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I.   INTRODUCTION1 

Owing to the large costs associated with bank failures and financial crises, as experienced in 
the global recession of 2008–9, it has become important to assess the vulnerability of 
financial institutions to severe economic and financial shocks. Among quantitative tools, 
stress tests are widely used to examine risks to financial institutions and financial stability 
more broadly (Bookstaber et al, 2013). Stress tests are also important policy tools when 
supported by credible official backstops, raising confidence on the ability of policy makers to 
manage well the risks envisaged in stress scenarios (Orphanides, 2015).2  

Recent work on stress testing has been mainly oriented towards scenario design. One strand 
of the literature has focused on the generation of severe, plausible, and coherent stress 
scenarios consistent with historical crisis episodes and potential regime changes.3 On the 
policy front, there have been efforts for integrating stress tests into financial sector 
surveillance and oversight with a view towards enhancing regulatory and supervisory 
guidance (IMF, 2012; Bookstaber et al, 2013). 

Improving forecasting models, however, has been somewhat neglected in recent applied 
stress test work. This is not a minor omission, since the numerical outcome of the forecasting 
models influence policy recommendations as well as business strategies. As stress scenarios 
become more comprehensive, encompassing an increasing number of primary variables, 
model selection and forecasting become challenging even within the family of linear models.  

This paper argues that model selection and forecasting in stress tests can be facilitated using 
techniques borrowed from the field of machine learning. These techniques have not been 
widely used in econometric and financial applications despite their robustness and good 
performance in other fields where large datasets are typical. Notable exceptions in applying 
them in stress tests and default prediction are Kapinos and Mitnik (2015), and Perdeiy 
(2009). The former suggest using the least absolute shrinkage selection operator (Lasso) to 
link bank performance indicators to macroeconomic variables. The latter uses Lasso 
regressions to predict bankruptcy using non-traditional financial indicators as covariates. 
This paper extends their work by delving in more depth on the conceptual issues justifying 
the use of machine learning techniques, and discussing them more extensively.4  

1 The author thanks Oliver Chen, Dimitri Demekas, Elisabeth Van Laere, Li Lin, seminar participants at the 
South African Reserve Bank for helpful comments. This paper has benefitted from an extensive empirical study 
on model selection methods conducted by Zhangran Guan, Qian Luo, Gangxuan Wang, and Baoxin Wu under 
the author’s supervision. 

2 Notwithstanding the increased importance of stress tests in policy formulation, there are some valid concerns 
about their limitations (Borio et al, 2012). 

3 Yuen (2013) and Zandi (2013) provide a concise overview on stress scenario design. Breuer et al (1999), 
Flood and Korenko (2013), and Glasserman et al (2015) propose advanced analytical approaches. 

4 Machine learning has made some inroads in financial engineering. See Gyorfi, Ottucsak, and Walk (2012). 
Lasso regression, which is explained later, and its many variations are increasingly being used in forecasting 

(continued…) 
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The organization of the rest of the paper is as follows. Section II provides an overview of the 
multi-step process in a standard stress test. Within this context, section III how the large 
number of primary variables included in a stress scenario leads to a curse of dimensionality 
problem and complicates the model selection process. Section IV argues machine learning 
techniques are preferable than other dimension reduction techniques in addressing the curse 
of dimensionality. Section V discusses subset selection and shrinkage methods, including 
Lasso. After the presentation of the conceptual underpinnings of Lasso estimation, Section 
VI describes Lasso applications in the areas of finance, economics, and financial networks. 
Section VII illustrates the use of Lasso estimation in forecasting probabilities of default in an 
advanced emerging market economy. Section VIII concludes. 

II. STRESS TESTS: A MULTI-STEP PROCESS

A standard stress test comprises several steps. The first step is stress scenarios design. This 
involves choosing the length (or horizon) of the scenarios, selecting the primary variables to 
stress, and specifying their paths under each scenario. The number of primary variables can 
be quite large as is the case in supervisory stress scenarios specified by supervisory 
authorities.  

For instance, the U.S. Federal Reserve included sixteen domestic economic and financial 
variables, and twelve international variables in the scenarios specified in the 2015 
Comprehensive Capital Analysis and Review (CCAR) of U.S. banks. The Bank of England 
specified more than sixty primary variables for its 2015 annual stress test exercise (Bank of 
England, 2015). Finally, the European Banking Association (EBA), in its stress tests of banks 
in the European Union (EU), included government bond yields, equity prices, house price 
shocks, and the impact of funding shocks on real GDP growth for twenty-seven EU 
countries. It also included changes in real GDP growth for twenty countries and regions 
outside the EU (European Systemic Risk Board, 2014).  

In the second step, performance indicators for the firms included in the stress test are 
forecasted using econometric and statistical models, a.k.a. satellite models. The primary 
variables are included in the models as covariates or explanatory variables. As an illustration, 
in the case of a bank forecasting models identify the dynamics of non-performing loans 
(NPLs) and provisions related to its loan portfolio under the stress scenarios. The choice of 
metrics to evaluate the performance of a firm depends on the goal of the stress test. In 
solvency stress tests, for example, the relevant metrics are those associated with the default 
risk of the firm such as capital adequacy ratios in the case of banks, and statutory capital and 
technical provisions ratios in the case of insurers.5 

multivariate macroeconomic time series, factor identification and covariance matrix estimation in finance, and 
the construction of financial networks, as reviewed in Section III. 

5 Different perspectives on forecasting models applied to stress testing are reviewed in Rosch and Scheule 
(2008), Siddique and Hasan (2013), and Zhang (2013).  On linking forecasting models to performance metrics, 
see Chan-Lau (2015) among others. 
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The final step comprises an evaluation of the weaknesses and strengths of individual firms, 
and an overall assessment of system-wide vulnerabilities based on the performance 
indicators. The evaluation then serves to guide business strategy if conducted by the firm 
itself as part of its risk management process, or policy measures if conducted by supervisory 
authorities. For example, the U.S. Federal Reserve uses the results of the stress tests 
conducted under the CCAR exercise to grant or deny approval of the capital distribution 
plans of the banks. Banks that fail the stress tests are required to resubmit revised plans 
ensuring their capital buffers would be sufficient to withstand the shocks envisaged in the 
stress scenario. 
 

III.   MODEL SELECTION CHALLENGES IN STRESS TESTS 

The large number of primary variables specified in stress scenarios poses a challenge for the 
design, selection, and estimation of forecasting models. In the case of the CCAR, restricting 
models to use only contemporaneous values of the variables and ruling out interactions lead 
to 228 possible linear models for explaining a single dependent variable, say, the default rate 
of a specific asset class. Model selection intractability worsens as the number of potential 
models grows linearly with the number of variables to forecast.  
 
Moreover, in the context of macro stress tests, the dimensionality of the data may exceed the 
length of the sample size raising concerns about model overfitting. In these tests, data is 
typically available at an annual frequency and may be available only for few years. In this 
case, least squares cannot yield unique coefficient estimates and some method is necessary to 
reduce the number of covariates included in the model. 
 
Given the large set of potential covariates, multicollinearity is likely to pose problems. This 
situation justifies selecting a reduced subset of variables for forecasting purposes. Arguably, 
expert judgment could help to identify the covariates relevant for the forecasting exercise 
facilitating the model selection process. However, in the context of a relatively complex firm, 
e.g. a commercial bank, expert judgment may not compensate for the lack of specialized and 
detailed knowledge on the firm’s operations and exposures, including on its main 
counterparties. Expert judgment, especially if exercised by outsiders to the firm, may create 
blind spots and foster an unjustified sense of security. 
 
Dimension reduction techniques offer a formal approach for dealing with the curse of 
dimensionality. Commonly used techniques are factor analysis and principal component 
analysis, which construct factors and components as linear combinations of the covariates. 
Typically, only a reduced number of factors and components are sufficient to explain the 
variability of the data. For instance, three principal components are enough to explain the 
term structure of government yield curves. While useful, there is an important caveat with 
dimension reduction techniques: it is somewhat difficult to associate an economic meaning to 
a factor or a principal component. Hence, it may be difficult to specify the path of a factor 
under a given scenario or understand what a negative shock to the factor is. 
 
Expert judgment and dimension reduction techniques lead to lower number of potential 
covariates ahead of the model selection stage. This may not be desirable from an economic 
perspective. Financial and nonfinancial corporations are becoming increasingly global, and 
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domestic and international factors affect their operations, profitability, and solvency. 
Reducing the number of covariates prior to selecting the forecasting model may not reveal 
what the drivers of a firm’s performance are. Arguably, it may be preferable to address the 
curse of dimensionality at the model selection level rather than at the covariate level. 
Machine learning methods excel in this task.6 
 

IV.   MACHINE LEARNING: THE INTERPRETABILITY- FLEXIBILITY TRADEOFF 

Machine learning encompasses a number of techniques for identifying patterns and 
relationships in the data, making it suitable for forecasting and simplifying the model 
selection process.7 In the realm of machine learning, forecasting models falls under the 
category of supevised learning, in which we are interested in finding a rule, e.g. an 
econometric model, that maps the set of covariates or inputs, into an output, e.g. the ratio of 
non-performing loans in an asset category. Linear regression models are just one subset of 
supervised learning models, and are not discussed here since they are already familiar to 
economists and analysts involved in stress tests and are thoroughly covered in introductory 
and advanced econometric textbooks such as Greene (2011) and Woodbridge (2012). 
 
Different machine learning methods are available for forecasting, with increased flexibility 
offset by increased difficulty to interpret the results.  More flexible methods are better at 
capturing patterns in the data but simpler, easier to interpret methods are better suited for 
understanding and communicating results. Among the methods, in decreasing order of 
interpretability, we have subset selection, lasso regressions, least squares, generalized 
additive models, trees, support vector machines, and methods combining different base 
learning methods such as bagging and boosting. 
 
The bias-variance tradeoff formalizes the tension between interpretability and flexibility. 
Given a forecast method or learning algorithm, its expected mean squared error (MSE) can 
be decomposed into its squared bias, i.e. errors due to erroneous assumptions underlying the 
method; its variance, i.e. errors due to the sensitivity of the method to noise in the calibrating 
data set; and the variance of the residual term. The more flexible the method the lower its 
bias since it can approximate better the true relationship existent in the data. But increased 
flexibility increases the variance of the method since it attempts to fit not only true data 
points but also the unavoidable noise present in the data set. 
 
Since stress tests are an input for formulating business strategy or guiding policy, the tests’ 
results and conclusions need to be communicated to different constituencies, including senior 
decision makers, each with a different grasp and understanding of the technical details 
underlying the assumptions and analytical methods. This situation places a premium on 
interpretability rather than flexibility since it is somewhat difficult to build persuasive 
                                                 
6 An alternative approach to selecting sparse models is to use aggregate forecasts of multiple models (Claeskens 
and Hjort, 2008). An extensive exploratory analysis suggests this may not be feasible in high dimensional 
problems (Guan, Luo, Wang, and Wu, 2014). 

7 Or in machine learning parlance, forecasting can be referred to as predictive analytics or predictive modeling. 
For a thorough introduction to machine learning methods, see James et al (2013) or Mohri et al (2012). 
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arguments based on black-box analysis. Whenever possible, hence, linear models are 
preferred. By using non-linear transformation of the covariates, these models could also 
capture some non-linearity in the data. 
 

V.   LINEAR MODELS: SUBSET SELECTION AND SHRINKAGE METHODS8 

Among linear models, linear regression is the most widely used method among economists 
and financial analysts. In a linear regression, the mean of the independent variable 
conditional on the covariates is an affine function of the covariates. Note, however, that 
linear models could exhibit low bias and high variance. In linear regressions, the fit can be 
improved by including a large number of covariates. Including all potential covariates 
minimizes the bias of the model at the expense of higher variance. As a result, the predictive 
power of the model and its interpretability are negatively affected. 
 
In response, a number of methods can help reduce the number of covariates in linear 
regression models. The methods fall into two different categories: subset selection methods 
and shrinkage methods. The next sections describe the different model categories, and put 
forward arguments for singling out Lasso regression, a shrinkage method, as the preferred 
choice for stress test purposes.  
 

A.   Subset selection methods 

Subset selection methods aim at finding the optimal number of covariates in a linear 
regression, and include two categories, best subset selection and stepwise selection. The 
latter are further classified into forward stepwise and backward stepwise selection methods.9 
In the case of p possible covariates, including perhaps interacting variables and lagged values 
of the variables, best subset selection searches for the best combination of covariates among 
the set 2p of all possible linear combinations. An optimality criterion applied to the fit of the 
model vis-à-vis observed data determines what model is best. Typical criteria include the 
Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and the 
adjusted R2. Since the algorithm must search over all of the 2p potential models, best subset 
selection performs well only if the number of variables, p, is small. In practice, efficient 
algorithms work well with as many as 30 to 40 variables.10 
 
Forward stepwise selection starts with a least squares model with no covariates, adding one 
variable at a time based on its contribution to improving the model fit, typically as measured 
by the residual sum of squares (RSS) or highest R2. Starting with a model including only the 
constant term, the first covariate selected for inclusion is the one generating the higher RSS 
among all models in the one covariate family. After the selection of the first covariate, the 

                                                 
8 See, among others, Hastie et al (2008), James et al (2013), and Hastie et al (2015) for a detailed discussion of 
the topics covered in sections B and C. 

9 See Miller (2002) and James et al (2013) for details. 

10 Miller (2002) and James et al (2013). 

(continued…) 
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method generates the family of models with two covariates that includes the first covariate. 
Within this family, the method selects the model with the higher RSS, which yields the 
second covariate. The process continues until obtaining a model with p covariates. Of the p 
models generated, each with k covariates, k = 1, …, p, the final model selected is the one 
maximizing an optimality criterion, e.g. AIC, BIC, or adjusted R2.11 
 
Backward stepwise selection starts with a least squares model including all covariates, with 
each subsequent model with one less variable until only one variable is left. The variable 
selected for deletion is the one that contributes the least to the explanatory power of the 
model. At the end of the backward elimination process, there is be a set of p models, each 
corresponding to the best performing model in the family of models with one covariate, two 
covariates, and so on.  
 
As in the case of forward stepwise selection, the final model is the one that performs the best 
among the set of best performing models according to the chosen optimality criterion. 
Contrary to forward stepwise selection, it is not possible to apply backward stepwise 
selection when the number of observations is less than the number of covariates. If the matrix 
of covariates is full rank, or with rank at least equal to the number of observations, the RSS 
of the linear regression will be zero. 
 
Computational costs in stepwise selection are lower than in best subset selection since the 
number of models evaluated is only 1 + p (p+1)/2 instead of 2p. While computational savings 
are substantial, there is no guarantee that stepwise selection may yield the same solution as 
the best subset selection method. The set of n variables that yields the smallest RSS in a 
linear regression with n covariates does not necessarily contain the same subset of n-1 
variables yielding the smallest RSS in a linear regression with n-1 covariates. Thus, forward 
and backward stepwise selection may not need to converge to the same model nor to the 
model chosen by the best subset selection method.  All of these methods, however, could 
generate reasonable forecasting models that do not need to incorporate all p covariates. 
 

B.   Shrinkage methods and Lasso Regression 

Shrinkage methods aim to reduce (or shrink) the values of the coefficients to zero compared 
with ordinary least squares. The advantage of shrinkage methods is that the estimated models 
exhibit less variance than least squares estimates. In addition, some shrinkage methods also 
reduce the number of covariates included in the regression model by yielding coefficient 
estimates exactly zero, facilitating the model selection process. 
 
Two widely used shrinkage methods are ridge regression (Hoerl, 1962) and the Lasso (Least 
Absolute Shrinkage Selection Operator) regression (Tibshirani, 1996). Their similarities and 
differences, as well as those relative to least squares estimation, are apparent by examining 
the optimization problems solved by each method: 
 

                                                 
11 The forward stepwise selection can be viewed as a simplified case of the least angle regression (LARS) 
(Hastie et al, 2015). 
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(1)  Least Squares:  
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(3)  Lasso Regression:  
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where y is the vector of observations of the independent variable, x denotes the covariates, 
are the corresponding coefficients, 

1
 and 

2
are the 1L and 2L norms respectively, and t is 

a user-specified parameter.  The Lagrangian formulation of the ridge and Lasso regression 
are respectively: 

(4)  Ridge Regression:  
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(5)  Lasso Regression:  
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The optimization problems presented in equations (2) to (5) are standard quadratic programs 
with convex constraints, and there are a variety of numerical methods to solve them.  
 
The least squares estimation corresponds to an unconstrained minimization problem, the 
ridge regression adds a smooth, convex 2 constraint and the Lasso regression a convex but 

non-smooth 1 constraint. Least squares favors including as many covariates as possible since 

it helps reducing the sum of squares. In ridge regression and Lasso regression, non-null 
coefficients carry a penalty, which helps reducing the value of the coefficients (ridge, Lasso) 
or reducing the number of the covariates included in the model (Lasso). Notice also that the 
use of the 2  penalty in the ridge regression implies that coefficient estimates are not scale-

invariant. 
  
Figure 1 illustrates the geometric intuition underlying the differences between least squares 
and the two shrinkage regressions, with the ellipses representing the contours of the residual 
sum of squares. The least squares coefficients, which correspond to the solution of the 
unconstrained optimization problem, are large relative to those produced by the shrinkage 
methods. The smooth, convex nature of the 2 constraint implies that the ridge regression 

coefficients, albeit small, are not equal to zero. Hence, similarly to least squares, ridge 
regression, includes all the available covariates and does not yield parsimonious models.   
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Figure 1. Geometry of least squares, ridge regression and Lasso regression

 
 
In contrast, the presence of corners in the 1 constraint increases the chances the ellipses 

would intersect at the corner, yielding exactly zero coefficients and reducing the number of 
covariates included in the forecasting model.12 The Lasso regression, hence, appears well 
suited for addressing the model selection challenge posed by the forecasting requirements of 
stress tests. Note that the Lasso regression performs both the variable selection and parameter 
estimation simultaneously. Finally, compared with subset selection methods, Lasso exhibits 
lower variability and cheaper computational costs, especially for high dimensional problems 
(Hastie, Tibshirani, and Friedman, 2009). 
 

C.   Lasso Regression, Cross-Validation and Consistency 

In Figure 1, the value of the user-specified parameter t is small enough such that the 
unconstrained optimization solution is not contained within the regions bounded by the 1L , 

and 2L constraints. Had this parameter been sufficiently large, the ridge regression and Lasso 

regression solutions would have coincided with the least squares solution. In a Lasso 
regression, the value of the parameter controls both the size and the number of coefficients, 
with higher values leading to a greater number of covariates to be included in the linear 
model. This increases the flexibility of the model and reduces its variance but at the cost of a 
higher model bias. 
 
Cross-validation, a resampling technique, helps to find a parameter value that ensures a 
proper balance between bias and variance (or flexibility and interpretability). Cross-
validation selects the best parameter value as the one that minimizes the estimated test error 
rate of the estimator, in this case the Lasso regression. In the absence of a test set, it is not 

                                                 
12 In general, sparse generalized linear models could be generated by incorporating 1L  penalty functions, 

including not only linear regression but also multinomial and survival models. See Hastie et al (2015). 
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possible to calculate the test error – the average error from using a method to predict the 
response of a new observation. In cross-validation a subset of the data observations, the 
training set,  is used to estimate (or train) the model, and the remainder observations are held 
to serve as test set or validation set. The selected test sets serve to provide an estimate of the 
test error rate. Typically, the measure of the test error is the mean square error (MSE). 
 
The K-fold cross-validation method divides the data set randomly into K different subsets, 
typically five or ten in practical applications. Keeping one of the subsets as the validation set, 
the model is trained (estimated) over the remaining K-1 sets for a range of values of the 
parameter t (or λ, if the Lagrangian formulation is used). We repeat this process using each of 
the K subsets as a validation set, yielding K estimates of the MSE for each parameter value, 
and its K-fold estimate is simply the average value of the K estimates.  
 
The best parameter value is the one yielding the lowest K-fold estimate, which we denote as 
λ-min in the Lagrangian formulation. It is also typical to report results corresponding to the 
minimum parameter value such that its K-fold estimate does not exceed the minimum K-fold 
estimate by more than one standard error using a lower number of covariates. This parameter 
estimate is the one-standard error rule parameter, λ-1se. The Leave-One-Out cross-validation 
method is a special case of the K-fold cross-validation method. In this case, a sample 
containing N observations is partitioned exactly into N subsets, which is equivalent to N-fold 
cross-validation. 
 
Since the Lasso biases the coefficients towards zero, the estimates are not consistent. There 
are ways to address this issue using two-step estimation procedures. In the first step, the 
Lasso regression selects the covariates in the model. In the second step, only the selected 
covariates are included in a linear model estimated either by ordinary least squares or by 
applying the Lasso again. The latter method is known as relaxed Lasso (Meinshausen, 2007), 
which would be used in the stress test application later. The next section describes some 
recent applications in finance, economics, and financial networks. 
 

VI.   LASSO APPLICATIONS IN FINANCE, ECONOMICS, AND FINANCIAL NETWORKS 

Lasso methods, by regularizing least squares estimates to satisfy a 1 constraint, are very 

useful for constructing sparse models in high multidimensional data environments.  
Therefore, there is increased usage of these methods in financial and economic forecasting.13 
 
In finance, one active area of research concerns the estimation of stable variance covariance 
matrices for asset returns, which are necessary inputs for portfolio optimization and asset 
allocation models. In portfolios including a large number of assets or securities, the returns 
exhibit strong collinearity, making the sample estimate of the variance covariance matrix and 
its inverse, the information matrix, highly sensitive to noise and data outliers. Portfolio 
weights, therefore, may exhibit large changes even if returns are slightly perturbed (Kan and 
Zhou, 2007), a problem identified long ago (Jorion, 1992; Broadie, 1993).  
 
                                                 
13 See Fang, Lv, and Qi (2011) for an overall review of sparse modeling in economics. 
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Lasso constraints can serve to estimate sparse covariance matrices, eliminating the 
contribution of some of the highly collinear variables, or imposed directly on the portfolio 
weights. For instance, Brodie, Daubechies, De Mol, Giannone, and Loris (2008), Fan, Zhang, 
and Yu (2009), and De Miguel et al (201) require that the sum of the portfolio weights satisfy 
a 1 constraint. Moreover, De Miguel et al find that the 1 - constrained problem is equivalent 

to the constrained minimum variance portfolio solution of Jagannathan and Ma (2003). More 
generally, Scherer (2007) shows that optimal portfolio in a Markowitz framework is the 
solution to a linear regression amenable to solution using Lasso regression. Finally, Bruder, 
Richard, and Roncalli (2013) explain how the asset selection process benefits from 
regularization. 
 
Economic applications have centered mainly on the modeling of multivariate time series. 
Vector autoregressions (VARs) are not well suited for high dimensional problems. To lessen 
the dimensionality problem, economists have used dynamic factor models (Geweke, 1977; 
Stock and Watson, 2002) and factor augmented VAR (Bernanke et al, 2005). Lasso methods, 
however, seem to perform as well as these other models while generating sparser models 
while bypassing the difficulties in factor interpretation. Results by De Mol, Giannone, and 
Reichlin (2008) suggest that Lasso regression tend to perform as well as principal 
components regression when the variables are highly collinear, a typical situation in 
empirical macroeconomics. Li and Chen (2014) provide evidence that Lasso models tend to 
outperform factor models. 
 
Straightforward applications of Lasso regressions neglect time dependence in endogenous 
time series models, an omission that affect the mean square bounds of the estimator. By 
using Lasso and group-Lasso, Song and Bickel (2010) are able to accommodate time 
dependence in large VARs. Gefang (2014) exploits time dependence to develop a Bayesian 
doubly adaptive elastic-net Lasso which allows for grouping effects determined by the data. 
Kock (2012), Callot and Kock (2014), and Kock and Callot (2015) show that adaptive Lasso 
estimates parameters consistently, selects the correct sparsity pattern, and it is asymptotically 
efficient in vector autoregressions.  
 
More recently, Lasso methods serve to construct and estimate financial networks.14 In a 
number of financial networks, the interconnectedness between two financial institutions, or 
two nodes in the network, is measured either by the correlation between two risk measures, 
e.g. equity return correlation, or the risk contribution of one institution to the risk of another. 
In these networks, the systemic risk of a financial institution is set proportional to a measure 
of centrality, i.e. the number of connections to other institutions in the system or the number 
of possible paths from one institution to another that include the institution, among others.  
 
Again, the curse of dimensionality poses problems. When the analysis includes a large 
number of institutions, estimating correlations requires as an input a stable variance-
covariance matrix. Furthermore, correlation networks may show too much 

                                                 
14 This development is a natural extension of statistics applications of the Lasso in high dimensional graphs 
(Meinshausen and Buhlmann, 2006). 
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interconnectedness, as the correlation matrix is quite dense. As in the case of portfolio 
optimization, Lasso methods are able to generate sparse correlation matrices. For example,  
Chan-Lau, Chuang, Duan, and Sun (2015) use economic priors and Lasso restrictions to 
produce relatively sparse but fully connected financial networks, where interconnectedness in 
the network arises from forward-looking default correlations. Upon constructing the network, 
assessing the systemic risk of individual firms is a straightforward exercise. 
 
In other instances, the risk contribution of one institution is an output from an econometric 
model that incorporates a large number of covariates, which presents the curse of 
dimensionality problem. For example, in the global banking network described in Demirer, 
Diebold, Liu, and Yilmaz (2015), the value of the edge connecting one bank to another is 
proportional to its contribution to the variance decomposition of the volatility of equity 
returns of the latter. With hundreds of banks in the network, a Lasso reduced-dimensional 
VAR helps reducing the high dimensionality of the problem, making feasible obtaining the 
variance decomposition. 
 
 Before moving to the next section, which applies lasso regressions to forecast probabilities 
of default, it is important to note one important caveat raised by Hansen (2013). The 
prediction advantages of Lasso-based models seem to vanish when the number of covariates 
is small relative to the sample size. As the earlier discussion has emphasized, however, this is 
not the situation typically encountered in a stress test.  
 

VII.   A STRESS TEST APPLICATION: FORECASTING PROBABILITIES OF DEFAULT 

This section puts into practice the discussion above, using Lasso regressions to construct 
forecasting models for the median one-year probabilities of default (PD) in ten different 
industrial sectors in an advanced emerging market economy.  
 
The sectors included are basic materials, communications, consumer cyclicals, consumer 
non-cyclicals, diversified industries, energy, financials, industrials, technology and utilities.  
The monthly median PD series data came from the CRI database maintained by the Risk 
Management Institute, National University of Singapore (Duan and Van Laere, 2012), and 
accessed on April 30, 2014. The data covers the period December 1990 – February 2014.15 
.  
There are thirteen domestic primary variables including the exchange rate vis-à-vis the U.S. 
dollar, the nominal effective exchange rate, the domestic policy rate, the consumer price 
index, the real GDP growth rate, the unemployment rate, the total amount of credit in the 
economy, the money market rate, the 3-month Treasury bill rate, the bank deposit rate, the 
bank lending rate, and the 10-year Treasury bond rate. The domestic variables are 
complemented by five international variables: the U.S. real GDP, the China real GDP, the 
U.S. policy rate, the U.S. consumer price index, and a commodity price index. The data, 
collected at a quarterly frequency, covers the period 1990 Q1 – 2013 Q4. 
 

                                                 
15 On the methodology for constructing the PD series, see Duan, Sun, and Wang (2012) . 
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We fitted the equation below for each sectoral median PD using both Lasso and relaxed 
Lasso and 10-fold cross-validation:  
  

(6) 
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, ,
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log ,   sector 1 to 10
1

p
i t

i k t i t
ki t

PD
X i
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 
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 


, 

 
where i is the constant term, ,k tX  is the value of the covariate k lagged by  periods, and 

,i t is the error term. Because the Lasso constraint applies to the norm of the coefficients, it is 

necessary to standardize the covariates otherwise the coefficients of covariates with smaller 
measurement units may be unfairly penalized. The standardization procedure consists on 
calculating the covariate’s Z-score by centering it covariate on its mean and normalized by its 
standard deviation.  
 
In this application the number of potential covariates, p, is equal to ninety excluding the 
intercept, and the number of observations, n, is at most one hundred, a situation well suited 
for Lasso estimation. With p~n, ordinary least squares estimates would exhibit high 
sensitivity to outliers (Hastie, Tibshirani, and Friedman, 2008). Pre-selecting the variables 
and choosing the number of lags would require a detailed knowledge of the drivers of default 
in different sectors. Since the median PD is the variable of interest, expert judgment may 
require understanding the differences in PD dynamics of individual firms within a sector.  
 
The Lasso estimation includes all ninety covariates while the relaxed Lasso only includes the 
covariates with non-zero coefficients of the Lasso λ-min specification. This two-step 
procedure ensures the relaxed Lasso yields at most the same number of non-zero coefficients 
as the Lasso and likely less for the λ-1se specification. The estimation used the R 
implementation of the coordinate descent algorithm of Friedman, Hastie, and 
Tibshirani (2010). 
 
Figure 2, and Tables 1 and 2 illustrate the differences between the Lasso and relaxed Lasso 
estimations. Figure 2 shows the MSEs, or a measure of the models’ out-of-sample 
forecasting performance, for different values of the λ parameter, expressed in natural 
logarithms in the lower horizontal axis, while the upper horizontal axis reports the 
corresponding number of non-zero coefficients identified by the Lasso and relaxed Lasso 
methods. The leftmost vertical dashed line in the figures correspond to the λ-min parameter, 
i.e. the parameter that yields the minimum MSE, while the rightmost vertical dashed line to 
the λ-1se parameter, i.e. the parameter that yields a MSE exactly 1 standard deviation above 
the minimum MSE using a lower number of covariates.  
 
The Lasso reduces the dimensionality of the problem significantly, with the number of 
covariates ranging from four to the mid-20s for the λ-min specification, and from zero to 
slightly below twenty for the λ-1se specification, results similar to those obtained using the 
relaxed Lasso. In the worst case scenario, from a dimensionality perspective, the Lasso and 
relaxed Lasso retain only about one quarter of the potential covariates. With both methods, 
the λ-min specification has a lower variance than the λ-1se specification due to its higher 
number of non-zero coefficients.  
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Figure 2. Lasso and relaxed Lasso, mean squared errors (MSEs) 

 
Lasso regression, left side panels; relaxed lasso regressions, right side panels. In each panel, mean squared 

errors, red line, bounded by +/- 1 standard deviation lines, vertical axis; upper horizontal axis indicates 
number of non-zero coefficients associated with a given value of log(λ). Leftmost discontinuous vertical line 

corresponds to the MSE of λ-min; rightmost discontinuous vertical line to the MSE of the λ-1se. 
 
 

 
Source: Author’s calculations. 
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Figure 2 (continued). Lasso and relaxed Lasso, mean squared errors (MSEs) 
 

Lasso regression, left side panels; relaxed lasso regressions, right side panels. In each panel, mean squared 
errors, red line, bounded by +/- 1 standard deviation lines, vertical axis; upper horizontal axis indicates 

number of non-zero coefficients associated with a given value of log(λ). Leftmost discontinuous vertical line 
corresponds to the MSE of λ-min; rightmost discontinuous vertical line to the MSE of the λ-1se. 

 
 

 
Source: Author’s calculations. 
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Table 1 indicates that the relaxed Lasso λ-min specification tends to retain all the non-zero 
coefficients identified by the Lasso, suggesting the former method does a good job in 
selecting the covariates of interest. The magnitude of the relaxed Lasso coefficients is 
typically larger than that of the Lasso coefficients, reflecting what Hastie, Tibshirani, and 
Friedman (2008) described as reduced noise owing to the presence of a lower number of 
covariates.  
 
Lasso methods do simplify the task of variable selection in forecasting models. Table 1 also 
shows that the number of relevant economic and financial covariates is quite small relative to 
the initial set of primary covariates. No more than ten covariates of the original set of 
eighteen covariates, including up to four lags, are useful for predicting the median PD in each 
sector in the λ-min model specifications, with less than six variables included for many of the 
sectoral forecasting models.  
 
As Table 2 shows, it is possible to generate more sparse models when the λ-1se specification 
is used, sacrificing some variance at the expense of reducing the bias by further limiting the 
number of covariates. In this case, the number of covariates needed is typically four or five 
though in some sectors it is still necessary to include as many as ten variables. For some 
sectors, however, using the one standard rule implied by the λ-1se parameter yields models 
with just the intercept as an explanatory variable. In this specific example, it may be justified 
to use the forecasting models generated using the λ-min parameters since the presence of six 
to ten covariates is manageable. 
 
There is not a close correspondence between the non-zero coefficients in the Lasso and 
relaxed Lasso specifications when the λ parameter is set equal to the λ-1se value. This is not 
surprising since the set of initial covariates in the relaxed Lasso regression corresponded to 
those obtained in the Lasso regression with parameter value equal to λ-min, which is quite 
different from the set yielded by the Lasso regression with parameter value equal to λ-1se. 
 
The final observation is that the tables do not report standard errors for the coefficients, as it 
is typical in econometric studies. Although the standard errors could be calculated using, 
among other techniques, nonparametric bootstrap (Hastie, Tibshirani, and Wainwright, 
2015), there are strong arguments against calculating them (Goeman, Meijer, and Chaturvedi, 
2014).  
 
 In order to improve the out-of-sample forecasting of the model, Lasso-type estimators force 
the value of the coefficients towards zero, improving the variance of the model at the expense 
of obtaining biased coefficients. Since it is not possible to obtain reliable unbiased coefficient 
estimates, even bootstrapping confidence intervals would convey an unjustified sense of the 
precision of the estimates. A possible solution, in low dimensional problems, is to use Lasso-
type estimators only at the model selection stage. Afterwards, the estimation of the final 
forecasting model uses traditional statistical techniques.  
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Table 1. Lasso and relaxed lasso, coefficient estimates, λ-min specification 
 
 
 
 

 
 
Source: Author’s calculations. 
  

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 0 0 0 0 0 0 0 0

Real effective exchange rate 0 0 0 0 2.26E-05 0 0 0 0 -9.04E-05

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0.000568 0.000382 0 0 0 3.73E-04 4.62E-05 0 0

Unemployment rate 0 0 0 0 0 0 0 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate -0.00053 0 0 0 0 -8.78E-05 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 4.72E-06 3.47E-06 0 0 0 6.73E-06 2.35E-06 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.001095 0 0 0.000161 0 0.000881 0 0 0.000693 0

Real effective exchange rate -0.00014 0 0.00018 0 0 -0.00017 0 0.000246 0 0

Policy rate -0.00135 -0.00064 0 0 0 -0.00182 -0.00048 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.001068 0 0.000911 0.000787 0.002025 0.001189 0 0.001298 0.000593 0.001817

Unemployment rate 0.000671 0.000323 0 -0.00047 -0.00055 0.000729 0.000483 0 -0.00044 -0.0007

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0.002177 0 0 0 0 0.002586

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 0 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 4.16E-07 0 0 0 0 2.82E-06 0 0

Panel A:  Basic Materials

Lasso Relaxed Lasso

Relaxed LassoLasso

Variables

Variables

Number of lags Number of lags

Panel B:  Communications

Number of lags Number of lags
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Table 1. Lasso and relaxed lasso, coefficient estimates, λ-min specification (continued) 
 
 
 
 

 
 
Source: Author’s calculations. 

 
 
 
 
 
 

 

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.000556 0 0 0 0 0.00053 0 0 0 0

Real effective exchange rate 0 0 0 0 0 0 0 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate -0.00036 0 0 0 0 -0.00043 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.00038 0.000768 0.000923 5.93E-05 0.001051 0.000479 0.000753 0.001039 9.22E-06 0.001073

Unemployment rate 0 -6.32E-06 -9.34E-05 -0.00019 -0.00022 0 -1.73E-05 -7.07E-05 -0.00019 -0.00022

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0.000138 5.14E-05 0 0 0 0.000192 5.82E-05

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 1.31E-06 0 3.13E-06 0 0 1.95E-06 0 3.74E-06

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.001142 0 0 0 0.001084 0.001332 0 0 0 0.001311

Real effective exchange rate 0 2.64E-05 6.61E-05 0 0 0 5.48E-05 8.34E-05 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate -2.54E-05 0 0 0 0 -0.0001 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.000196 0.000467 0 0.000626 0.001248 0.000145 0.000634 0 0.000618 0.001154

Unemployment rate 0.000405 0 -2.75E-05 -0.00041 -0.00018 0.00046 0 -6.71E-05 -0.00042 -0.00022

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0.0001 0.000364 0 0 0 8.79E-05 0.000502 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index -2.27E-06 0 0 0 0 -3.33E-06 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

Lasso Relaxed Lasso

Lasso Relaxed Lasso

Variables

Variables

Panel C:  Consumer Cyclicals

Number of lags Number of lags

Panel D:  Consumer non-Cyclicals

Number of lags Number of lags
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Table 1. Lasso and relaxed lasso, coefficient estimates, λ-min specification (continued) 
 
 
 
 

 
 
Source: Author’s calculations. 

 
 
 
 
 
 

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 0 0 0 0 0 0 0 0

Real effective exchange rate 0 0 0 3.32E-05 0.000101 0 0 0 4.18E-05 0.000148

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0.000532 0 0 0.000411 0 0.000584 0 0 0.000678

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.000174 0.000966 0 0 0.000297 0.000363 0.000703 0 0 0.000479

Unemployment rate 0 0.000252 0 0 0 0 0.000467 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate -0.00014 0 0 0 0 -1.85E-05 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 1.48E-05 0 0 0 0 1.83E-05 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.000285 0 0 0 0 0.003426 0 0 0 0

Real effective exchange rate 0 0 0 0 0 0 0 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0 0 0 0.004037 0 0 0 0 0.001039

Unemployment rate 0 0 0 0 0 0 0 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0.000776 0 0 0 0 0.000808

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 0 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

Lasso Relaxed Lasso

Lasso

Variables

Variables

Panel E:  Diversified Industrials

Number of lags Number of lags

Panel E:  Energy

Number of lags Number of lags

Relaxed Lasso
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Table 1. Lasso and relaxed lasso, coefficient estimates, λ-min specification (continued) 
 
 
 
 

 
 
Source: Author’s calculations. 

 
 
 
 
 
 

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.001571 0.000305 0.000231 0 0.001056 0.001373 0.00052 0.000651 0 0.000756

Real effective exchange rate 0 0 0 0 0 0 0 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate -0.00041 0 0 0 0 -0.00056 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.000342 0.000222 0 0.000458 0 0.00023 0 0 0.000702 0

Unemployment rate 0 0 0 -6.82E-05 0 0 0 0 -3.20E-05 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0.000341 0 0 0 0 0.000713 0

Credit, growth rate 0 0 0 0 2.45E-10 0 0 0 0 3.39E-09

U.S. consumer price index 0 0 0 0 -6.35E-07 0 0 0 0 -1.13E-05

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.000375 0 0 0.000577 0.000121 0.000581 0 0 0.001423 0.000611

Real effective exchange rate 0 6.43E-05 0.000131 4.38E-05 1.06E-05 0 8.16E-05 0.000173 0.000154 6.74E-05

Policy rate -0.00033 0 0 0 0 -0.0004 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0.000629 0 9.79E-05 0 0 0.000866 0 2.98E-05 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0.000826 0 0 0.001232 0 0.001067 0 0 0.001071

Unemployment rate 0.000342 0 -8.89E-05 0 -0.00015 0.000415 0 -5.09E-05 0 -0.00021

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 7.60E-06 0 0 0 0 0.00028

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index -4.60E-06 0 6.60E-07 0 8.04E-06 -8.49E-06 0 5.25E-07 0 1.20E-05

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate -7.66E-05 0 0 0 0 -4.77E-05 0 0 0 0

Variables

Variables

Panel G:  Financials

Number of lags Number of lags

Panel H:  Industrials

Number of lags Number of lags

Lasso Relaxed Lasso

Lasso Relaxed Lasso
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Table 1. Lasso and relaxed lasso, coefficient estimates, λ-mi specification (continued) 

 
 
 

 
 
Source: Author’s calculations. 

 
  

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 0 0.000578 0 0 0 0 0.001326 0

Real effective exchange rate 0 -7.14E-05 0 0 -8.35E-05 0 -9.61E-05 0 0 -1.62E-05

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 3.91E-05 0 0 0 0 0.000137 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 6.48E-05 0.000811 0.0001 0.000782 0.000269 0 0.000132 0 0.000585 0.000218

Unemployment rate 7.02E-05 0 0 0 0 0.00028 0 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0.000207 0 0 0 0 0.000436 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index -5.51E-07 0 0 0 0 -3.91E-06 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 -0.00013 0 -0.00013 0 0 -0.00064 0 -0.00045

Real effective exchange rate -0.00054 0.000261 0 0 2.51E-05 -0.00062 0.000342 0 0 0

Policy rate 0 0 0 0 0.001199 0 0 0 0 0.001559

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0.001141 0 0 0 0 0.001146 0 0

3-month Treasury bill rate -0.00149 0 0 0 0 -0.0011 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0.002135 0 0.000329 -0.0003 0 0.002787 0 0.000222 -0.00047

Unemployment rate -0.00047 3.93E-05 -1.42E-05 1.44E-05 0 -0.00029 0.000242 -6.11E-06 -1.04E-05 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0.002103 0.000416 0 0 -0.00343 0.003295 0 0 0 -0.00399

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 2.53E-05 0 6.60E-06 1.62E-05 0 2.41E-05 0 7.26E-06 2.47E-05

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 1.02E-05 0 0 0 0 0 0 0

Variables

Variables

Panel I:  Technology

Number of lags Number of lags

Panel J:  Utilities

Number of lags Number of lags

Lasso Relaxed Lasso

Lasso Relaxed Lasso
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Table 2. Lasso and relaxed lasso, coefficient estimates, λ-1se specification 
 
 
 

 
 
Source: Author’s calculations. 

  

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 0 0 0 0 0 0 0 0

Real effective exchange rate 0 0 0 0 0 0 0 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0 0 0 0 0 0 0 0 0

Unemployment rate 0 0 0 0 0 0 0 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0 0 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 0 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.00189 0 0 0 0 0.001015 0 0 0.00034 0

Real effective exchange rate -2.3E-05 0 3.11E-05 0 0 -0.00015 0 0.000201 0 0

Policy rate 0 0 0 0 0 -0.00151 -0.00059 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate -0.00119 -7.1E-05 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.000688 0 0.000136 0.000692 0.002436 0.001108 0 0.001038 0.000734 0.001946

Unemployment rate 0.000371 0 0 -0.00061 -0.00029 0.000689 0.000377 0 -0.00046 -0.0006

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0.001182 0 0 0 0 0.002319

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 0 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 8.57E-05 0 0 0 0 9.24E-07 0 0

Panel B:  Communications

Lasso Relaxed Lasso

Variables Number of lags Number of lags

Panel A:  Basic Materials

Lasso Relaxed Lasso

Variables Number of lags Number of lags
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Table 2. Lasso and relaxed lasso, coefficient estimates, λ-1se specification (continued) 
 
 
 
 

 
 
Source: Author’s calculations. 

 
 
 
 
 
 
 

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.000593 0 0 0 0 0.000656 0 0 0 0

Real effective exchange rate 0 0 0 0 0 0 0 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 -0.00011 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0.000646 0.000399 2.22E-04 0.000882 3.74E-05 0.00077 0.00048 2.12E-04 0.001011

Unemployment rate 0 0 -1.08E-05 -0.0002 -0.00011 0 0.00E+00 -1.24E-04 -0.00021 -0.00018

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0 0 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 0 0 0 0 2.94E-07

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.000888 0 0 0 0.000673 0.000935 0 0 0 0.00089

Real effective exchange rate 0 0 0 0 0 0 0 4.24E-05 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.000306 8.66E-05 3.42E-05 0.000752 0.001299 0.000234 0.000313 0 0.000694 0.001269

Unemployment rate 0.000213 0 0 -0.00034 -5.75E-05 0.000343 0 0 -0.00037 -0.00014

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0.000264 0 0 0 4.01E-05 0.000338 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 -1.30E-06 -1.24E-06 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

Panel D:  Consumer non-Cyclicals

Lasso Relaxed Lasso

Variables Number of lags Number of lags

Panel C:  Consumer Cyclicals

Lasso Relaxed Lasso

Variables Number of lags Number of lags
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Table 2. Lasso and relaxed lasso, coefficient estimates, λ-1se specification (continued) 
 
 
 
 

 
 
Source: Author’s calculations. 

 
 
 
 
 
 
 

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 0 0 0 0 0 0 0 0

Real effective exchange rate 0 0 0 0 0 0 0 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 4.84E-05 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0 0 0 0 0.000354 0.000632 0 0 0

Unemployment rate 0 0 0 0 0 0 0 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0 0 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 0 4.42E-06 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 0 0 0 0 0 0 0 0

Real effective exchange rate 0 0 0 0 0 0 0 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0 0 0 0.002238 0 0 0 0 0

Unemployment rate 0 0 0 0 0 0 0 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0 0 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 0 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

Panel F:  Energy

Lasso Relaxed Lasso

Variables Number of lags Number of lags

Panel E:  Diversified Industrials

Lasso Relaxed Lasso

Variables Number of lags Number of lags
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Table 2. Lasso and relaxed lasso, coefficient estimates, λ-1se specification (continued) 
 
 
 
 

 
 
Source: Author’s calculations. 

 
 
 
 
 
 
 

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.001016 0.000606 2.82E-05 0 0.000184 0.001282 0.00042 7.22E-05 0 0.000325

Real effective exchange rate 0 0 0 0 0 0 0 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.000349 0 0 0.000145 0 0.000386 0 0 0.000288 0

Unemployment rate 0 0 0 0 0 0 0 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0 0 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 0 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0.000352 0 0 0.000226 0 0.000252 0 0 0.000249 3.19E-05

Real effective exchange rate 0 4.73E-05 8.34E-05 0 0 0 5.38E-05 0.000107 0 0

Policy rate -0.0003 0 0 0 0 -0.00034 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0.00039 0 0.000215 0 0 0.000491 0 0.000157 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0.000607 0 0 0.001315 0 0.000733 0 0 0.001269

Unemployment rate 0.00026 0 -0.00012 0 -7.23E-05 0.000311 0 -8.41E-05 0 -0.00011

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 -5.68E-05 0 0 0 0 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index -1.81E-06 0 1.74E-06 0 5.07E-06 -2.95E-06 0 1.12E-06 0 6.35E-06

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate -6.51E-05 0 0 0 0 -8.63E-05 0 0 0 0

Panel H:  Industrials

Lasso Relaxed Lasso

Variables Number of lags Number of lags

Panel G:  Financials

Lasso Relaxed Lasso

Variables Number of lags Number of lags
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Table 2. Lasso and relaxed lasso, coefficient estimates, λ-1se specification (continued) 
 
 
 
 

 
 
Source: Author’s calculations. 

 
 
 
 

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 0 0 0 0 0 0 0 0

Real effective exchange rate 0 -3.80E-05 0 -5.92E-05 -6.37E-05 0 -9.14E-05 0 0 -9.20E-05

Policy rate 0 0 0 0 0 0 0 0 0 0

Consumer price index 0 0 0 0 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0 0 0 0 0 0

3-month Treasury bill rate 0 0 0 0 0 0 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0.000213 0.000734 0 0.000855 0.000103 0 0 0 0.000603 0

Unemployment rate 0 0 0 0 0 4.22E-05 0 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0 0 0 0 0 0

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 0 0 0 -3.31E-06 0 0 0 0

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 0 1 2 3 4

Exchange rate vis-à-vis the U.S. dollar 0 0 0 0 0 0 0 -0.00051 0 -0.00073

Real effective exchange rate 0 7.31E-06 0 0 0 -0.00053 0.000303 0 0 0

Policy rate 0 0 0 0 0 0 0 0 0 0.001369

Consumer price index 0 0 0 2.52E-05 0 0 0 0 0 0

Real GDP growth rate 0 0 0 0 0 0 0 0 0 0

Money market rate 0 0 0 0 0.000208 0 0 0.00106 0 0

3-month Treasury bill rate 0 0 0 0 0 -0.00077 0 0 0 0

Bank deposit rate 0 0 0 0 0 0 0 0 0 0

Bank lending rate 0 0 0 0 0 0 0 0 0 0

10-year Treasury bond yield 0 0 0 0 0 0 0.002303 0 0 0

Unemployment rate -0.0003 0 0 0 0 -0.00036 6.54E-05 0 0 0

U.S. real GDP growth rate 0 0 0 0 0 0 0 0 0 0

People's Republic of China real growth rate 0 0 0 0 0 0 0 0 0 0

U.S. policy rate 0 0 0 0 0 0.002707 0 0 0 -0.00359

Credit, growth rate 0 0 0 0 0 0 0 0 0 0

U.S. consumer price index 0 0 6.39E-06 0 9.22E-06 0 2.11E-05 0 6.54E-06 2.13E-05

Commodity price index 0 0 0 0 0 0 0 0 0 0

Nominal effective exchange rate 0 0 0 0 0 0 0 0 0 0

Panel J:  Utilities

Lasso Relaxed Lasso

Variables Number of lags Number of lags

Panel I:  Technology

Lasso Relaxed Lasso

Variables Number of lags Number of lags
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VIII.   CONCLUSIONS 

Lasso regressions are likely to outperform traditional statistical models such as ordinary least 
squares in forecasting the performance indicators required in applied stress testing. The 
advantage of Lasso-type estimators lies in the fact that they can handle the complications 
arising from the high dimensional nature of stress tests.  
 
Typically, the stress test specifies a large set of primary explanatory variables for which there 
are only few observations. This leads to a situation where the number of variables is of the 
same order of magnitude as the observations. Without regularizing (or shrinking) the 
coefficients, statistical models would be very unstable. In contrast, regularization methods, 
like Lasso, are designed specifically to handle high dimensional problems, many of which 
present in different areas of finance and economics, including financial networks.  
 
Lasso-type estimators can also accommodate models other than the linear models described 
here. It is possible to use Lasso estimators in generalized linear models, including logistic 
regression, multiclass logistic regression, Cox proportional hazard models, and support 
vector machines; in semiparametric nonlinear mixed effect models (Arribas-Gil, Bertin, 
Meza, and Rivoirard, 2014), and nonlinear regressions (Tateishi, Matsui, and Konishi, 2010). 
 
Economists may have some concerns with the “black box” nature of the variable selection 
process in Lasso-based methods. For instance, the resulting model may show coefficients 
with the “wrong signs” and at odds with the causality direction assumed by the analyst. The 
Lasso estimation framework can accommodate this situation easily since it can specify both 
upper bounds and lower bounds for the coefficient. It is also feasible to specify linear 
restrictions on the coefficient (James, Paulson, and Rusmevichientong, 2013).  
 
There may be concerns associated with whether the right variables are included in the model. 
Given the large number of covariates, the Lasso estimator may choose some variables highly 
collinear with the “right” set of variables if they have a better signal-to-noise ratio. This 
situation may complicate the association of the stress test outcomes with economic 
narratives. But because stress tests are quantitative tools, it may be more important to obtain 
good out-of-sample forecasts rather than telling a good story. Progress towards standardizing 
and automating stress test scenarios may reduce the importance of an economic narrative. 
 
The availability of fast computation algorithms for estimating Lasso-type regressions in 
major programming and statistical languages, including Matlab, R, and SAS, suggest their 
usefulness as basic building blocks in practical semi- or fully automated stress testing 
platforms. Chan-Lau and Li (2015) describe one such platform combining Lasso-based 
forecasting models with a balance sheet stress test model. This type of stress test platforms 
could analyze multiple stress scenarios efficiently and rapidly within an enterprise-wide risk 
framework in a private firm, or in a systemic risk framework in a regulatory agency. 
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