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I.   INTRODUCTION  

The output gap—a deviation of an economy’s output from its “potential” level2—is a very 

important concept in macroeconomics. It reflects the position of the economy in the business 

cycle: a negative output gap indicates a recession or an initial stage of a recovery, while a 

positive output gap signals a period of economic overheating. The size of the output gap is of 

particular interest to policymakers. For example, a government’s fiscal policy stance is 

usually assessed in terms of a “structural budget balance”, which adjusts the headline balance 

for the position of the economy in the business cycle. The relationship between the output 

gap, inflation, and inflation expectations, i.e., the “Phillips Curve”, is the foundation of 

modern monetary policy. Yet, the output gap is not directly observed, because it is a function 

of potential output, a latent variable itself. As a result, economists and policymakers have to 

rely on estimates of the output gap.  

A commonly shared view is that only supply shocks affect potential output. Thus, one way of 

estimating the output gap is through a proper identification and aggregation of such shocks in 

order to obtain a measure of potential output. Examples of this approach are structural vector 

autoregression models (SVARs) in the spirit of Blanchard and Quah (1989) and Galí (1999), 

which use long-term restrictions to identify shocks with a permanent effect on output.3 So far, 

however, structural models have not gained much popularity for the purpose of output gap 

estimation. One reason could be that many of these models—often developed with other 

objectives in mind—are not sophisticated enough. In general, good performance of SVARs 

in output gap estimation depends on proper identification of supply shocks. In the context of 

small open economies, this implies not only distinguishing between different domestic 

shocks, but also considering global factors. Thus, proper shock identification might require 

expanding considerably the dimension of the SVAR and imposing additional identification 

restrictions.  

Most practitioners have relied on more a-theoretical approaches instead. The so-called 

filtering methods typically identify potential output by fitting real GDP series to a slow-

moving trend.4 Sometimes variables other than actual output are also included to improve the 

identification of potential output: these additional variables are informative as long as 

movements in potential output affect them differently than the cyclical movements in output. 

                                                 
2 The concept of potential output (and hence the output gap) can be defined in different ways. From a purely 

statistical perspective, potential output would be associated with the trend or smooth component of the actual 

output. From an economic point of view, potential output is often seen as characterizing the sustainable (i.e., 

consistent with stable inflation) aggregate supply capabilities of the economy. Potential output could also be 

defined as the level of output attainable when making full use of factors of production.  

3 By identifying the shocks with permanent impact on output as supply shocks, one can reconstruct the potential 

output based on the time series of these shocks. However, Blanchard (2018) notes that there may be supply 

shocks that do not have a permanent effect on output. 

4 Filtering methods are used e.g., by the Federal Reserve Bank, the International Monetary Fund (IMF), and the 

Organization for Economic Co-operation and Development (OECD): see Coibion et al. (2018) for details. 



4 

For example, motivated by their relationship with the output gap through the Phillips Curve 

and the Okun's Law, inflation and unemployment are used in Blagrave et al. (2015). 

It follows that, to the extent that the output gap is used to assess a country’s fiscal stance or to 

inform monetary policy decisions, biases in the estimates of the output gap could potentially 

contribute to policy mistakes (Orphanides 2001, 2003). In fact, poor quality of output gap 

estimates has been well documented for several institutions. For example, Nelson and 

Nikolov (2003) find that errors in real-time estimates of the output gap have likely 

contributed to monetary policy mistakes in the U.K. in the 1970s. In their second fiscal risks 

report, the Office for Budget Responsibility (2019) highlights output gap mismeasurement as 

a fiscal risk.5 For the IMF, Kangur et al. (2019) show that real-time output gap estimates 

exhibit large and negative biases (Figure 1) and are not useful to predict inflation.  

Figure 1. World Economic Outlook Estimates of U.K. Output Gap  

(In percent of potential output) 

 

We contribute to the literature by comparing properties of output gap estimates obtained 

using different methods, including a two-variable Blanchard and Quah (1989) SVAR and a 

range of filtering techniques. We also propose a new method based on a SVAR with a mix of 

short-, long-term-, and sign restrictions, which we think is suitable for identifying permanent 

shocks in a small open economy. The SVAR draws on Forbes’ et al.’s (2018) identification 

strategy, which distinguishes between domestic and global demand and supply shocks. 

Similar to Blanchard and Quah (1989)—Blanchard-Quah hereafter—we identify permanent 

shocks as those that have long-term effects on output, and assume these shocks drive the 

potential output, but in our case these shocks can have both domestic and global origins. In 

general, there are several channels through which a global supply shock might affect the 

                                                 
5 For instance, initial (real-time) estimates by the HM Treasury in the U.K., IMF and OECD all pointed to an 

output gap of close to zero just before the 2008 recession, while the average of the latest estimates for the same 

period is much higher (around 2½ percent). This suggests a downward revision in the estimated size of the 

structural deficit in that year of around 1.2 percent of nominal GDP.  

-6

-5

-4

-3

-2

-1

0

1

2

3

4

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

UK output gap: real time estimates

UK output gap: April 2016 WEO

Figure 1: World Economic Outlook Estimates of UK Output 

Gap (In percent of potential output)

Sources: WEO Database.



5 

domestic production frontier. For example, a positive technological shock originating abroad 

could reduce the costs of imports for the local consumers and producers, as well as raise 

productivity of the latter. A discovery of new oil and gas reserves would have a similar 

effect.  

We apply the open economy SVAR to the U.K. data, and compare the resulting output gap 

estimates to those obtained using alternative methods. The open economy SVAR performs 

better than its comparators along three relevant dimensions. First, it provides output gap 

series that are less sensitive to (externally estimated) transitory shocks (such as a monetary 

policy shock). Second, its real-time output gap estimates are associated with smaller ex-post 

revisions (once new data is added to the end of the sample). Third, it appears to have a 

stronger predictive power for inflation. Nevertheless, there are limits to this methodology 

too. For instance, as pointed out in Blanchard (2018), assuming that all supply shocks have 

permanent effects on output might not be correct. Secondly, even if expanded considerably, 

the number of shocks and the range of economic dynamics an SVAR can reflect, is limited. 

Thus, policymakers should look a range of output gap estimates and use their best judgement 

to assess the cyclical position of the economy.  

The rest of the paper is organized as follows. Section II presents a range of methods 

frequently applied for output gap estimation. Section III introduces the small open economy 

SVAR and discusses the estimation strategy. In Section IV we compare performance of 

output gap estimates obtained through methods described in Sections II–III. Section V 

concludes.  

II.   OVERVIEW OF MODELS FOR OUTPUT GAP ESTIMATION 

In this section, we briefly discuss the approach to potential output identification in three 

types of filtering methods, and in the Blanchard-Quah SVAR. In Section IV we apply these 

four approaches to estimate output gap series for the U.K., and to compare their performance 

to the open-economy SVAR presented in Section III.     

Hodrick-Prescott (HP) filter. The simplest of the filtering methods identifies potential 

output by fitting a “smooth” trend 𝜏𝑡=1
𝑇  into the actual output series 𝑦𝑡=1

𝑇 : 

min
𝜏

(∑(𝑦𝑡 − 𝜏𝑡)2

𝑇

𝑡=1

+ 𝜆 ∑[(𝜏𝑡+1 − 𝜏𝑡 − (𝜏𝑡 − 𝜏𝑡−1)]2

𝑇−1

𝑡=2

) 

The larger the value of the smoothing parameter λ, the higher is the penalty for variations in 

the growth rate of the trend component.6 The key advantage of the HP filter is that it is a 

simple, transparent method that can be applied to any country where GDP data exist. A 

                                                 
6 Hodrick and Prescott (1997) suggest a value of λ=1,600 for quarterly data. Ravn and Uhlig (2002) argue 

instead that λ should vary by the fourth power of the frequency observation ratio, and thus should equal 6.25 for 

annual and 129,600 for monthly frequency, respectively. 
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straightforward generalization of the HP filter is the so-called production function approach, 

where output is typically decomposed (based on an assumed production function) into, for 

example labor, capital and total factor productivity. The individual components are then 

separately filtered using different values of the smoothing parameter and the resulting 

individual trend series are combined to obtain an estimate of potential output. 7 

By construction, the filtering techniques do not distinguish between different types of shocks. 

For instance, a series of positive demand shocks will increase the trend-based estimate of 

potential output in a similar way to a one-time positive productivity shock of a comparable 

magnitude. Coibion et al. (2018) document this fact by showing that potential output 

estimates made by the U.S. public institutions and by leading international organizations—

largely based on filtering methods—respond to both supply and demand shocks.  

Another drawback of using filtering methods (for policymaking purposes) in real time is the 

end-of-sample problem. The statistical approach that is the basis for filtering methods 

assumes that the average deviation of actual output from its potential level should be zero 

over the sample period. Thus, when the latest datapoint shows a weakening in GDP, the filter 

automatically adjusts potential output estimates in the earlier periods downwards—

identifying them as times of above-potential output. The downward correction of the past 

potential output estimates leads to a decline of the estimated output gap in the current period. 

As Krugman (1998) puts it, the filter-based methods exclude the possibility of protracted 

recessions. Orphanides and van Norden (2002) and Marcellino and Musso (2011) show that 

the end-of-sample problem explains a large part of the ex-post revisions of the output gap 

estimates for the U.S. and for the Eurozone, respectively. Both papers also conclude that 

multivariate methods making use of additional information from inflation, unemployment, 

and other variables—described in the next paragraph—do not perform significantly better 

than simpler univariate models.8  

Multivariate Kalman (MVK) filter. Multivariate filtering techniques are a generalization of 

the HP (univariate) filter. In the multivariate filters, variables other than GDP are often 

included—based on relationships established by economic theory—to improve identification 

of potential output: Additional variables are informative if movements in potential output 

affect them differently than the cyclical movements in actual output. At the same time, 

however, it has to be acknowledged that significance of economic relationship could change 

over time. 

In practice, the Phillips curve and the Okun's law are most frequently used to augment a 

univariate filter of GDP series: 

                                                 
7 See also Hamilton (2018) for a detailed discussion of statistical properties of the HP filter. 

8 Additionally, the HP filter has an I(2) component, which can give rise to spurious cycles, whereas most 

macroeconomic series, such as growth, are generally found to be I(1), see Harvey and Jaeger (1993). 
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                                                  �̂�𝑡 = 𝑦𝑡 − �̅�𝑡, 

                                      𝜋𝑡 = 𝜆𝜋𝑡+1 + (1 − 𝜆)𝜋𝑡−1 + 𝛽�̂�𝑡 + 𝜀𝑡
𝜋, 

                                     �̂�𝑡 = 𝜏1�̂�𝑡−1 + 𝜏2�̂�𝑡 + 𝜀𝑡
𝑢, 

                                                 �̂�𝑡 = 𝑢𝑡 − �̅�𝑡, 

where 𝑦𝑡, �̅�𝑡, and �̂�𝑡 denote actual output, potential output, and output gap, respectively; 𝜋𝑡 is 

the inflation rate, and 𝑢𝑡 , �̅�𝑡 , �̂�𝑡 stand for actual unemployment rate, natural unemployment 

rate, and the difference between the two.9  

Multivariate Kalman filter with financial variables (MVKfin). In the aftermath of the 

global financial crisis (GFC) a new strand of literature started looking at the impact of 

financial variables on the business cycle and on potential growth. Borio et al. (2017) argued 

that financial imbalances can explain periods of large output gaps but muted inflationary 

pressures, and that incorporating financial factors into the models of potential output can 

increase the accuracy of estimates. Borio et al. (2017) augmented a univariate Kalman filter 

of GDP series with a range of financial variables aimed to capture financial imbalances10: 

�̂�𝑡 = 𝛼�̂�𝑡−1 + 𝛾1𝑟𝑡 + 𝛾2𝛥𝑐𝑟𝑡 + 𝛾3𝛥ℎ𝑝𝑡, 

where 𝑟𝑡 is the real interest rate, 𝛥𝑐𝑟𝑡 is real credit growth, and 𝛥ℎ𝑝𝑡 is real house price 

growth. 

Blanchard-Quah structural VAR (BQ SVAR). Coibion et al. (2018) argue that structural 

models, such as the SVARs of Blanchard-Quah, and Gali (1999) produce output gap 

estimates that outperform filtering techniques in at least some of the desirable properties, 

such as not responding to the demand shocks.  

The underlying idea of the SVAR approach is to estimate supply shocks using identification 

restrictions and to reconstruct potential output based on these shocks. The SVAR 

specification, as initially proposed by Blanchard-Quah, consists of GDP growth (𝛥𝑦𝑡) and 

unemployment rate (𝑢𝑡): 

[
1 𝐵0,12

𝐵0,21 1
] [

𝛥𝑦𝑡

𝑢𝑡
] = [

𝐴0,1

𝐴0,2
] + [

𝐵1,11 𝐵1,12

𝐵1,21 𝐵1,22
] [

𝛥𝑦𝑡−1

𝑢𝑡−1
] + [

𝐵2,11 𝐵2,12

𝐵2,21 𝐵2,22
] [

𝛥𝑦𝑡−2

𝑢𝑡−2
] + [

𝜀𝑡
𝑠

𝜀𝑡
𝑑], 

where 𝐴0 is a vector of constants, and 𝐵𝑗 is a 2x2 matrix of coefficients for lags j=0,1,2.11 

The structural shocks 𝜀𝑡
𝑠  and 𝜀𝑡

𝑑  are assumed to be uncorrelated, and only the former can have 

                                                 
9 See Appendix for a full specification of the MVK filter applied to the U.K. data. 

10 See Appendix for a full specification of the MVKfin filter used in this paper. 

11 Blanchard-Quah consider a SVAR with 2 lags. 
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permanent effects on GDP. This is achieved through a zero restriction on the long-term 

response of output to (demand) shocks 𝜀𝑡
𝑑. Potential output path is backed out from the 

historical decomposition of shocks: it is equal to the sum of the supply shocks over time, i.e.,  

𝑦�̅� = 𝑦0 + ∑ 𝜀𝑡−𝑖
𝑠𝑡

𝑖=1 , where 𝑦0 is the log of real GDP in the initial period. 

As already mentioned, so far SVARs have not been frequently used to estimate the output 

gap. One reason could be that they are not sophisticated enough for the purpose. In particular, 

the benchmark Blanchard-Quah is a highly restrictive model that only allows two types of 

shocks. Especially in the context of small open economies, this is likely insufficient to 

properly identify all shocks that affect the economy in distinct ways. 

Estimating output gap for the U.K. Figure 2 presents estimates of the U.K. output gap 

obtained using the four methods described in this section: three filtering techniques and the 

BQ SVAR. For the HP filter, a smoothing parameter of λ=1,600 was used. Specification and 

estimation details for the MVK, MVKfin and the BQ SVAR are described in the Appendix. 

Although often different in levels, output gap series from the filtering methods present very 

similar dynamics over time, with a sharp decline during the GFC, and closing of a negative 

output gap around 2013–2014 (2010–2011 for the MVK). Looking at the years in the run-up 

to the GFC, for which there is strong consensus that the U.K. economy was operating above 

its potential, the simple HP filter points to a positive output gap starting already in 2005, 

while the MVK filter–starting in mid-2006. Instead, the MVKfin filter suggests that the U.K. 

economy was operating above potential uninterrupted since the late 1990s.  

Output gap series estimated using the BQ SVAR show similar dynamics, with the pre-crisis 

output gap turning positive (but somewhat smaller in absolute terms compared to the filtering 

techniques) around mid-2006, followed by a return of output to its potential level by 2014, 

positive output gaps between 2014–2017, and a negative output gap most recently.  

Figure 2. Output Gap Estimates for the U.K. (1982–2019) 
 

  
Notes: Figure 2 presents output gap estimates from the four models presented in Section II. The HP filter, BQ SVAR, and MVK 

filter models were estimated on the sample 1982: Q1–2019: Q1. The MVKfin model was estimated on a shorter sample,  

1991: Q1–2019: Q1, due to unavailability of data on credit to private sector for earlier years. 
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Overall, three out of four methods suggest that U.K. output returned back to its potential 

level relatively quickly after the GFC: the MVK filter shows a positive output gap briefly 

around 2010, while the output gaps obtained using the HP filter and the BQ SVAR turn 

positive around 2014. This is somewhat at odds with the common perception of a prolonged 

period of output operating below its potential after the GFC—and we will return to this issue 

in the later sections. 

III.   SMALL OPEN ECONOMY SVAR  

Next, we consider a “small open economy” SVAR. The purpose is to investigate whether a 

sufficiently rich and properly identified SVAR can overcome the limitations of the 

benchmark BQ SVAR and yield output gap estimates with better properties. Crucially, in our 

small open economy SVAR we allow both domestic and global shocks to have permanent 

effects on output. Examples of persistent global shocks that can affect domestic potential 

output include a positive technology shock that reduces costs of imports for local consumers 

and producers, and raises productivity of the latter; as well as a discovery of new oil and gas 

reserves abroad. Separately, with mobile capital, changes in relative factor prices abroad can 

change relative factor intensity, and so production in the domestic economy. 

The SVAR we consider includes six variables: U.K. real GDP growth, U.K. CPI inflation at 

constant tax, the U.K. shadow interest rate, changes in the Sterling exchange rate index, U.K. 

import price inflation, and changes in foreign export prices (see Appendix Table A.1 for data 

sources and a description of variables).  Following Forbes et al. (2018), the six structural 

shocks are identified via a combination of zero short-run and long-run restrictions, as well as 

sign restrictions (Table 1):  

• Only domestic supply shocks and persistent global shocks are assumed to affect the 

level of output in the long run. Persistent global shocks incorporate any foreign 

shocks with a lasting effect on U.K. output, as well as any (foreign or domestic) 

demand shocks with a permanent impact on U.K. output (e.g., related to secular 

stagnation).12 

• Global shocks are distinguished from domestic shocks by assuming that domestic 

developments do not affect world export prices neither on impact nor in the long run. 

On the other hand, global shocks may impact both world export prices and the U.K. 

economy.  

                                                 
12 Blanchard et al. (2015) find that recessions triggered by demand shocks are frequently followed by lower 

output or even lower output growth and can thus have permanent effects. In our identification approach we 

allow global shocks to have a permanent effect on global output, but do not impose it. As a result, domestic 

demand shocks with a permanent effect on domestic output are nested in this specification. Separately, as a 

robustness check we also run a SVAR where we include zero restrictions only (i.e., we do not impose sign 

restrictions). There, the domestic permanent shock can reflect both domestic supply shocks and domestic 

demand shocks with permanent impact on domestic output (see Section IV.A for details). 
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• In addition, we impose several sign restrictions widely applied in the literature (Fry 

and Pagan, 2011). For example, the domestic supply shock is associated with a 

negative correlation between GDP and CPI in the first 2 periods. This assumption 

ensures that the domestic shocks we identify as leading to long-lasting changes in 

output are in fact supply-driven. Furthermore, we impose a positive correlation 

between a domestic demand shock and i) GDP, ii) CPI, and iii) exchange rate (i.e., a 

positive demand shock leads to appreciation of the domestic exchange rate). 

Monetary policy shocks are identified such that a lower interest rate is associated with 

a rise in GDP and CPI, and depreciation of the nominal exchange rate. It is also 

assumed that an exogenous exchange rate appreciation implies a fall in CPI. 

The model includes two lags of each variable13 (following Forbes et al. 2018) and is 

estimated over 1982: Q1 to 2019: Q1 using Bayesian methods with Minnesota-style priors, as 

in Binning (2013). The standard errors, percentiles and confidence intervals reported are 

based on a Gibbs sample procedure, from which we save and use the final 1000 repetitions.  

Table 1. Identification Restrictions 

 

 

Figure A.1 in the Appendix presents impulse responses to each type of shock. The results are 

broadly consistent with the literature. A loosening of monetary policy by 100 basis points 

causes output to fall by about 0.5 percent, consistent with Burgess et al. (2013). An exchange 

rate shock that leads to sterling appreciation of 1 percent causes import prices to fall by 0.5 

percent, in line with findings in Forbes et al. (2018). Moreover, a positive domestic supply 

shock causes output to increase permanently, while a positive demand shock leads only to a 

temporary improvement in output. Finally, the price level falls following a positive domestic 

supply shock. These properties of the impulse responses of domestic variables to domestic 

supply and demand shocks broadly carry over to persistent and temporary global shocks, 

respectively.  

                                                 
13 The estimated output gap remains similar if more lags are used. Results for estimated output gaps with 4, 6 or 

8 lags are available upon request. 

UK supply 

shock

UK demand 

shock

UK monetary 

policy shock 

Exo. Ex rate 

shock

Persistent global 

shock

Transitory 

global shock

UK GDP growth + + -

UK CPI - + - -

UK interest rate + + -

UK nominal ERI + + +

UK import prices

World (ex-UK) prices 0 0 0 0 + +

UK GDP growth 0 0 0 0

UK CPI

UK interest rate

UK nominal ERI

UK import prices

World (ex-UK) prices 0 0 0 0

Long-run restrictions

Short-run restrictions

Note: A '+' ('-') sign indicates that the impulse response of the varible in equation is restricted to be positive (negative) in the 

quarter the shock considered hits and in the following quarter. A '0' denotes that the response of the varaible in question is 

restrcited to be zero (either on impact or in the long run)
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Figure 3 plots the historical decomposition of GDP growth. It shows that domestic and 

global supply shocks have been key drivers of the sharp decline in growth during the GFC, 

and that the U.K. economy has been hit with a series of negative domestic supply shocks 

after the Brexit referendum. Figure 3 also shows time series of the U.K. output gap derived 

using potential output estimates from the small open economy SVAR. The latter is calculated 

by accumulating past domestic supply and persistent global shocks. The estimates suggest 

that the U.K. economy experienced two periods of considerable overheating—in the late 

1980s and prior to the GFC—both followed by strong declines in growth.  

 

Interestingly, after 2010 the output gap estimated based on the open economy SVAR displays 

dynamics somewhat similar to the simple BQ SVAR and the MVK filter. In particular, 

between 2010: Q2–2012: Q4 the open economy SVAR suggests that the output gap became 

positive in 2010: Q2, peaked in 2011: Q2, and turned negative in 2013: Q2. The multivariate 

Kalman filter estimates also suggest output gap turned positive in 2010: Q2, although by less. 

However, the open economy SVAR indicates a negative output gap between 2014: Q3–2016: 

Q3, while other methods suggest closed or positive output gaps during the same period. Also, 

all other methods suggest the output gap to be turning negative after the Brexit referendum in 

2016: Q3, but the open economy SVAR points to a moderately positive output gap until only 

very recently. 

What were the macroeconomic conditions like in these two episodes? In between  

2010: Q2–2012: Q4, headline growth rebounded strongly from an average of minus 4 percent 

year-on-year per quarter in 2009 to an average of 2 percent between 2010: Q2 and 2011: Q4. 

Afterwards, the economy slowed. At the same time, domestic inflation (measured by core 

services inflation) and wage growth have both accelerated compared to the growth rates in 

the previous four quarters. While all these indicators point towards a positive output gap in 

2010: Q2–2012: Q4, unemployment remained stubbornly high throughout the period, at 

Figure 3. Small Open Economy SVAR for the U.K. 

 
Notes: Figure 3 presents GDP growth decomposition and output gap estimates from the small open economy SVAR 

described in Section III.  
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around 8 percent. Between 2014: Q4–2016: Q3 growth accelerated, reaching an average rate 

of 2.8 percent. Unemployment declined, and wage growth picked up further. Yet, core 

services inflation as well as GDP deflator decelerated, which suggests the U.K. economy was 

experiencing a series of positive supply shocks.  

Which method should we believe when assessing the position of the U.K. economy on the 

business cycle after the GFC? Instead of focusing on the level of the output gap estimates, we 

next look at the change in the different output gap measures. Intuitively, we expect a positive 

change in output gap should be associated with an acceleration in inflation or wage growth. 

As illustrated in Table 2 below, the MVK filter, the BQ SVAR and the open economy SVAR 

all suggest output gap declined between 2011: Q2–2013: Q3. This is consistent with falling 

core services inflation and wage growth, but inconsistent with accelerating GDP deflator. 

Over the period of 2014: Q3–2015: Q3, the three indicators of price pressures change in 

different directions, making it difficult to infer about output gap dynamics. However, all 

three inflation indicators suggest an improving output gap between 2016: Q2 and 2018: Q2, 

which is consistent only with the open economy SVAR.  

Overall, none of the methods considered gives an output gap estimate that is consistent with 

all the post-GFC price dynamics. At the same time, the open economy VAR seems to 

perform marginally better. In the next section we turn to more formal tests to assess the 

performance of the output gap measures.  

Table 2. Changes in Output Gaps and Inflation  

(In percentage points) 

 
            Source: IMF staff calculations. 

IV.   ALTERNATIVE OUTPUT GAP ESTIMATES: WHICH ONE TO CHOOSE? 

In the last two sections we presented five alternative methods for constructing output gap 

estimates. In this section we compare their performance using three tests. First, we test the 

real-time properties of the output gap estimates. Secondly, following Coibion et al (2018), we 

check how real-time potential output estimates from the five models respond to supply versus 

demand shocks. Finally, we test which of the five output gaps performs better in forecasting 

inflation.  

Changes in (ppt) 2011Q2-2013Q3 2014Q3-2015Q3 2016Q2-2018Q3

GDP deflator 0.59 -1.36 1.84

Core services inflation -0.34 -0.09 0.18

Wage growth -0.95 1.37 1.07

Changes in estimated output gaps

HP filter + unchanged -

MVK - unchanged -

MVKfin + unchanged -

BQ SVAR - unchanged -

Small open economy SVAR - - +
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A.   Real-time Performance 

Following Orphanides and van Norden (2002) we check how output gap estimates derived 

using different methods perform using real-time data. That is, for a given year and quarter in 

our sample, we estimate each of the five models using only the data available as of that point 

in time.14 As seen in Figure 1, ex-post revisions of output gap estimates can be considerable. 

A desirable feature of an output gap model would be to have minimal ex-post revisions to 

real-time estimates.  

In our exercise, we use Bank of England’s “GDP Real Time Database”, which contains 

monthly vintages of key macroeconomic variables published since January 1990 until August 

2016 (as of time of writing this paper). Each vintage shows data available on the last working 

day of that month. We use the real-time GDP series, and—for the small open economy 

SVAR—also the real-time import price deflator series.  

 

We estimate the real-time output gap series through an iterative procedure. That is, for each 

quarter between 2005: Q1 and 2016: Q2 we run a separate regression, using only the data 

from 1982: Q1 up until the given year and quarter, while replacing the GDP series (and the 

import price deflator) with the real-time GDP (and the import price deflator) series from the 

Bank of England’s database available in the middle month of that quarter. The first iteration 

is based on data from 1982: Q1 to 2005: Q1 (in order to have sufficiently many observations 

in regressions). 

 

 
 

Figures 4–5 plot, for each of the models described in Sections II-III, the real-time output gap 

estimates against the output gap series obtained based on the full sample. Given that our real-

time estimates start in 2005 only, we focus on the performance of the five models in 

predicting positive output gaps before the GFC. As seen in Figure 4, the three filtering-based 

methods fail to signal, in real time, an overheating of the U.K. economy in that period.   

 

                                                 
14 For HP filter approach, to mitigate the end-of-sample problem, we “extended” the real GDP series by 8 

quarters using the last available year-on-year growth rate.   

Data used to estimate 
OG for 1982Q1 – 2005Q1

Data used to estimate 
OG in 2005 Q2

1982 Q1 2005 Q1

2005 Q2
Data vintage 2005 Feb

Data vintage 2005 Apr

2005 Q11982 Q1
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We then run additional regressions to verify whether the ex-post revisions to the output gap 

estimates are due to the revisions in GDP 

data before and during the GFC.15 The 

results confirm the findings of Orphanides 

and van Norden (2002) and Marcellino and 

Musso (2011) that the poor performance of 

the filtering methods reflects the end-of-

sample problem highlighted in Section II 

rather than consecutive data updates. 

Instead, the BQ SVAR signals a slightly 

positive output gap starting in 2006: Q1. At 

the same time, the real-time estimates 

suggest a positive and quite large output 

gap between 2014 and 2016, which is 

difficult to reconcile with the relatively small size of the positive output gap before the GFC.  

 

Figure 4. Real-time U.K. Output Gap Estimates from Filter-based and BQ SVAR 

Models 

 
 

 
Notes: Figure 4 presents output gap estimates derived using real-time data (blue lines) and based on the full sample (1982: Q1–

2019: Q1, and 1991: Q1–2019: Q1 for the MVKfin; red dashed lines) for each of the models presented in Section II. 

                                                 
15 That is, we run the regressions through the iterative process described before but using GDP growth data as 

available in 2016Q2 instead of the real-time time series. 
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Moving to the small open economy SVAR (Figure 5), it is easy to notice that the real-time 

output gap estimates follow the full sample estimates more closely compared to the previous 

four methods. Additionally, the extended SVAR signals opening of a positive output gap 

already in 2004: Q1. The real-time output gap reaches 1 percent around 2008: Q1, in line 

with the full-sample estimate.  
 

Figure 5. Real-time Output Gap Estimates: Extended SVAR  

(In percent of potential output) 

 
Notes: Figure 5 presents output gap estimates derived using real-time data (blue lines) and based on the full sample  

(1982: Q1–2019: Q1, red dashed lines) for the small open economy SVAR model presented in Section III. 

 

B.   Responses to Shocks 

In the second test, we check how the real-time potential output estimates respond to different 

types of shocks. We follow a similar exercise conducted by Coibion et al (2018), who show 

that the potential growth estimates of leading international institutions are procyclical, i.e., 

respond positively to transitory shocks. To conduct the exercise, we rely on time series of 

shocks that are either drawn from other authors, or computed based on existing literature: 
 

• Global permanent shocks. For global technology shocks, we use Beaudry and 

Portier (2006) U.S. TFP news shocks based on short-run and long-run restrictions, as 

updated by Valerie Ramey.16  

• Global temporary shocks. We identify U.S. monetary policy shocks using high 

frequency surprises around policy announcements as external instruments as in 

Gertler and Karadi (2015). For global fiscal shocks we use the U.S. military spending 

news shocks of Ramey (2016). 

• Domestic shocks. We derive domestic fiscal shocks following Blanchard and Perotti 

(2002) SVAR specification and identification strategy. To obtain U.K. monetary 

policy shocks we use a VAR with GDP growth, unemployment, inflation and the 

interest rate (with four lags) and apply a Cholesky decomposition on this ordering. 

Finally, for productivity shocks we use residuals from a regression of output per 

worker on its lags.  

                                                 
16 Available here: https://econweb.ucsd.edu/~vramey/research.html#data 
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To study effects of these economic shocks on estimates of potential output, for each shock s, 

we regress the current (natural logarithm of) potential growth estimate on current and past 

values of the shock:  

∆�̅�𝑡 = 𝛼𝑠 + ∑ 𝜑𝑘
𝑠 𝜀𝑡−𝑘

𝑠

𝐾

𝑘=0

+ 𝜁𝑡
𝑠 

 

Due to the small number of observations, we limit the specification to 6 lags (K=6), and we 

consider one shock at a time; we also use Newey-West standard errors. We construct impulse 

responses (IRFs) of potential output by summing coefficients 𝜑𝑡−𝑘
𝑠  up to a given horizon 

(e.g., 𝜑0
𝑠 for current period, 𝜑0

𝑠 + 𝜑1
𝑠 for one period after a shock, etc.).  

 

Figures 6 and 7 show the impulse responses of potential output estimates using the five 

models to a U.S. productivity (Figure 6) and a U.S. fiscal shock (Figure 7). All models yield 

the expected—positive and significant—response of potential output to a positive global 

productivity shock. However, for a positive U.S. fiscal shock—an example of a transitory 

global shock—potential output responds in line with intuition only in the case of the two 

SVAR models. The two multivariate filters yield a statistically significant increase in 

potential growth after a U.S. fiscal shock, while for the HP filter the response of potential 

output is actually negative (and marginally statistically significant) after 6 quarters. Instead, 

potential output from the small open economy SVAR model initially increases after a 

positive transitory global shock, but the response ceases to be statistically significant already 

after 3 quarters.  

 

Figure 6. Responses of Real-time Potential Output Estimates a U.S. Productivity Shock 

 

 
Source: IMF staff calculations. 

Notes: Figure 6 shows impulse responses of potential output estimated using the models from Sections II–III to a one standard 

deviation positive U.S. productivity shock, obtained using the Beaudry Portier (2006) short-run restrictions. Red dashed lines 

show 66 percent confidence bands around the estimates. 
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Figure 7. Responses of Real-time Potential Output Estimates a U.S. Fiscal Shock 

 

 
Source: IMF staff calculations. 

Notes: Figure 7 shows impulse responses of potential output estimated using the models from Sections II-III to a one standard 

deviation positive U.S. fiscal shock identified as in Ramey (2016). Red dashed lines show 66 percent confidence bands around 

the estimates. 

 

Figure 8 summarizes the qualitative assessment of the IRF properties for the five model and 

all six types of shocks we consider compared to their “expected properties.” All remaining 

IRFs are presented in Figures A.2–A.5 in the Appendix. The SVAR-based potential output 

estimates tend to perform relatively well, although for the BQ SVAR the estimates respond 

almost significantly to a U.S. fiscal shock and insignificantly to a U.K. productivity shock 

over the medium run.  

 

Figure 8. Shock Responses of Potential Output Estimates: A Summary 
 

 
Source: IMF staff calculations. 

Notes: Figure 8 summarizes the assessment of the IRF properties of potential output estimates from the five models described in 

Sections II and III (rows), and six types of shocks (columns). Dark green color marks IRFs that are in line with economic 

intuition both in the short and in the medium term. Light green color marks the cases where IRFs are in line with intuition only 

in the medium term. If the IRFs are counterintuitive in the medium term they are marked with dark red color; if the IRFs in the 

medium term are a boarder-line case, they are marked with bright red. 
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Filter-based estimates show more counter-intuitive results. In particular, HP filter-based 

potential output does not seem to respond significantly to a U.K. productivity shock, while 

potential output from the MVKfin model responds positively to a U.K. monetary policy 

shock. Overall, potential output estimates from the small open economy VAR have the most 

intuitive impulse responses to the six shocks considered.  

 

C.   Inflation Forecasting 

Another desirable feature of a good output gap estimate would be to have a strong 

explanatory power for predicting inflation. To test this property, we estimate the following 

Phillips curve based on Blanchard (2016): 

 

𝜋𝑡 = 𝜃�̂�𝑡 + 𝜆𝜋𝑡
𝑒 + (1 − 𝜆)𝜋𝑡−1

∗ + µ𝜋𝑚,𝑡 + 𝜀𝑡,            (1) 

𝜋𝑡
𝑒 = 𝛼 + 𝛽𝜋𝑡−1

∗ + 𝜂𝑡, 

 

where 𝜋𝑡 is headline consumer price inflation (defined as quarterly inflation, annualized), �̂�𝑡 

is the output gap, 𝜋𝑡
𝑒  denotes long-term inflation expectations, 𝜋𝑡−1

∗  is the avearge of the last 

four quarterly inflation rates, and 𝜋𝑚,𝑡 is import price inflation relative to headline inflation.  

 

We perform two tests. First, we check in-sample properties of the five output gap measures 

from Sections II–III: For this purpose, we estimate the above Phillips curve for the period of 

1993: Q1 to 2016: Q2.17 In the second test, we calculate the squared errors from one-quarter 

ahead out-of-sample inflation forecast through an iterative procedure. That is, for each 

quarter between 2006: Q1 and 2016: Q1 we estimate a separate Philips curve, using real time 

output gap estimates and only the data from 1982: Q1 up until the given year and quarter.  

 

Table 3 shows results of the first test. All five estimated output gaps display the right sign 

and are statically significant except the MVK filter-based estimate. R-squared values indicate 

that all models have similar properties in terms of goodness-of-fit, with the small open 

economy SVAR slightly outperforming other methods. Table 4 compares the sum of squared 

errors of the projected inflation relative to the realized inflation. The SVAR-based estimates 

produce the smallest forecast error, although it is very close to the estimates based on the 

MVK filter. However, it is important to note that a small error term under the MVK approach 

should be expected by design, as the Phillips curve is embedded in the estimation approach.  

On net, the output gap estimates from the small open economy SVAR appears to have the 

smallest error terms in forecasting inflation, although the differences with other methods may 

not be statistically significant.  

 

 

 

 

 

 

                                                 
17 The U.K. adapted inflation targeting framework in October 1992, thus we started the estimation from 1993. 
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Table 3. Estimated Phillips Curve 

 
Source: IMF staff calculations. 

Notes: Table 3 shows results of regression (1) when using output gap estimates from the five models in Sections II–III as a 

measure of �̂�𝑡 (columns 1–5).  

 

Table 4. Average of Squared Errors of Out-of-Sample Projected Inflation over  

2006: Q1–2016: Q2 

 

 

Source: IMF staff calculations. 

Notes: Table 4 shows the average of squared error terms for out-of-sample inflation projections (in percentage points) from 

the five models from Sections II–III, obtained in an iterative procedure described in Section IV.C.  

 

D.   Robustness 

We run a series of robustness checks to verify whether our results are not driven by a 

selection of a particular specification of the five methods. To mitigate the end-of-sample 

problem present in the three filtering approaches, we extend the sample by one year with 

Consensus forecasts of GDP and—in the case of the MVK and the MVKfin—of inflation. 

We also test the sensitivity of the MVK output gap estimates to choosing an alternative set of 

parameter priors (e.g., lower or higher value of the parameter β, different values of the steady 

state unemployment and potential output growth) and consider a specification with detrended 

unemployment series. These alternative specifications to not yield results considerably 

different from the baseline specifications. In the case of the BQ SVAR, the results are robust 

to using a different measure of unemployment that accounts for underemployment. For the 

small open economy SVAR, we estimate the model when not imposing any sign 

VARIABLES (1) (2) (3) (4) (5)

pie (-1) 0.37*** 0.36*** 0.34*** 0.34*** 0.20**

(0.10) (0.10) (0.10) (0.09) (0.10)

pie (-2) 0.16 0.16 0.15 0.15 0.08

(0.10) (0.10) (0.10) (0.10) (0.10)

pie (-3) 0.191* 0.204** 0.181* 0.201** 0.171*

(0.10) (0.10) (0.10) (0.10) (0.10)

pie (-4) 0.104 0.125 0.0676 0.122 0.131

(0.10) (0.10) (0.10) (0.09) (0.09)

imported pie/ pie 0.0008*** 0.0008*** 0.0007** 0.0008*** 0.0008***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

HP fi lter 0.05*

(0.03)

MVK 0.10**

(0.04)

MVK fin 0.01

(0.03)

BQ SVAR 0.07**

(0.03)

Small open 0.40***

economy VAR (0.09)

Constant 0.0006 0.0006 0.001 0.0006 0.001**

(0.0006) (0.0006) (0.0007) (0.0006) (0.0006)

Observations 105 105 97 105 105

R-squared 0.56 0.57 0.41 0.57 0.62

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

CPI inflation (qoq percent change)

HP filter MVK MVK fin BQ SVAR
Small open 

economy SVAR

0.27 0.26 0.28 0.24 0.24
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restrictions—again, the results are not much affected. Finally, all five methods do not yield 

considerably different output gap estimates when the estimation sample starts in 1993: Q1, 

i.e., after a stabilization of inflation at a new, lower level.18  

 

V.   CONCLUSIONS 

In this paper we analyze the properties of different output gap models using data for the U.K. 

We also consider a small open economy SVAR for the purposes of estimating potential 

output and output gap. This model identifies both domestic and global supply shocks that 

have a permanent impact on the domestic output, and potential output is calculated as the 

sum of the past domestic and global supply shocks.  

 

We confirm the finding in Coibion et al (2018) that filtering-based models produce potential 

output estimates that respond to transitory shocks in a procyclical way. Instead, models that 

distinguish between different types of shocks (i.e., SVAR-based) yield potential output 

estimates with better impulse response properties. Overall, we find that the small open 

economy SVAR performs best among all the models we consider and is characterized by the 

best real-time properties of output gap estimates.  

 

Coming back to the question posed in the title of this paper “Are output gap estimates worth 

economists’ time?”  Our results suggest that the answer is yes. However, proper care needs to 

be taken when identifying all relevant persistent shocks. It is also crucial to verify a model’s 

performance against a set of established tests, where a good output gap model should be 

characterized by minimal ex-post revisions to real-time estimates since they matter the most 

for policy-making. At the same time, it has to be borne it mind that there is no perfect 

measure of the output gap, and thus looking at a broader range of indicators might be the best 

strategy for getting a more accurate picture of the cyclical position of the economy. 

 

 

  

                                                 
18 These results are available upon request.  



21 

References 

Beaudry, P. and F. Portier, 2006. “Stock prices, news, and economic fluctuations,” The American 

Economic Review 96 (4), 1293–1307. 

Binning, A. (2013) “Unidentified SVAR Models: A Framework for Combining Short and Long-

run Restrictions with Sign-restrictions”, Norges Bank Monetary Policy Working Paper, No.14. 

Blagrave, P., Garcia-Santos, R., Laxton, D. and F. Zhang, 2015, “A Simple Multivariate Filter 

for Estimating Potential Output,” IMF Working Paper WP/15/79. 

Blanchard, O. and R. Perotti, 2002. “An Empirical Characterization of the Dynamic Effects of 

Changes in Government Spending and Taxes on Output,” Quarterly Journal of Economics 117 

(4), pp. 1329-1368. 

Blanchard, O. and D. Quah, 1989. “The Dynamic Effects of Demand and Supply Disturbances,” 

American Economic Review 79(4), pp. 655-673. 

Blanchard, O., 2016. “The U.K. Phillips Curve: Back to the 60s?” Peterson Institute for 

International Economics Policy Brief Number PB16-1. 

Blanchard, O., 2018. “Olivier Blanchard provides a brief reaction to ‘Real-Time Estimates of 

Potential GDP,’ by Coibion, Gorodnichenko, and Ulate,” Center on Budget and Policy Priorities, 

January. 

Blanchard, O., G. Lorenzoni and J.-P. L'Huillier (2017), “Short-Run Effects of Lower 

Productivity Growth: A Twist on the Secular Stagnation Hypothesis”, NBER Working Paper No 

23160. 

Borio, C., 2014. “The Financial Cycle and Macroeconomics: What Have We Learnt?” Journal of 

Banking and Finance (45), pp. 182-198.  

Borio, C., Disyata, P. and M. Juselius, 2017. “Re-thinking potential output: embedding 

information about the financial cycle,” Oxford Economic Papers (69), pp. 655-77. 

Burgess, S., Fernandez-Corugedo, E., Groth, C., Harrison, R., Monti, F., Theodoridis, K. and M. 

Waldron, 2013. “The Bank of England’s forecasting platform: COMPASS, MAPS, EASE and 

the suit of models,” Bank of England Working Paper No. 471 

Cerra, V. and S. Saxena, 2017. “Booms, Crises, and Recoveries: A New Paradigm of the 

Business Cycle and Its Policy Implications,” IMF Working Paper No. 17/250, November.  

Cochrane, J., 1994. “Permanent and Transitory Components of GNP and Stock Prices,” Quarterly 

Journal of Economics, 109(1), pp. 241-265. 

Coibion, O., Gorodnichenko, Y. and M. Ulate, 2018. “The Cyclical Sensitivity in Estimates of 

Potential Output”, Brookings Papers on Economic Activity, Economic Studies Program, The 

Brookings Institution, vol. 49(2 (Fall)), pp. 343-441. 

Forbes, K., Hjortsoe, I. and T. Nenova, 2018. “The shocks matter: Improving our estimates of 

exchange rate pass-through,” Journal of International Economics 114, pp. 255-275. 



22 

Fry, R. and A. Pagan, 2011. “Sign Restrictions in Structural Vector Autoregressions: A Critical 

Review.” Journal of Economic Literature, 49 (4): 938-60. 

Gali, J., 1999. “Technology, Employment, and the Business Cycle: Do Technology Shocks 

Explain Aggregate Fluctuations?” American Economic Review 89(1), pp. 249-271. 

Gertler, M., and P. Karadi, 2015. “Monetary Policy Surprises, Credit Costs, and Economic 

Activity.” American Economic Journal: Macroeconomics 7 (1), pp. 44-76. 

Hamilton, J.D., 2018. “Why You Should Never Use the Hodrick-Prescott Filter,” The Review of 

Economics and Statistics, 100(5), pp. 831-843. 

Hodrick, R. and E. Prescott, 1997. “Postwar U.S. Business Cycles: An Empirical Investigation”. 

Journal of Money, Credit, and Banking, 29 (1), pp. 1-16. 

Jarocinski, M. and M. Lenza, 2018. “An inflation-predicting measure of the output gap in the 

euro area”, Journal of Money, Credit and Banking vol 50, issue 6. 

Kamber, G. Morley, J. and B. Wong, 2018. “Intuitive and Reliable Estimates of the Output Gap 

from a Beveridge-Nelson Filter,” The Review of Economics and Statistics, vol. 100(3), pp. 550-

566, July. 

Kangur, A., Kirabaeva, K., Natal, J-M. and S. Voigts, 2019. “How Informative Are Real Time 

Output Gap Estimates in Europe?”, IMF Working Paper No. 19/200. 

Marcellino, M. and A. Musso, 2011. “The reliability of real-time estimates of the Euro-Area 

output gap”, Economic Modelling 28, pp. 1842-1856. 

Melolinna, M., and M. Tóth, 2016. “Output gaps, inflation and financial cycles in the UK,” Bank 

of England, Staff Working Papers No. 585. 

Nelson, E. and Nikolov, K., 2003. “UK inflation in the 1970s and 1980s: the role of output gap 

mismeasurement,” Journal of Economics and Business, 55(4), pp. 353-370. 

Office for Budget Responsibility. “Fiscal risks report” July 2019. 

Orphanides, A., 2001. “Monetary policy rules based on real-time data.” American Economic 

Review, 91(4), pp. 964-985. 

Orphanides, A., 2003. “The Quest for Prosperity without Inflation,” Journal of Monetary 

Economics, 50(3), pp. 633-663. 

Orphanides, A. and S. van Norden, 2002. “The Unreliability of Output-Gap Estimates in Real 

Time,” The Review of Economics and Statistics, 84(4), pp. 569-583. 

Rabanal, P., and D. Sandri, 2016. “Financial Conditions and Real-Time Output Gaps,” Mimeo, 

International Monetary Fund. 

Ravn, M. and H. Uhlig, 2002. “On adjusting the Hodrick–Prescott filter for the frequency of 

observations”, Review of Economics and Statistics. 84 (2), p. 371.  



23 

Appendix 

Data 

 

Table A.1. Data Sources and Variable Definitions 

 

Variable Source Comment 

real GDP ONS  

rate of unemployment ONS  

consumer price index ONS At constant tax 

interest rate Haver  

Based on shadow rate for 

1995:Q1-2019:Q1. Prior to 

1995:Q1, the series are based 

on the Bank rate 

nominal exchange rate index Haver, Bank of England 
(narrow) Effective exchange 

rate 

import prices WEO 
U.K. imports of goods and 

services price deflator 

export prices WEO 
World CPI weighted by U.K. 

export share 

 

Multivariate Kalman Filter: Specification and Estimation 

 

We follow Blagrave et al. (2015), where the following system of equations is used for the filtering 

exercise (𝑥𝑡 denotes deviation of variable 𝑥𝑡 from its potential level �̅�𝑡) 

 

�̂�𝑡 = 𝑦𝑡 − �̅�𝑡,            (C.1) 

�̅�𝑡 = �̅�𝑡−1 + 𝑔𝑡 + 𝜀𝑡
�̅�

,            (C.2) 

𝑔𝑡 = 𝜃𝑔𝑠𝑠 + (1 − 𝜃)𝑔𝑡−1 + 𝜀𝑡
𝑔

,       (C.3) 

�̂�𝑡 = 𝜑�̂�𝑡−1 + 𝜀𝑡
�̂�

,            (C.4) 

where  𝑦𝑡 stands for log real GDP, �̅�𝑡 is the log of unobservable potential GDP that grows at a 

potential growth rate 𝑔𝑡 (with  𝑔𝑠𝑠 denoting growth rate in steady-state). The 𝜀𝑡  terms denote i.i.d, 

normally distributed errors.   

𝜋𝑡 = 𝜆𝜋𝑡+1 + (1 − 𝜆)𝜋𝑡−1 + 𝛽�̂�𝑡 + 𝜀𝑡
𝜋,   (C.5) 

�̂�𝑡 = 𝜏1�̂�𝑡 + 𝜏2�̂�𝑡−1 + 𝜀𝑡
𝑢,         (C.6) 

�̂�𝑡 = 𝑢𝑡 − �̅�𝑡,      (C.7) 

�̅�𝑡 = 𝜏4(�̅�𝑠𝑠 + (1 − 𝜏4)�̅�𝑡−1) + 𝑔𝑡
𝑢 + 𝜀𝑡

�̅�,         (C.8) 

 

𝑔𝑡
𝑢 = (1 − 𝜏3)𝑔𝑡−1

𝑢 + 𝜀𝑡
𝑔𝑢

,      (C.9) 

https://www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy/comparison-of-international-monetary-policy-measures
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where 𝜋𝑡 is the inflation rate, 𝑢𝑡 stands for the unemployment rate, and 𝑔𝑡
𝑢 is the trend unemployment 

rate (this specification allows for persistent deviations of the equilibrium value of the unemployment 

rate �̅�𝑡 from its steady-state value �̅�𝑠𝑠). Parameter values and the variances of shock terms for these 

equations are maximum likelihood estimates obtained using Bayesian estimation. In particular, we set 

the priors at the posteriors estimated for the U.K. in Blagrave et al. (2015). Table below shows the 

priors and posteriors of the estimated parameters, based on the full sample, i.e., 1982: Q1–2019: Q1. 

 

parameter prior posterior 

 λ 0.25 0.23 

β 0.15 0.1 

φ 0.7 0.72 

θ 0.2 0.1 

τ1 0.4 0.33 

τ2 0.4 0.48 

τ3 0.1 0.09 

τ4 0.1 0.09 

gss 1.6 
 

u̅ss 4.5 
 

 

Figure below shows the behavior of the output gap, potential growth rate, and the equilibrium 

unemployment rate (NAIRU), estimated using the multivariate Kalman filter. 

 

 
 

 

Multivariate Filter with Financial Variables: Specification and Estimation 

 

The MVF model is based on Berger et al. (2015). Potential output is estimated by decomposing 

observed GDP time series into two unobservable components: the cycle and the trend GDP.  

 

𝑦𝑡 = �̅�𝑡 + �̂�𝑡 

∆2�̅�𝑡 = 𝜀�̅�  

𝜆 ≡
𝑉𝑎𝑟(�̂�𝑡)

𝑉𝑎𝑟(𝜀�̅� )
 

Where 𝑦𝑡 and �̅�𝑡 represent logs of observed and potential output, respectively, and �̂�𝑡  is the cyclical 

component (i.e., output gap). Similar to the HP filter, the model is estimated with a constraint on the 

variance ratio 𝜆 that is set at 1600 which implies that potential output will capture output movements 

at frequencies above 8 years. In addition, the model considers a set of observable variables that could 

be correlated with output gap. 
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𝑦𝑡 − �̅�𝑡 = 𝜌(𝑦𝑡−1 − �̅�𝑡−1) + 𝛽𝑥𝑡+𝜀𝑡
𝑜 

Where the variance ration 
𝑉𝑎𝑟(𝑦𝑡−�̅�𝑡)

𝑉𝑎𝑟(∆2�̅�𝑡)
 is constrained to match the one implied by equations 1-3 and 

implicitly the frequency characteristic of the HP filter. More specifically, 𝑥𝑡 includes real credit 

growth, real house price inflation, and stock price inflation. The model is estimated using maximum 

likelihood approach. The table below lists the estimates of key financial variables of interest.  

 

Blanchard-Quah SVAR: Specification and Estimation 

 

Following Blanchard and Quah (1989), we estimate a 2-equation SVAR (using the maximum 

likelihood), that includes quarterly real GDP growth and detrended unemployment rate:19   

 

[
1 𝐵0,12

𝐵0,21 1
] [

𝛥𝑦𝑡

𝑢𝑡
] = [

𝐴0,1

𝐴0,2
] + [

𝐵1,11 𝐵1,12

𝐵1,21 𝐵1,22
] [

𝛥𝑦𝑡−1

𝑢𝑡−1
] + [

𝜀𝑡
𝑠

𝜀𝑡
𝑑]. 

The sample is 1982: Q1–2019: Q1. The SVAR includes 2 lags of each variable—selected based on 

the AIC criterion—and is identified by imposing a zero long-run impact of demand shocks (𝜀𝑡
𝑑) on 

GDP growth. The chart below shows cumulative impulse responses of real GDP (GDP_G) and the 

unemployment rate (U) to a one standard deviation supply (Shock1) and a one standard deviation 

demand shock (Shock2). 
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19 We use detrended unemployment rate to remove a downward trend observed in data. The 5-quarter moving-

average unemployment rate has declined considerably over the recent decades: from over 8 percent in 1980s 

and early 1990s to around or somewhat below 5 percent before and after the GFC, respectively. 

Estimate Std. error p-value

Real HPI growth 0.02 0.007 0.001

Real credit growth 0.008 0.008 0.309

Stock price growth 0.004 0.002 0.038
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Small Open Economy SVAR 

 

Figure A.1. Small Open Economy SVAR: Impulse Response Functions 
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Testing Output Gap Estimates 

 

Figure A2. Responses of Real-time Potential Output Estimates a U.S. Monetary Shock  

 

 
Notes: Figure A2 shows impulse responses of potential output estimated using the models from Sections 

II–III to a one standard deviation positive U.S. monetary policy shock, obtained following Gertler and 

Karadi (2015). Red dashed lines show 66 percent confidence bands around the estimates. 

 

Figure A3. Responses of Real-time Potential Output Estimates a U.K. Productivity Shock  

 

 
Notes: Figure A3 shows impulse responses of potential output estimated using the models from Sections 

II–III to a one standard deviation positive U.K. productivity shock, obtained as described in Section IV. 

Red dashed lines show 66 percent confidence bands around the estimates. 
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Figure A4. Responses of Real-time Potential Output Estimates a U.K. Fiscal Shock  

 

 
Notes: Figure A4 shows impulse responses of potential output estimated using the models from Sections 

II–III to a one standard deviation positive U.K. fiscal shock, obtained as described in Section IV. Red 

dashed lines show 66 percent confidence bands around the estimates. 

 

Figure A5. Responses of Real-time Potential Output Estimates a U.K. Monetary Shock.  

 
 

 
Notes: Figure A5 shows impulse responses of potential output estimated using the models from Sections 

II–III to a one standard deviation positive U.K. monetary policy shock, obtained as described in Section 

IV. Red dashed lines show 66 percent confidence bands around the estimates. 
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