(4c_{kp} \frac{\Gamma_w \Gamma_{kp}}{\Gamma_{kp} - \Gamma_w} \right)^{\frac{1}{2}} = 2 \left(c_{kp} \Gamma_{w-kp} \right)^{\frac{1}{2}},
\]

where \(\hat{A}_p = A_p - \bar{R}_p \), and denote by \(\hat{A}_p^* \) the net productivity \(\hat{A}_p \) that makes a firm indifferent between issuance in local and multiple currencies.
Two Country Example

- Two currencies, USD and EUR. $\Gamma_{USD} < \Gamma_{EUR}$. Assume common fixed cost c

$$\Gamma_w = \frac{\Gamma_{USD} \Gamma_{EUR}}{\Gamma_{USD} + \Gamma_{EUR}}$$

- Multi-currency firms set their debt shares to:

$$\omega_{USD,p} = \frac{\Gamma_{EUR}}{\Gamma_{USD} + \Gamma_{EUR}}$$
$$\omega_{EUR,p} = \frac{\Gamma_{USD}}{\Gamma_{EUR} + \Gamma_{USD}}$$
Two Country Example

▶ Profits of LC and MC firms

\[
\pi_{USD,p_LC} = \frac{\hat{A}_p^2}{4\Gamma_{USD}},
\]

\[
\pi_{EUR,p_LC} = \frac{\hat{A}_p^2}{4\Gamma_{EUR}},
\]

\[
\pi_{p_Mc} = \frac{\hat{A}_p^2}{4\Gamma_{w}} - c = \frac{\hat{A}_p^2 (\Gamma_{USD} + \Gamma_{EUR})}{4\Gamma_{EUR}\Gamma_{USD}} - c.
\]

▶ Currency-Specific FC Borrowing Thresholds

\[
\hat{A}_{USD}^* = 2 (c \Gamma_{EUR})^{1/2},
\]

\[
\hat{A}_{EUR}^* = 2 (c \Gamma_{USD})^{1/2}.
\]
Model Mechanism: Debt Issuance

![Graph showing productivity vs. debt issuance with lines for EUR Only, USD Only, and MC.]

- EUR Only, Γ_{EUR}
- USD Only, Γ_{USD}
- MC, Γ_{W}
Model Mechanism: Profits

![Graph showing productivity vs. profits with different lines for EUR Only, USD Only, and MC.]
While leaving model in partial equilibrium, provide a simple aggregation to recast measurable observables in terms of model parameters.

Assume net productivity distributed Pareto

\[g_i(\hat{A}_p) = 1 - \left(\frac{\hat{A}_p}{\hat{A}_i^{\text{Min}}} \right)^{-\alpha_i}, \]

where \(g_i(\hat{A}_p) = 0 \) if \(\hat{A}_p < \hat{A}_i^{\text{Min}} \) and where \(\alpha_i > 2 \).
Aggregate Borrowing

- Total borrowing B_i by country i as:

\[
B_i = \int_{\hat{A}_i^{\text{Min}}}^{\hat{A}_i^*} Q_i(a)f_i(a) da \\
= \int_{\hat{A}_i^{\text{Min}}}^{\hat{A}_i^*} Q_i(a)f_i(a) da + \int_{\hat{A}_i^*}^{\infty} Q_i(a)f_i(a) da \\
= \int_{\hat{A}_i^{\text{Min}}}^{\hat{A}_i^*} \frac{a}{2\Gamma_i} f_i(a) da + \int_{\hat{A}_i^*}^{\infty} \frac{a}{2\Gamma_w} f_i(a) da \\
\text{Borrowing from LC firms} \quad \text{Borrowing from MC firms} \\
= B_i^{LC} + B_i^{MC}
\]
Integrating, we find that the borrowing of LC and MC firms can be written as:

\[
B_{i}^{LC} = \frac{\alpha_i}{\alpha_i - 1} \frac{(\hat{A}_{i}^{\text{Min}})^{\alpha_i}}{2\Gamma_i} \left((\hat{A}_{i}^{\text{Min}})^{1-\alpha_i} - (\hat{A}_i^*)^{1-\alpha_i} \right)
\]

\[
B_{i}^{MC} = \frac{\alpha_i}{\alpha_i - 1} \frac{(\hat{A}_{i}^{\text{Min}})^{\alpha_i}}{2\Gamma_w} (\hat{A}_i^*)^{1-\alpha_i}
\]
Output

- Firm profits gross of fixed costs

\[A_p Q(\hat{A}_p) - (\bar{R}_p + \Gamma Q(\hat{A}_p))Q(\hat{A}_p) = \frac{Q(\hat{A}_p)\hat{A}_p}{2} = \frac{\hat{A}_p^2}{4\Gamma} \]

- We define GDP \(Y_i \) as value added net of borrowing costs and gross of fixed costs

\[
Y_i = \int_{\hat{A}_i^{\text{Min}}}^{\hat{A}^*} \frac{a^2}{4\Gamma_i} f_i(a) da + \int_{\hat{A}_i^*}^{\infty} \frac{a^2}{4\Gamma_w} f_i(a) da \\
= Y_i^{\text{LC}} + Y_i^{\text{MC}}.
\]

- Integrating, we have output as

\[
Y_i = \frac{\alpha_i}{\alpha_i - 2} \left(\hat{A}_i^{\text{Min}} \right)^{\alpha_i} \frac{1}{4} \left[\frac{1}{\Gamma_i} \left(\hat{A}_i^{\text{Min}} \right)^{2-\alpha_i} + (4c_i)^{\frac{2-\alpha_i}{2}} (\Gamma_{w-i})^{-\frac{\alpha_i}{2}} \right]
\]
For each firm p and currency k, specialist mass of investors Θ_k

$$
\max_{q_{k,p}} \quad q^f R_f + q_{k,p} R_{k,p} - \frac{1}{2} \gamma (q_{k,p})^2 - q_{k,p} x_p
$$

s.t. \quad 1 = q^f + q_{k,p},

Aggregating the individual investor demand curves to aggregate demand curve for k, p bonds:

$$
R_{k,p} = \bar{R}_p + \frac{\gamma}{\Theta_k} Q_{k,p} = \bar{R}_p + \Gamma_k Q_{k,p},
$$

where $\Gamma_k = \frac{\gamma}{\Theta_k}$.

Investor Demand
Conclusion and Implications for Future Research

▶ Home and International Currency Bias with segmentation as incentive for FC borrowing

▶ Avenues for future research:
 ▶ Heterogeneity in issuance threshold: Identify Γ_k by size of FC issuers by country
 ▶ CIP deviations: differences in \bar{R} affect optimal composition
 ▶ Sequential entry into foreign currencies
 ▶ Understanding the sources of the fixed costs
 ▶ Partial hedging: UIP and CIP