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1. Introduction 

 

Agriculture is a source of livelihoods for millions,1 and thus remains a key component of global 

welfare, estimated to account for 29.5 percent of global employment and 68.5 percent of 

employment in low-income countries.2 Moreover, differences in agricultural productivity 

account for a large share of aggregate productivity variation across countries: while the GDP 

per worker of the richest 5 percent of countries is 34 times that of the bottom 5 percent, this 

same ratio is 78 in the agricultural sector.3  The prevalence of low agricultural productivity in 

low income countries has motivated both ambitious policy agendas4 as well as macro and 

microeconomic research on the sources of this variation. These efforts have been challenged 

by the methodological difficulty of accounting for geographical differences accurately, 

particularly when the subject of interest goes beyond a narrowly defined geographic area. By 

using exceptionally rich crop-specific global datasets, this paper provides a measure of 

geographically attainable potential yields and productivity gaps. Moreover, a decomposition 

of these gaps is presented to shed light on what mechanisms are most quantitatively relevant 

in explaining global variation in aggregate agricultural productivity. 

 

Explanations behind large agricultural productivity gaps between rich and poor countries have 

been extensively studied by the development literature. Among these, differences in input 

usage and technology adoption (fertilizers, pesticides, seeds, machinery, etc.) have been widely 

highlighted as important sources low yields in low-income countries,5 and several cross-

sectional studies and experiments have been conducted to explore this channel. Duflo, Kremer, 

and Robinson (2008, 2011), for example, find that low intermediate input usage – and fertilizer 

in particular – results in low yields for maize farmers in Kenya. Beaman, Karlan, Thuysbaert, 

                                                 
1 Close to 800 million (or 78 percent) of the world’s poor live in rural areas and rely on agriculture for their 

livelihoods (World Bank 2014). In addition, evidence suggests that growth in agriculture has proven to be more 

effective at reducing poverty as compared to growth in elsewhere (World Bank 2008). 
2 2015 figures from ILOSTAT. 
3 There is a large literature emphasizing agricultural productivity differences dating back to Kuznets (1971) and 

more recently emphasized by Caselli (2005), Restuccia, Yang, and Zhu (2008), Gollin, Lagakos, and Waugh 

(2014), among others.  
4 For instance, the World Bank Group made $8.3 billion new commitments to agriculture in 2014, the majority 

of which went towards increasing productivity, food security, and access to markets (World Bank 2014). 
5 For an early and brief summary, see Feder et al. (1985). 
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and Udry (2013) find similar large potential gains from increasing fertilizer usage for rice 

farmers in Mali. Other possible explanations that have received less attention in the literature 

are related to crop selection; that is, factors hampering the choice of optimal crops given land 

suitability. For instance, Asad (2014) finds that cell phone coverage in rural Pakistan helped 

correct for a coordination failure between farmers and merchants, thereby decreasing the risk 

of post-harvest losses and leading farmers to switch to more perishable and lucrative crops.  

Allen and Atkin (2016) find that falling trade costs in India integrated markets, thereby 

increasing farmers’ revenue volatility if they continued to grow the same crops, and so caused 

farmers to shift production to crops with less risk.  Emran et al. (2012) identify an inverse-U 

causal relationship between the size of the local market and the pattern of crop specialization 

within the village economy in Nepal.  Micro studies, however, are often limited to a single 

crop or to a specific region and country. Although they provide a high level of detail into 

relevant mechanisms at work, the quantitative relevance of these mechanisms at a 

macroeconomic (and global) level is not entirely clear. 

 

The macroeconomic relevance of these gaps has recently gotten renewed attention. Large gaps 

have been documented and studied across countries by Gollin, Lagakos and Waugh (2014), 

Herrendorf and Scholleman (2015), among others, and models explaining gaps between 

agriculture and other sectors have been developed (Alvarez 2019; Herrendorf and Schoellman 

2018; Donovan 2016; Adamopoulos and Restuccia 2014; Lagakos and Waugh 2013; Restuccia 

et al. 2008; Tombe 2015). These models explain differences in productivity with mechanisms 

that induce low aggregate investment in intermediate inputs or low quality of labor. While 

successful in explaining much of the variations, these varying mechanisms do not focus on a 

careful accounting of the role geographic differences.  

 

This paper attempts to identify quantitatively significant sources of aggregate agricultural 

productivity variation by using a set of global spatial datasets that account for geographical 

differences.  The closest paper to our work is Adamopoulos and Restuccia (2018), who use 

similar geospatial data on modeled and potential agricultural production to assess the extent to 

which geography and land quality account for average yield differences across countries with 

different income levels. They document that, if countries produced current crops according to 
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potential yields (by using high inputs), average gaps between the group of richest and poorest 

countries would nearly disappear. Using different datasets on observed production and prices 

and a more granular approach,6 we are able to replicate this result and extend it to explore the 

variation in within-country yield gaps conditional and unconditional on income levels. 

 

We present three main sets of findings. First, we find that geographical variation plays a 

substantial role in explaining cross-regional variation in aggregate yields, but substantial gaps 

remain even after controlling for crop- and region- specific measures of potential. Second, 

when decomposing the within-country gap between observed and potential production, we find 

that differences in crop selection are most important, with gaps in inputs playing a lesser role.  

Third, we show how measured gaps and yields vary systematically across income levels as 

well as countries with different infrastructure and input availability. Overall, our results 

highlight the importance of understanding crop selection decisions, given geographical 

constraints, in explaining aggregate productivity gaps in agriculture. 

 

The rest of this paper is organized as follows. Section 2 presents the data sources and variable 

construction. Section 3 presents our empirical framework.  Section 4 discusses our main 

findings and documents how our measures of yields and gaps correlate with measures of 

income, inputs, technology and infrastructure. Section 5 concludes.  

 

2. Data description 

 

The database used in this analysis is constructed from several sources. Information on the 

harvested land area and observed yield are from Monfreda et al. (2008), henceforth “M3.” The 

M3 data harmonizes national, state, and country-level census statistics and disaggregates them 

to 5 arc-minute resolution (approximately 10 x 10 km) using a global dataset of cropland from 

                                                 
6 We construct our database with production estimates from Monfreda et al (2008) and crop potential from the 

Global Agro-Ecological Zones (GAEZ) project of the Food and Agriculture Organization (FAO). The dataset is 

at the 5-arc minute resolution, or approximately 10 x 10 km. Unlike Adamopoulos and Restuccia (2018), who 

relied on international prices and focused on the country level, we take a more granular approach. Specifically, 

we focus our analysis at the state level and use country-level crop prices from the FAO to calculate crop values. 

Our main analysis focuses on 2,423 states in 127 countries for which we had price data.   
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Ramankutty et al. (2008). Data are circa 2000, the average of censuses from 1997-2003. The 

full data set contains information on 175 crops. We focus our analysis on the 25 crops listed in 

Table 1. We chose these 25 crops as they are among the main global cash crops. Our selection 

was guided in part by the M3 database’s list of 17 “major crops.”7 We supplemented this list 

with additional, relatively more perishable commercial crops8 to arrive at a more balanced 

selection of high (7), medium (10), and low (8) perishable crops.9  Our motivation in using this 

M3 data is that it applies minimal modeling to distribute subnational statistics of yield and 

harvested area. As such, the downscaling process used was intuitive and transparent.  By 

aggregating this data to the sub-national level, we are able to focus on the less distorted 

information from which this it was originally constructed.10   

 

For data on the potential yield, we turn to the Global Agro-Ecological Zones (GAEZ) data 

developed by the International Institute for Applied Systems Analysis (IIASA) and the Food 

and Agriculture Organization (FAO). This dataset compiles climatic, soil, and land cover data 

to estimate potential production under alternative levels of inputs (low, medium, high). 

Climatic data includes precipitation, temperature, wind speed, sunshine hours, and relative 

humidity. Soil data comes from the Harmonized World Soil Database (2009) which contains 

information on soil nutrient availability, nutrient retention capacity, oxygen availability, 

toxicity, salinity, and sodicity. Elevation and slope are from the Shuttle Radar Topography 

Mission (2006). The GAEZ project combines these and estimates the potential yield of 

different crops within each 5 arc-minute cell of the globe.  GAEZ computes attainable yields, 

given geographic factors, under three different sets of input assumptions (high, medium, low) 

under both rainfed and irrigated agriculture. High-input assumes advanced management, 

commercial farming. Production is based on improved or high-yielding seed varieties, is fully 

mechanized with low labor intensity and uses optimum applications of nutrients and chemical 

pest, disease and weed control.   

                                                 
7 These are: barley, cassava, cotton, groundnut, maize, millet, oil palm, potato, rapeseed, rice, rye, sorghum, 

soybean, sugar beet, sugarcane, sunflower, and wheat.   
8 These are banana, cabbage, carrot, citrus, onion, sweet potato, tomato, and yam.  
9 The perishability rankings used in this paper are guided by field tests in Pakistan described in Asad (2014) and 

supplemented by authors’ judgement.   
10 See Anderson et al. (2014) for comparison and contrast between these modeled production data. 
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Table 1. List of Crops included in our study  

 

 Crop Perishability 

Ranking* 

Number of Countries 

where crop is grown 

Harvested Area 

(1,000 Ha) 

1 Banana High 
80 3,536 

2 Barley Low 
91 50,788 

3 Cabbage High 
109 2,593 

4 Carrot High 
102 915 

5 Cassava Medium 
61 11,014 

6 Citrus High 
70 798 

7 Cotton Low 
76 25,813 

8 Groundnut Low 
84 18,957 

9 Maize Medium 
108 122,232 

10 Millet Low 
76 31,398 

11 Oil palm High 
33 8,903 

12 Onion Medium 
112 2,498 

13 Potato Medium 
106 17,937 

14 Rapeseed Medium 
69 23,875 

15 Rice Low 
91 137,460 

16 Rye Low 
60 9,197 

17 Sorghum Low 
96 36,026 

18 Soybean Medium 
95 72,702 

19 Sugar beet Medium 
61 5,865 

20 Sugarcane High 
70 17,387 

21 Sunflower Medium 
77 18,797 

22 Sweet potato Medium 
81 7,991 

23 Tomato High 
116 3,212 

24 Wheat Low 
98 197,657 

25 Yam Medium 
46 3,249 

* The perishability rankings are guided by the field tests in Pakistan described in Asad (2014) and supplemented 

by authors’ judgment. 
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In this analysis, we rely on high inputs, based on the 1961-1990 reference. Under these 

assumptions, we take potential yield to be the maximum of rainfed and irrigated amounts. 

Importantly, the measure of potential does not consider profit-maximization, instead capturing 

the achievable yields under high-input11 assumptions and agro-ecological conditions.  Thus, 

observed yield in our database is sometimes higher than potential.   

 

Country-specific prices12 for each crop are sourced from FAOSTAT. We use average crop 

prices for 2003-2007. Not every crop had a price in every country. To interpolate for missing 

prices, we assume that the ratio between crop prices are constant.  To illustrate, if the price of 

wheat was missing for a particular country (A), we multiplied its price of maize by the ratio of 

the international price of wheat by the international price of maize:  

 𝑝𝐴
𝑤ℎ𝑒𝑎𝑡 = 𝑝𝐴

𝑚𝑎𝑖𝑧𝑒
𝑝𝐼𝑛𝑡𝑙

𝑤ℎ𝑒𝑎𝑡

𝑝𝐼𝑛𝑡𝑙
𝑚𝑎𝑖𝑧𝑒

 (1) 

Where 𝑝𝑠
𝑐 is the price of crop c in country s. In general, non-perishable crops were used to fill 

in missing prices for other non-perishable crops. Maize has good price coverage and was used 

as the benchmark price, followed by potato and sweet potato. In the case of perishable crops, 

banana was used as the benchmark, followed by tomato, onion, and sunflower. International 

crop prices were taken from Wood-Sichra et al. (2016, Table 2-11).  

 

Our geographic unit of analysis is the sub-national state level (admin 1 in GADM13).  To 

aggregate from the cell to the State level, potential yields from GAEZ were converted to 

potential production by multiplying it by the total harvested area from the M3 data. M3 

observed production was calculated by multiplying the crop-specific yield with the crop-

specific harvested area. The crop-specific yield and harvest area data are constructed by 

Monfreda et al. (2008) using agricultural statistics from various sources and distributing it 

                                                 
11 Under “high inputs,” farming is mainly commercial. Production is based on improved or high yielding seed 

varieties; is fully mechanized with low labor intensity; and uses optimal applications of fertilizers as well as 

pest, disease, and weed control (FAO & IIASA 2012).  
12 Farmgate prices would have been preferable, given that these are the ones most likely to influence a farmer’s 

crop and input choices. However, collecting such prices is only available through household surveys and are 

lacking for much of our study area.   
13 GADM is a vector database of global administrative boundaries.  
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spatially over a map of cropland from Ramankutty et al. (2008). The cropland map represents 

the area harvested of each crop.14     

 

At the cell-level, there were several cases where positive yield was recorded (from M3) while 

the potential there was zero (from GAEZ). Possible explanations for such negative productivity 

gaps include misallocation of production and measurement error of potential. The production 

data we use may have been misallocated during the downscaling process used in the M3 data 

(see Monfreda et al. (2008)). We strove to minimize this by redistributing production values 

from cells with zero potential equally among those cells with positive potential within the 

country. We focus on the State as the geographic unit of analysis rather than at the cell level, 

to further minimize the effect of this measurement error.    

 

Out of the 2,423 States we focus on, 749 have a negative gap (more observed than potential 

production), 1,534 have a positive gap (less observed than potential production), with the 

remaining 140 having zero observed or potential production.15  

 

In a later section of the paper, we investigate the extent to which economic characteristics 

explain these agricultural gaps at the country level.  To this end, we aggregate the main 

database to the country level and introduce several country-level variables: GDP per capita, 

road density, fertilizer use, use of modern technology in agriculture, average farm size, 

subsidies, and a measure of government effectiveness. 

 

GDP per capita and fertilizer use are sourced from the World Bank’s World Development 

Indicators.  The average farm size within a country is taken from a 63-cross-country dataset 

compiled by Vollrath (2007).  For the purposes of this analysis, a farm is defined as “an 

economic unit of agricultural production under single management.” Road density (kilometer 

of road per square kilometer of land) is sourced from Canning (1998), 2007 update.  We rely 

                                                 
14 Given that some crops are harvested several times a year, total harvested area can exceed the physical area of 

the plot it is grown on. 
15 Exceeding one’s potential is not necessarily a good thing if it is driven by market distorting policies.  For 

example, Damania et al (2017) recount how farmers growing thirsty crops such as sugarcane and rice thanks to 

subsidized irrigation in the desert are worse off overall when a drought hits and irrigation is no longer available.   
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on paved roads in 2005, the most recent year available in the data.  As an indicator of modern 

technology use in agriculture, we rely on the number of tractors from the Cross-country 

Historical Adoption of Technology (CHAT) database, see Comin and Hobijn (2010).  

 

3. Empirical Framework 

 

We are interested in decomposing the gap between observed and potential yields into that 

which is due to input choice and that which is due to crop selection. To that end, we calculate 

three yield measures: (i) average observed yield within a state, (ii) ‘mid-potential’ yield 

obtained from using high inputs and holding crop choice fixed, and (iii) overall potential yield 

obtained from using high inputs and growing the crop with the highest value using all available 

cropland.  

 

Observed yield value within a subnational state (𝑦𝑠) is calculated as follows: 

 𝑦𝑠 =
1

𝐿𝑠
∑ ∑ 𝑝𝑐𝑞𝑖

𝑐

𝐶

𝑐=1

𝑁

𝑖=1

 (2) 

Where 𝐿𝑠 is the total harvested land in state s, 𝑝𝑐 is the price of crop c in the country where s 

is located (country subscripts suppressed), and 𝑞𝑖
𝑐 is the production of crop c in grid cell i.  

 

Mid-potential yield holding crop choice fixed (𝑦𝑠
𝑚𝑖𝑑) is calculated as follows: 

 𝑦𝑠
𝑚𝑖𝑑 = ∑ ∑ 𝜔𝑖

𝑐𝑝𝑐

𝐶

𝑐=1

𝑁

𝑖=1

𝑞𝑖
𝑐̅̅ ̅ (2) 

Where 𝑞̅𝑖
𝑐 is the potential production of crop c in grid cell i if high inputs are used and 𝜔𝑖

𝑐 is 

the share of harvested area allocated to crop c (i.e. 𝜔𝑖
𝑐 = 𝑙𝑖

𝑐/𝐿𝑖, where 𝑙𝑖
𝑐 is harvested land of 

crop c and 𝐿𝑖 = ∑ 𝑙𝑖
𝑐

𝑐 ).  The difference between 𝑦𝑠 and 𝑦𝑠
𝑚𝑖𝑑 are attributed by the differences 

between crop-specific observed yields and the corresponding high-input crop-specific 

potential. 

 

 

Moreover, overall potential yield is calculated as:  
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 𝑦𝑠
𝑝𝑜𝑡 =

1

𝐿𝑠
∑ max

𝑐
{𝑝𝑐𝑞̅𝑖

𝑐 }

𝑁

𝑖=1

 (3) 

Where 𝐿𝑠 is the total harvested land within state s. This is a measure of revenue maximizing 

potential across all crops, which is not affected by any choice on the ground and is solely driven 

by geographical differences between regions. 

 

To decompose the agricultural productivity gap, note that:  

 

𝑦𝑠
𝑝𝑜𝑡 − 𝑦𝑠 = (𝑦𝑠

𝑝𝑜𝑡 − 𝑦𝑠
𝑚𝑖𝑑) + (𝑦𝑠

𝑚𝑖𝑑 − 𝑦𝑠) 

The first component of the gap is the gap is due to crop selection while the second is the gap 

due to gaps between the high input assumption of the database and inputs used. In what follows, 

we express the productivity gaps as a percentage of potential production. That is:  

𝑔𝑎𝑝 = 100 ×
𝑦𝑠

𝑝𝑜𝑡 − 𝑦𝑠

𝑦𝑠
𝑝𝑜𝑡  

𝑔𝑎𝑝𝑐𝑟𝑜𝑝 = 100 ×
𝑦𝑠

𝑝𝑜𝑡 − 𝑦𝑠
𝑚𝑖𝑑

𝑦𝑠
𝑝𝑜𝑡  

𝑔𝑎𝑝𝑖𝑛 = 100 ×
𝑦𝑠

𝑚𝑖𝑑 − 𝑦𝑠

𝑦𝑠
𝑝𝑜𝑡  

Where 𝑔𝑎𝑝, 𝑔𝑎𝑝𝑐𝑟𝑜𝑝, and 𝑔𝑎𝑝𝑖𝑛 are the total gap, gap due to crop choice, and gap due to 

inputs, respectively.  

 

In a later section of this paper, we aggregate our data to the country level and document the 

correlation of yields and gaps with several economic characteristics. We report regressions of 

the form: 

ln(𝑔𝑎𝑝𝑘) = 𝛾 ln(𝑋𝑘) + 𝜃𝑟 + 𝜀𝑘 

 

where 𝑔𝑎𝑝𝑘 is the gap for country k and 𝑋𝑘 is a vector of available cross-country measures 

that are informative of mechanisms highlighted by the literature on agricultural productivity. 

In particular, we include GDP per capita as a measure of a country’s level of income; road 
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density as an indicator of a country’s connectivity and infrastructure development;16 the use of 

fertilizer as a proxy for key inputs determining agricultural production;17 tractor use as an 

indicator of machinery use in agriculture18 and average farm size as a scale of production 

indicator.19 We also include regional fixed effects (𝜃𝑟) for East Asia and Pacific; Europe and 

Central Asia; Latin American and the Caribbean; Middle East and North Africa; North 

America; South Asia; and Sub-Saharan Africa.  

 

4. Results 

 

We now turn to the spatial data to analyze the roles played by geography, crop selection, and 

input choice in determining agricultural yield gaps between and within countries.   

 

The role of geography in crop-specific yield potentials 

Not all land is created equal. Not only does yield potential for each crop vary significantly 

across space, but geographical patterns also vary significantly by crop. A clear illustration of 

this pattern is shown in Figure 1, which depicts potential yields of wheat and sugarcane, at the 

5 arc-minute resolution across the world. As expected, potential yields vary significantly for 

each of these crops when comparing different of latitudes of the planet.  What is most striking, 

however, is that these maps are nearly mirror images of each other. While wheat grows well 

in the temperate regions of Europe and North America, sugarcane favors the tropical areas in 

South America, Africa and Asia. In this extreme example, the potential yields of these crops 

                                                 
16 There is evidence that better transport networks facilitate farmers’ access to agricultural inputs and to markets 

where they can sell their produce (see for example, Damania et al 2016). Furthermore, transportation costs tend 

to be higher for perishable crops, particularly over longer distances (given the need for coordinating harvesting, 

refrigeration). Because of these hurdles, trade in perishable goods is often restricted to local markets. This 

interaction with perishability is important as perishable crops carry a higher risk for farmers. The basic 

argument is that if a farmer cannot sell their produce quickly enough, post-harvest losses can potentially be 

quite high (Asad 2014, Kaminski and Christiaensen 2014, FAO 2014, IFPRI 2013, Grolleaud 2002, and 

Oehmke 1992).  
17 This is motivated by the literature highlighting low usage of fertilizer and high-yielding seeds as the main 

explanation behind large agricultural productivity gaps.  (See for example, Beaman et al 2013, Comin and 

Hobijn 2010, Feder et al 1985.)   
18 Tractors and other heavy machinery are far more efficient than manual labor.  Tractor use has been linked to 

increased returns to scale in agriculture (Takeshima, Houssou, and Diao 2018). 
19 Theory and related literature suggest that land distribution is important in explaining the variation in 

agricultural productivity.  Notably, the average farm size of the richest 20 percent of countries is 34 times that 

of the poorest 20% (Restuccia 2011).      
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are negatively correlated across space. Since every crop has its own unique geographical 

pattern, there are multiple examples where potential yields across crops are far from being 

perfectly correlated. This lack of synchronicity in geographic variation of crop-specific yields 

underscores the importance of crop-selection optimization in fully exploiting geographical 

comparative advantages.  

 

The role of geography in cross-country yield variation 

Aggregating across crops, there is substantial geographical variation in yields across the world. 

In particular, the magnitude of variation in our geography-driven measures of potential is not 

much smaller than the variation in observed yields.  Figure 2 plots the distribution of observed 

yields (blue), mid-potential yield using high inputs while holding crops fixed (green), and 

potential yield under both optimal crops and high inputs (red) for all sub-national regions in 

the sample. Unsurprisingly, the overall distribution of potential yield is to the right of the other 

two measures. The exception is at the upper end of the distribution, where observed yield 

exceeds potential. This is explained by the use of technologies that go beyond the high-input 

rainfed assumptions behind our potential measures. Perhaps more surprisingly, the variation in 

potential yields (variance of 0.99) is of the same order of magnitude of that of observed yields 

(1.13). Recall that variation in geography is the sole driver of potential yield variation. Thus, 

this high variance emphasizes the importance of geography in shaping observed yield variation 

across the globe. 

 

Figure 1: Geographic distribution of rainfed wheat and sugarcane potential yield  

1a. Wheat 
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1b. Sugarcane  

   
Source: IIASA and GAEZ  

Notes: Maps depict agro-climatically attainable yield for high-input, rainfed crops, under baseline (1961-1990) 

assumptions.   

 

Figure 2: Distributions of Observed, Mid-Potential, and Overall Potential Yields, sub-

national level 
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Figure 3: Observed vs. Potential Yield at the Country Level 

  

Note: EAP =East Asia & Pacific, ECA = Europe & Central Asia, LAC = Latin 

America & the Caribbean, MENA = Middle East & North Africa, NA = North 

America, SAR = South Asia, SSA= Sub-Saharan Africa.  

 

Figure 3 compares observed and potential yields, at the country-level, for all countries in the 

sample. Several features are worth noting in this cross-country comparison. First, mirroring 

the sub-national pattern, variation in overall potential yields at the country level is significant 

with a variance of 0.73, compared with a variance of 1.25 in observed yields. The high variance 

of our measure of potential yield—which does not take into account any non-geographic 

information—is present within all world regions: Sub-Saharan Africa has a variance in log 

potential of 0.51 log points, Latin America and the Caribbean of 0.58 log points, Middle East 

& North Africa of 0.95 log points, North America of 1.22, East Asia & Pacific of 0.75, and 

Europe & Central Asia of 0.44 log points.  

 

Second, observed and potential yields are positively correlated. The correlation between the 

two measures (in logs) is 0.35, with potential yield explaining 13 percent of the cross-sectional 
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variation in observed yields.  Table 3 shows the share of variation in country-level yields 

explained by potential yields (𝑅2) within geographical regions. The relationship is weakest in 

the Middle East and North Africa, an area dominated by deserts, and relationships in other 

regions are affect by the presence of small islands and states,20 where irrigation and other 

technological peculiarities are likely more pronounced. For instance, the variation in observed 

yield that can be explained by potential yield is also relatively weak in Europe and Central 

Asia (𝑅2 = 0.08), but this becomes stronger (𝑅2 = 0.32) once Cyprus is excluded. Similarly, 

the share of observed yield variation in Sub-Saharan Africa that is explained by potential yields 

is 0.06, which rises to 0.31 once Cape Verde is excluded. The explanatory power of potential 

yield is higher in the East Asia and Pacific (𝑅2 = 0.46), and Latin America and Caribbean 

(𝑅2 = 0.46) regions. The high variation in potentials and their positive correlation with yields 

highlight the importance of incorporating geography in the analysis of country-level 

agricultural productivity dispersion. 

 

The role of crop selection in cross-country variation 

In addition to potential and observed yield variation, Figure 2 also illustrates the variation in 

yields under the counterfactual scenario with high-input usage across all regions and crops, 

thus only allowing crop-selection to vary across space. The mid-potential yield under fixed 

crops selection has a reduced variance of 0.88, compared to the variance of 0.99 and 1.13 in 

potential and observed yields, respectively. This suggests that since countries respond to 

geography-specific comparative advantages between crops, crop selection mitigates the 

variation in geography. However, the combined variation in crop selection and geography still 

fails to explain the right-hand fat-tail of the distribution of observed yields. The right-hand tail 

seems to be a product of high-input usage in high-yield countries. 

 

  

                                                 
20 Because of local contexts, these countries tend to grow crops for which they have poor natural advantages and 

thus require higher inputs than are reflected in our data. 
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Table 2. Mean observed, yields, potential yields, and gaps  

 Mean 

Observed 

Yield 

Mean 

Mid-

Potential 

Yield 

Mean 

Overall 

Potential 

Yield 

Mean 

Gap due 

to Crops 

Mean 

Gap due 

to Inputs 

Mean 

Overall 

Gap 

East Asia & Pacific 3,995 1,883 3,838 0.505 0.138 0.468 

Europe & Central Asia 1,722 969 2,962 0.628 0.140 0.630 

North America, Latin America & 

the Caribbean 

3,370 

 

1,676 6,243 0.643  

 

0.086 0.432 

 

Middle East & North Africa 1,364 1,137 2,499 0.504 0.244 0.592 

South Asia 559 928 2,211 0.546 0.170 0.716 

Sub-Saharan Africa 2,310 1,048 2,981 0.579 0.228 0.762 

World 2,399 1,267 3,710 0.591 0.167 0.642 

Note: Observed and Potential averages are calculated based the raw values and are measured in tons per 

hectare.  

 

Table 3. Share of observed and mid-potential yield variance explained by overall 

potential yield  

 (1) 

Obs. Yield 

(𝑦𝑠) 

(2)  

Mid-Pot. Yield 

(𝑦𝑠
𝑝𝑜𝑡

) 

East Asia & Pacific 0.390 0.659 

Europe & Central Asia 0.430 0.290 

North America, Latin America & the Caribbean 0.579 0.718 

Middle East & North Africa 0.203 0.330 

South Asia 0.324 0.748 

Sub-Saharan Africa 0.040 0.413 

World 0.321 0.525 

Note: (1) R2 calculated based on OLS regressions of observed on potential yield.  (2) R2  calculated based 

on OLS regressions of mid-potential on overall potential yield.  
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Agricultural productivity gaps 

Comparing observed with potentials yields allows us to compute productivity gaps within 

countries. As shown in Figure 2 at the country-level, we find that yield falls short of potential 

for most countries as shown by points below the 45-degree line. The exception, as mentioned 

before, are countries dominated by deserts, and small islands and states. When looking at 

variation across regions, we find the largest gap to be present in Sub-Saharan African countries, 

with an average gap of 0.73. These are followed by East Asia and Pacific with an average gap 

of 0.56 and Latin America and the Caribbean with an average gap of 0.55.21  Figure 4 shows 

the map of these productivity gaps for all countries available. 

 

As described in the previous section, we can decompose these gaps into sub-components. 

Figure 5 illustrates the distributions of the total gap (red), relative to the gap due to crops 

(green), and that due to inputs (blue) as described in the previous section.  Consistent with the 

patterns shown in Figure 2, the gap due to crop choice is still very similar to the overall gap, 

again suggesting that changing the crop mix is necessary to close the total yield gap. Gaps from 

inputs are considerably smaller and more dispersed. The log gap from inputs averages -2.09 

with a variance of 1.28, compared with log crop selection gaps averaging -0.57 with a variance 

of 0.15, and overall gap in logs averages -0.54 with a variance of 0.49. Moreover, there are 

differences in how input and crop selection gaps vary in the cross-sectional countries, as shown 

in Figures 6 and 7. For instance, although input driven gaps appear to be larger in many Sub-

Saharan African countries compared to the rest of the world, this pattern does not hold when 

looking at crop selection gaps. Both because of the higher means in crop selection gaps as well 

as the heterogeneity across different economies, the results suggest that studying crop selection 

differences, in addition to inputs, is required to reach a full understanding of aggregate 

agricultural productivity gaps across all world regions.  

 

 

 

 

                                                 
21 North America has a large gap at the country level, but it only includes two countries (Canada and the USA). 

At the sub-regional level, the average gap is considerably smaller (54).  
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Figure 4: Total Agricultural Productivity Gap  

 

 

Figure 5: Total and Decomposed Agricultural Productivity Gaps 
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Figure 6: Agricultural Productivity Gap Due to Crop Selection by Country

 

 

Figure 7: Agricultural Productivity Gap Due to Inputs by Country 

 

 

Aggregate yields and gaps across income groups 

There are large differences in aggregate observed yields between rich and poor countries, with 

the richest 10 percent of countries in our sample having yields that are 4.5 times larger than 

those of the poorest 10 percent (by GDP per capita). As documented by Adamopoulos and 
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Restuccia (2018), the correlation weakens significantly when considering our mid-potential 

measure—where cross-country variation comes exclusively from differences in crop-selection.  

In our sample, variation from crop-selection alone reduces the gap between the richest and 

poorest 10 percent of countries to from 4.5 to 1.2. Geographical variation alone, as measured 

by the potential measure, has a slightly higher ratio of 1.3 (see Table 4).   

Moreover, Table 5 documents the correlation of GDP with within country gaps. It shows that 

GDP per capita is negatively correlated with total and input gaps, but not with crop selection 

gaps. That is, wealthier countries appear to have a geographical advantage in terms of potential 

yield, but their crop selection does not lead to systematically better yields, on average.  

These average differences, however, mask substantial heterogeneity within the different 

income groups. Figure 8 shows the scatter plots correlating our yield measures with GDP per 

capita. Note that systematic differences in yield variance across income groups are not evident. 

Within each income group, variances seem to replicate the patterns documented in Figure 2. 

Similarly, Figure 9 plots yield gaps by income group and shows substantial variation in gaps 

within all income groups, with outliers among higher income countries driven by 

overperformance in input gaps.  
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Table 4. Production by Yield Measure  

  Yield 

  Observed Mid-Potential Potential  

GDP per capita     

Top 10% 2,750 1,350 3,834 

Bottom 10% 610 1,138 2,874 

Ratio 4.51 1.19 1.33 

Road Density     

Top 10% 4,815 2,050 7,868 

Bottom 10% 810 911 3,337 

Ratio 5.94 2.25 2.36 

Fertilizer     

Top 10% 5,468 1,784 5,079 

Bottom 10% 561 697 2,676 

Ratio 9.75 2.56 1.90 

Farm Size     

Top 10% 2,675 1,001 2,635 

Bottom 10% 1,838 1,268 4,147 

Ratio 1.46 0.79 0.64 

Technology     

Top 10% 7,024 2,156 7,298 

Bottom 10% 1,520 1,224 4,284 

Ratio 4.62 1.76 1.70 

Note: Farm Size calculations exclude farm size = 0. 
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Table 5. Bivariate Regressions between our gap measures and each market characteristic 

  (1) (2) (3) (4) (5) 

 ln GDP pc  

ln Road 

Density ln Fertilizer  

ln Farm 

Size ln Tech use  
A. ln(total gap)           

Market Characteristic -0.046* -0.059** -0.080*** 0.019 0.001 

 (-1.80) (-2.21) (-2.71) (1.43) (0.13) 

Constant 1.299*** 0.765*** 1.233*** 0.881*** 0.899*** 

 (6.34) (9.64) (11.53) (23.45) (7.11) 

      
Observations 121 117 114 100 111 

R-squared 0.093 0.174 0.230 0.139 0.039 

B. ln(𝑔𝑎𝑝𝑐𝑟𝑜𝑝)       

Market Characteristic 0.015** 0.002 -0.000 0.003 0.000 

 (2.57) (0.37) (-0.08) (0.70) (0.09) 

Constant 0.820*** 0.952*** 0.950*** 0.947*** 0.944*** 

 (16.22) (89.30) (44.06) (110.83) (29.71) 

      

Observations 125 121 117 102 112 

R-squared 0.181 0.109 0.107 0.221 0.117 

C. ln(𝑔𝑎𝑝𝑖𝑛)      

Market Characteristic -0.094** -0.098** -0.129** 0.030 0.007 

 (-2.33) (-2.30) (-2.56) (1.29) (0.44) 

Constant 1.403*** 0.377*** 1.138*** 0.568*** 0.553*** 

 (4.40) (2.93) (6.27) (8.16) (2.83) 

      

Observations 121 117 114 100 111 

R-squared 0.102 0.163 0.210 0.121 0.030 
Note: Regional dummies are included. Robust t-statistics in parenthesis. *** significant at 1%, ** significant at 5%, * significant at 10%.  
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Figure 8. Correlations between yield measures and GDP per capita across countries  

8a. Observed Yield     8b. Mid-potential yield  

 

8c. Potential Yield 
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Figure 9. Correlations between gap measures and GDP per capita across countries 

9a. Total Gap     9b. Gap due to Crops  

  

9c. Gap due to Inputs 

 

Correlation of yields and gaps with infrastructure and inputs 

The negative relationships between gaps and GDP per capita, documented above, appears to 

be largely accounted for by differential use of technology and road infrastructure, as this 

relationship significantly weakens once these factors are accounted for at the country-level 

(Table 7b and Figure 10). Motivated by this, we document correlations between our gap 

measures and available cross-country measures of input usage, farming characteristics, and 

infrastructure availability. The goal here is not to infer causality, but to simply document 

systematic variation between documented input and crop selection gaps on the one hand, and 

explanations highlighted by the literature on the other. In particular, we document correlations 
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of our gap measure with road density, fertilizer use, use of modern technology in agriculture, 

and average farm size. 

 

Table 6 reports bivariate correlations between yield gaps and these variables: panel A reports 

the correlations with the overall gap, panel B on the gap due to crops, and panel C on the gap 

due to inputs. Results with and without conditioning by GDP per capita are presented. We find 

that road density and fertilizer use are each negatively correlated with the overall gap. When 

decomposing this effect, this relationship appears to stem from the gap due to inputs. Table 7a 

shows similar results when regressing our gap measures with all input and infrastructure 

variables together. The correlation is weaker for farm sizes and modern technology usage. 

Similar results are obtained after conditioning by GDP per capita (Table 7b).  

 

Overall, these cross-country results show both the systematic variation in gaps and yields 

across income groups as well as how variation within income groups is associated with road 

density and fertilizer use. In fact, the 10 percent of countries with the highest road density have 

an average yield that is 5.9 times greater than those from the bottom 10 percent. The equivalent 

ratio among the top and bottom users of fertilizer is 9.8. These ratios are higher than differences 

in potential yields —which are driven entirely by geography— where the ratio of averages is 

below 2.4, as well as higher than the equivalent ratio in yields between the top and bottom 

income countries of 4.5 (Table 4). 
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Figure 10.  Correlation between gaps and GDP per capita, controlling for country 

characteristics 

 
Note: The vertical access plots the residual from a regression of the total yield gap on country characteristics. 

 

Table 6. Correlations between the agricultural gap measures and market 

characteristics, with and without conditioning on GDP per capita 

  A. Total Gap 

B. Gap due to 

Crop Selection 

C. Gap due to 

Inputs 

  Cond. Uncond. Cond. Uncond. Cond. Uncond. 

Road density -0.056** -0.059** -0.005 0.002 -0.085** -0.098** 

Fertilizer use -0.076** -0.080*** -0.009* 0.000 -0.112** -0.129** 

Farm size 0.026* 0.019 0.000 0.003 0.046* 0.030 

Tractor use 0.022 0.001 -0.005 0.000 0.047 0.007 
Note: Unconditional refers to the coefficients from a bivariate regression of the gap measure on each of the 

market characteristics in logs (road density, fertilizer use, farm size, and tractor use). Conditional refers to 

multivariate regression of the gap measure on each of the market characteristics including GDP per capita as a 

control.  *** significant at 1%, ** significant at 5%, * significant at 10%. 
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Table 7. Cross-country regressions of agricultural gap on market characteristics 

7a. Unconditional: Omitting GDP per capita  

  (1) (2) (3) 

 ln(total gap) ln(gap, crops) ln(gap, inputs) 

        

ln Road density -0.043* 0.001 -0.069** 

 (-1.97) (0.21) (-2.03) 

ln Fertilizer -0.066** -0.001 -0.106** 

 (-2.46) (-0.18) (-2.15) 

ln Farm size 0.015 0.004 0.021 

 (1.32) (1.04) (0.92) 

ln Tech use  0.011 -0.001 0.024 

 (1.01) (-0.23) (1.29) 

Constant 0.952*** 0.956*** 0.632*** 

 (7.58) (19.05) (3.20) 

    
Observations 88 89 88 

R-squared 0.324 0.267 0.264 
Note: log gaps are calculated as ln(gap+2). Robust t-statistics in parenthesis. *** significant at 1%, ** 

significant at 5%, * significant at 10%. 

7b. Conditional: including GDP per capita  

  (1) (2) (3) 

VARIABLES ln(total gap) ln(gap, crops) ln(gap, inputs) 

        

ln GDP pc -0.025 0.030*** -0.078*** 

 (-1.45) (3.90) (-2.81) 

ln Road density -0.037* -0.006 -0.050 

 (-1.82) (-0.96) (-1.61) 

ln Fertilizer -0.062** -0.005 -0.097** 

 (-2.39) (-0.77) (-2.05) 

ln Farm size 0.020 -0.001 0.034 

 (1.49) (-0.23) (1.38) 

ln Tech use  0.015 -0.005 0.035* 

 (1.22) (-1.54) (1.67) 

Constant 1.125*** 0.752*** 1.161*** 

 (7.79) (11.51) (5.28) 

    
Observations 88 89 88 

R-squared 0.333 0.414 0.289 
Note: log gaps are calculated as ln(gap+2). Robust t-statistics in parenthesis. *** significant at 1%, ** 

significant at 5%, * significant at 10%.  
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5. Conclusion 

 

Differences in geographically-induced, crop-specific comparative advantages can explain a 

substantial share of the variation in yields across the world. This does not imply fatalistic 

geographic determinism, however, as large gaps between potential and actual yields suggest 

that there are large potential gains to be had from improving crop and input choices. When 

decomposing these gaps, we find that crop selection plays a relatively larger role in explaining 

gaps as compared to input usage, even if the latter are more strongly correlated with GDP per 

capita levels. This highlights the need to understand the determinants of crop selection if we 

are to fully uncover the macro-relevant sources of aggregate productivity gaps and formulate 

appropriate policies to address them.  

 

Although our analysis provides a broad view of relevant sources of aggregate yield variation, 

a few caveats are important to acknowledge before landing on specific policy conclusions. 

First, the above results are subject to measurement limitations. Ideally, our analysis would have 

used observed yields and land allocation at the plot level. In the absence of such a precise 

dataset, we instead rely on modeled data whereby national statistics are downscaled to the 5-

arcmin cell level following a number of assumptions described in section 2. This might miss 

important features of how land is allocated to different crops within each country and introduce 

biases in our country-level potential yield measures. Second, our cross-country analysis 

suggests that road infrastructure and access to better inputs such as fertilizer are associated 

with lower agricultural yield gaps. These are simple correlations and drawing causal 

implications is beyond the scope of this paper.  

 

Our results, nonetheless, do signal that the interaction of crop selection and market accessibility 

is a mechanism that is quantitatively important in explaining aggregate yield variation. The 

evidence encourages further work on policies that not only improve input usage in current 

crops, but also facilitate crop diversification either directly, or indirectly through infrastructure 

and investments in new technologies.  
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