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1. Introduction

The role of expectations in determining the effectiveness of central bank actions has recently, and

yet again, taken center stage. Faced with forces persistently lowering the natural interest rate, and

having to deal with large crises such as the Great Recession or COVID-19, monetary policy makers

have had to increasingly rely on forward guidance to mitigate the adverse effects associated with

reaching the effective lower bound (ELB) on interest rates. While the workhorse New Keynesian

(NK) policy framework provided clear mechanisms that gave such policies traction, they appeared

counterfactually powerful, a feature which soon became known as the “forward guidance puzzle”

(FGP, see also Carlstrom et al., 2015; Giannoni et al., 2015; McKay et al., 2016).

Researchers have since taken several distinct routes in trying to address the FGP. The one of most

consequence for our paper was to replace the assumption of full rationality, which has been shown

to play a key role, with behavioral alternatives.1 Woodford (2019), for example, developed an NK

framework in which cognitive constraints translated into a finite planning horizon, beyond which

agents were “backward looking”. Gabaix (2020) proposed a “cognitive discounting” alternative,

which introduced partial myopia towards atypical future events.2 Notably, and as recently demon-

strated by Gust et al. (2021), benefits of such models can extend beyond mitigating the FGP

as they also fit the data better than their “fully rational” New Keynesian predecessors. Despite

these advances, relatively little is known about the implications of such behavioral assumptions

in richer theoretical environments. As such, the goal of this paper is to advance the associated

research agenda by developing an open economy extension of Gabaix’s (2020) behavioral model

and characterizing the implications of cognitive discounting in such an environment.

Our point of departure is the well-established, new open economy macroeconomics (NOEM) para-

digm.3 We cast the analysis in a, now standard, incomplete asset market version of that environment

and we show that behavioral extensions significantly modify several key equilibrium conditions. For

example, one immediate implication is that cognitive discounting exacerbates the well-known unit

1 Other approaches relied on moving to a perpetual youth structure (Giannoni et al., 2015), introducing heterogeneous
agents operating in incomplete asset markets (McKay et al., 2016), introducing imperfect monetary policy credibility
(Campbell et al., 2019; Haberis et al., 2019) as well as various departures from “common knowledge” (Carlstrom
et al., 2015; Kiley, 2016; Angeletos and Lian, 2018).

2 Both of these introduced similar forms of discounting into the (linearized) IS and Phillips curves, in line with
Angeletos and Lian (2018), where aggregate myopia originates in uncertainty about other agents’ beliefs.

3 See, among others, Corsetti and Pesenti (2001), Schmitt-Grohé and Uribe (2001), Kollmann (2002), Benigno and
Benigno (2003), Gali and Monacelli (2005).
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root problem prevalent in small open economy models, requiring stronger remedial mechanisms.4

More fundamentally, for degrees of myopia in our estimated range, the behavioral extension we

study goes a long way towards resolving several important anomalies typically characterizing the

relationship of exchange rates and interest rates. These include the forward premium puzzle (Fama,

1984), the predictability reversal puzzle (Bacchetta and van Wincoop, 2010), the Engel puzzle (En-

gel, 2016), as well as the forward guidance exchange rate puzzle (Gaĺı, 2020).

At the same time, and in contrast to some recently advocated “rational” solutions to those uncov-

ered interest rate parity (UIP) puzzles,5 our model is also consistent with the empirical evidence

presented in Kalemli-Ozcan and Varela (2021). The paper demonstrates, in particular, that the

first three puzzles vanish when actual exchange rate expectations are used instead of realizations

coupled with the rational expectations assumption (see also Candian and De Leo, 2021). The reason

behind our behavioral model’s success is that the uncovered interest rate parity (UIP) condition

holds exactly when formulated in terms of agents’ subjective expectations, but not when refor-

mulated in terms of what it would be rational to expect. Expressed alternatively, testing various

implications of UIP on our model simulated data under the assumption of rational expectations

would lead to rejections of that joint hypothesis. Crucially, however, not because UIP fails to hold,

but rather because agents in our model are not rational, and so ex post exchange rate realizations

provide a biased read of their ex ante expectations.

Turning to implications for monetary policy, we find that the underlying behavioral assumptions

weaken the efficacy of future interest path announcements and of ‘low for longer’ type policies.

Therefore, and broadly in line with closed economy results, cognitive discounting also resolves the

FGP in an open economy context. Similarly – and to the extent that current monetary shocks are

persistent or have persistent effects on policy rates on account of interest rate smoothing – their

influence on the economy is also dampened.

There are, however, notable differences between closed and open economy behavioral models. The

key one is that, as we show analytically, while the sensitivity of domestic prices in the fully rational

case increases approximately linearly as a function of the forward guidance horizon, this is not

the case for the exchange rate. This implies that the FGP is considerably less dramatic in an

open economy to begin with, and hence myopia translates into relatively less dampening of future

4 The issue arises on account of asset market incompleteness and is discussed in Schmitt-Grohe and Uribe (2003).
5 To mitigate the UIP-related puzzles, Bacchetta and van Wincoop (2021) propose a model of delayed portfolio
adjustment, while Valchev (2020) and Itskhoki and Mukhin (2021) rely instead on financial frictions.
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interest rate changes, at least in an environment of high exchange rate pass-through to import

prices advocated by the dominant currency paradigm literature (Gopinath et al., 2020). We also

show that – when markets are complete and monetary policy is conducted optimally – behavioral

discounting generates a unit root in the nominal exchange rate. This means that, unlike under

perfect rationality, positive (negative) temporary domestic cost-push shocks result in a permanent

appreciation (depreciation) of the exchange rate, making its use as a nominal anchor less desirable.

Finally, we show that behavioral discounting has interesting implications for business cycle proper-

ties of open economy variables and for the size of international monetary policy spillovers. According

to our model, the more heavily the future is discounted by agents, the more persistent net foreign

assets and the real exchange rate become in response to monetary shocks, an outcome that follows

from agents underestimating the persistence of interest rate changes. We additionally demonstrate

that monetary easing in one economy is more likely to be expansionary for its trading partners if

these are populated by behavioral agents, which occurs because cognitive discounting attenuates

expenditure switching.

Our paper is related to the literature developing structural models with bounded rationality. One of

the early contributions was due to Brock and Hommes (1997), who integrated heterogeneous expec-

tations and a partial equilibrium cob-web model into the NK framework. Evans and Honkapohja

(2001) and Bullard and Mitra (2002) introduced learning where agents forecast only immediate fu-

ture variables. An alternative form of learning based on infinite horizons was promoted by Preston

(2005). Branch and McGough (2009) and De Grauwe (2011) proposed models where some agents

are rational while others either learn adaptively or follow simple rules-of-thumb. More recently,

and as an alternative to the cognitive discounting setup that we are closest to, Bordalo et al. (2018)

formalized the concept of diagnostic expectations and demonstrated how they can lead to financial

cycles, while Bianchi et al. (2021) showed how this concept can be introduced into fully-fledged

DSGE models. In an open economy setup, Llosa and Tuesta (2008) and Zanna (2009) analyze

the equilibrium determinacy properties of monetary and exchange rate rules under adaptive ex-

pectations. More recently, Du et al. (2021) look at bounded rationality in a microfounded open

economy, their key finding being that learning goes a considerable way towards better accounting

for exchange rate dynamics.
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The remainder of this paper is structured as follows. Section 2 presents the theoretical setup

with two countries and boundedly rational agents. In Section 3, we use a linearized small open

economy version of the model to present how behavioral discounting changes the key equilibrium

relationships, also discussing the range of parameter values used in numerical experiments. Section 4

discusses how agents’ myopia impinges on model stationarity and equilibrium determinacy. Section

5 shows how allowing for behavioral discounting helps resolve some open economy puzzles. In

Section 6, we analytically characterize the implications of myopia for the transmission of “surprise”

as well as anticipated changes in the real interest rates. Section 7 evaluates the dynamic effects of

monetary policy, including both conventional and “low for longer” policies. In section 8, we present

the impact of discounting on international monetary policy spillovers. Implications for optimal

monetary policy are discussed in Section 9. Section 10 concludes.

2. Theoretical Setup

We develop a two-country NOEM model with myopic agents. We refer to one of the economies as

Home and the other as Foreign. Both are populated by a continuum of households and monopolis-

tically competitive firms. We normalize the world population to unity and use ζ ∈ (0, 1) to indicate

the share of Home agents, with the mass of Foreign agents equal to 1− ζ. The two economies are

linked by trade in goods and cross-border borrowing, and they have separate monetary authorities.

Since both countries are isomorphic, in the rest of this section we focus only on problems faced by

Home agents.

2.1. Households. The household sector is populated by a large number of infinitely-lived dynas-

ties. At any time t, household h maximizes a discounted stream of period utility flows that depends

on consumption Ch
t and labor supply Nh

t

Uh
t = Êt

∞∑
T=t

βT−t

[(
Ch
T

)1−σ

1− σ
−
(
Nh

T

)1+φ

1 + φ

]
, (1)

where 0 < β < 1 is the subjective discount factor, σ > 0 is the inverse of the elasticity of intertem-

poral substitution, φ > 0 is the inverse of the Frisch elasticity of labor supply, and Êt indicates

the expected value operator under the subjective expectations of households that we shall specify

subsequently. The consumption basket is made of goods produced domestically Ch
H,t and imports
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Ch
F,t, aggregated according to

Ch
t =

[
(1− α)

1
η

(
Ch
H,t

) η−1
η

+ α
1
η

(
Ch
F,t

) η−1
η

] η
η−1

, (2)

where 0 < α < 1 controls the degree of openness and η > 0 is the trade elasticity.

Households have access to one-period bonds denominated in Home currency Bh
t and in Foreign

currency B∗,h
t , of which only the latter is internationally traded, and which pay nominal interest

rate it and i∗t , respectively. Labor is remunerated at the real rate Wt, and each dynasty also receives

an aliquot share in real firm profits Dt. The real budget constraint can hence be written as

Ch
t +

Bh
t

1 + it
+

Qt

Φt

B∗,h
t

1 + i∗t
=

Bh
t−1

Πt
+Qt

B∗,h
t−1

Π∗
t

+WtN
h
t +Dt, (3)

where Pt and P ∗
t are the prices of the Home and Foreign consumption baskets, Πt ≡ Pt/Pt−1 and

Π∗
t ≡ P ∗

t /P
∗
t−1 are the associated gross inflation rates, Qt ≡ εtP

∗
t /Pt is the real exchange rate, with

εt denoting the units of domestic currency per unit of foreign currency, and Φt = Φ(B∗
t ) is a risk

premium that depends on the Home country’s per capita net foreign asset (NFA) position.

2.2. Firms. Final goods sold domestically YH,t and for exports Y ∗
H,t are made of intermediate

inputs indexed by f and aggregated according to the following Dixit-Stiglitz technology

YH,t =

[∫ 1

0

(
Y f
H,t

) 1
µ
df

]µ
, and Y ∗

H,t =

[∫ 1

0

(
Y ∗,f
H,t

) 1
µ
df

]µ
, (4)

where µ > 1 controls the degree of substitution between individual inputs.

Intermediate inputs are produced by monopolistically competitive firms that operate a linear pro-

duction function in labor

Y f
H,t + Y ∗,f

H,t = ztN
f
t . (5)

where zt is a common productivity shock. Firms set the same prices for domestic and export sales,

quoting them in domestic currency (producer currency pricing) so that P f
H,t = εtP

∗,f
H,t at every time

t. They are subject to a Calvo-style friction. More specifically, each period only a fraction 0 < θ < 1

of firms is allowed to reoptimize their prices. The problem of intermediate goods producers is then

to maximize

V f
t = Êt

∞∑
T=t

θT−tΛt,T

[
P f
H,t(Y

f
H,T + Y ∗,f

H,T )−WTN
f
T

]
, (6)
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subject to production technology (5) and demand constraints implied by aggregation (4). Since

firms are owned by households, they discount future profits using Λt,T ≡ βT−tu1(CT , NT ), i.e., their

stochastic discount factor is consistent with household preferences, and their expectations are in

line with those in Equation (1).

2.3. Myopia. When solving their problems at every period t, households and firms form subjective

expectations denoted by the operator Êt. We deviate from rational expectations by assuming

that agents are myopic and cannot correctly anticipate the evolution of variables that are beyond

their control. More specifically, we follow Gabaix (2020) and assume that, when agents anticipate

the future, they shrink their expectations toward some benchmark, which is assumed to be the

economy’s steady state.

Formally, for any variable Xt that agents take as given during optimization, the perceived equilib-

rium law of motion is

Xt+1 −X = mGX(Xt −X, ϵt+1), (7)

whereXt is a vector of aggregate state variables, ϵt is a vector of mean-zero innovations to stochastic

processes driving economic fluctuations,GX is the equilibrium aggregate policy function for variable

Xt, and where variables without time subscripts indicate steady state values, with 0 ≤ m ≤ 1

denoting a cognitive discounting parameter. The standard case of rational expectations can be

readily obtained for m = 1, while lower values of this parameter make agents myopic in that they

expect future macroeconomic conditions to revert back to the steady state faster.

It is important to stress that agents misperceive laws of motion of variables beyond their individual

control. More specifically, and as in Woodford (2013), households and firms do correctly perceive

the constraints defining their problems, and hence their decisions are optimal, conditional on their

subjective beliefs about the future evolution of variables that they take as given.

2.4. Monetary Authority. Unless indicated otherwise, the monetary authority follows a stan-

dard Taylor-like feedback rule

it = ρit−1 + (1− ρ) [i+ ϕπ(Πt −Π) + ϕy log(Yt/Y )] + νt, (8)
6



where 0 ≤ ρ < 1 controls the degree of interest rate smoothing, ϕπ and ϕy determine the reaction

to deviations of inflation Πt ≡ Pt/Pt−1 and output Yt ≡ YH,t + Y ∗
H,t from their steady state levels,

and νt denotes a monetary policy shock.

2.5. General Equilibrium. In equilibrium, all households make identical choices so that indi-

vidual allocations are equal to aggregate per capita quantities, implying Ch
t = Ct, Nh

t = Nt,

B∗,h
t = B∗

t , B
h
t = Bt = 0, where the last equality follows from the fact that bonds denominated in

Home currency can only be traded by Home households.

Labor supplied by households must be equal to labor demand, leading to the following condition

Nt =

∫ 1

0
Nf

t df, (9)

while goods market clearing requires

YH,t =CH,t, and Y ∗
H,t =

1− ζ

ζ
C∗
H,t. (10)

3. Linearized Model for a Small Open Economy

3.1. Linear Approximation to Behavioral Discounting. For tractability, we consider a lin-

earized version of the model defined in the previous section. As shown by Gabaix (2020), this

simplifying assumption allows us to approximate behavioral k-period ahead expectations of any

variable Xt that agents take as given during optimization as

Êt {Xt+k −X} = mkEt {Xt+k −X} , (11)

where Et is the rational expectations operator. As this formula reiterates, agents are myopic with

respect to deviations from the – correctly perceived – steady state, particularly if those deviations

occur in the distant future.

One issue worth highlighting is that we cannot proceed without precisely defining the set of variables

that agents form their expectations about. For example, it matters whether households think about

the real exchange rate Qt or its rate of depreciation Qt/Qt−1 when making projections about the

future. To see that, define Q̂t ≡ Qt − Q, where Q is the steady state of Qt. We could then have
7



one of two alternatives

Êt

{
Q̂t+1

}
= mEt

{
Q̂t+1

}
̸=

Êt

{
∆Q̂t+1 + Q̂t

}
= mEt

{
Q̂t+1

}
+ (1−m)Q̂t.

(12)

While the choice is admittedly somewhat arbitrary, we find it natural to assume that agents make

projections about levels of variables that are constant in the steady state (top equality), as opposed

to their rates of change (bottom equality).

3.2. Linearized Equilibrium Conditions. When linearizing the model, we focus on the small

open economy case, which obtains as the limit when ζ → 0. We also assume zero steady state

inflation (Π = 1) and zero steady state net foreign assets (B∗ = 0), which also implies C = Y . We

define the following transformations: ît ≡ log(1+it)−log(β−1), π̂t ≡ log(Πt), B̂
∗
t ≡ (B∗

tQt−B∗)/Y ,

with corresponding expressions for their Foreign analogs. All other ‘hat’ variables are defined as

percent deviations from steady state, i.e. X̂t ≡ (Xt − X)/X. Below we present and discuss the

linearized equilibrium conditions. Since deriving some of them is not straightforward, we outline

the key associated steps in Appendix A.

Solving the household problem results in the following modified IS curve

Ĉt = mEtĈt+1 −
1

σ

(
ît −mEtπ̂t+1

)
+ (1−m)

1− β

1 + σ
µφ

B̂∗
t . (13)

The standard New Keynesian relationship can be immediately recovered by setting m = 1. If

m < 1, expectations about future consumption and inflation are discounted, similarly to the closed

economy New Keynesian model considered by Gabaix (2020).6 Notably, however, the move to

an open economy setup is associated with an extra term in the behavioral IS curve, which now

additionally depends on the country’s net foreign asset position. This term crops up because

Equation (13) is derived using subjectively optimal consumption plans. More specifically, agents

do not apply discounting to their individual choices, i.e. ÊtB̂
∗,h
t+k ̸= mkEtB̂

∗,h
t+k for k ≥ 1, but do it

only when forming expectations about variables beyond their control. In particular, they correctly

6 In his baseline formulation, Gabaix (2020) assumes that agents correctly perceive the ex ante real interest rate,
which means that expected inflation in Equation 13 is not discounted. This can be seen as yet another manifestation
of a certain degree of arbitrariness when defining the set of variables that agents take as given while solving their
optimization problem (discussed in the preceding section). Crucially, however, none of our main findings hinge on
whether we follow Gabaix in assuming no misperception of the current real interest rate, or if we instead allow for
some money illusion, as implicit in Equation 13.
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predict their future consumption and accumulated assets conditional on expectations about future

prices, and only have distorted views about the latter. As a result, following an asymmetric positive

income shock that Home households want to smooth over by increasing foreign bond holdings (net

foreign assets in aggregate), the equilibrium response of consumption will be stronger than it would

have been without the final term in Equation (13).7 Relatedly, optimal bond holdings of myopic

households can be shown to imply an uncovered interest rate parity (UIP) condition

ît −mEt {π̂t+1} = î∗t −mEt

{
π̂∗
t+1 − Q̂t+1

}
− Q̂t − ϕB̂∗

t , (14)

where ϕ = Φ′(0). Again, a standard risk premium-augmented UIP condition obtains for m = 1.

Optimal price setting by myopic firms leads to the following Phillips curve for domestic prices

π̂H,t = mβEt{π̂H,t+1}+ κM̂Ct, (15)

where κ ≡ (1−θ)(1−βθ)
θ , and which collapses to the canonical New Keynesian Phillips curve for

m = 1. Note that, in line with Benchimol and Bounader (2019) and the principle stated in Section

3.1, we deviate from Gabaix (2020) while deriving Equation (15) (see also Appendix A.4 for details).

However, this deviation does not have a material impact on any of our key results.

The remaining equilibrium conditions are not affected by discounting. In particular, the real

marginal cost, deflated by the producer price index is

M̂Ct = σĈt + φŶt +
α

1− α
Q̂t − (1 + φ)ẑt, (16)

the consumer price inflation (CPI) is given by

π̂t = π̂H,t +
α

1− α

(
Q̂t − Q̂t−1

)
, (17)

while the aggregate goods market clearing condition can be written as

Ŷt = (1− α)Ĉt + αŶ ∗
t + η

α(2− α)

1− α
Q̂t. (18)

7 See also Appendix A.3 for more details and Appendix C for a discussion on how this result is modified when markets
are complete so that accumulation of net foreign assets becomes irrelevant.
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Aggregating the budget constraints of all Home agents leads to the following law of motion for net

foreign assets

B̂∗
t = β−1

(
B̂∗

t−1 + Ŷt − Ĉt

)
. (19)

Finally, the linearized version of the monetary policy rule (8) is

ît = ρ̂it−1 + (1− ρ)(ϕππ̂t + ϕyŶt) + νt. (20)

Equations (13)–(20) jointly define the equilibrium evolution of Ŷt, Ĉt, π̂t, π̂H,t, M̂Ct, Q̂t, ît, B̂
∗
t ,

driven by productivity shocks zt, monetary policy shocks νt and foreign variables Ŷ ∗
t , π̂

∗
t , î

∗
t , which

are exogenous from the Home country perspective (on account of the SOE assumption).

For given foreign productivity shocks z∗t and monetary shocks ν∗t , equilibrium conditions charac-

terizing the evolution of foreign output, inflation and interest rates are then given by

Ŷ ∗
t = mEtŶ

∗
t+1 −

1

σ

(
î∗t −mEtπ̂

∗
t+1

)
, (21)

π̂∗
t = mβEt{π̂∗

t+1}+ κ(σ + φ)
(
Ŷ ∗
t − ẑ∗t

)
, (22)

î∗t = ρ̂i∗t−1 + (1− ρ)(ϕππ̂
∗
t + ϕyŶ

∗
t ) + ν∗t . (23)

These equations follow from the same principles as in the Home economy, but additionally account

for the fact that the Foreign economy can be treated as closed.

3.3. Parameter Values. To investigate the implications of behavioral discounting in an open

economy we shall combine closed-form derivations – which help account for results of stylized

experiments – with numerical simulations designed to shed light on more analytically-involved

questions. For the latter, we will need to assign numerical values to model parameters. To that

end, we follow two alternative paths. The first is to show outcomes for values of key structural

parameters borrowed from extant literature. This shall allow us to, in particular, tease out the

impact of changes in the degree of myopia m. As an alternative, we also perform a full Bayesian

estimation of the model and rely on estimated values of structural coefficients instead.

3.3.1. Calibration. Table 1 summarizes our calibration choices, which are largely based on Gali

and Monacelli (2005). The model frequency is quarterly. We make the economy fairly open by

setting the import share parameter α equal to 0.4. The discount factor β is calibrated at 0.99,

which, for zero average inflation, implies a steady state nominal interest rate of 4 per cent per
10



Table 1. Calibration

Parameter Value Name

α 0.4 Openness

β 0.99 Discount Factor

η 1 Elasticity of Substitution Between Home and Foreign Goods

φ 3 Inverse Frisch Elasticity of Labor Supply

σ 1 Inverse Intertemporal Elasticity of Substitution

µ 1.2 Gross Product Markup

θ 0.85 Calvo Probability of No Price Adjustment

ρ 0.9 Interest Rate Smoothing Parameters

ϕπ 1.5 Inflation Feedback Taylor Rule

ϕy 0.125 Output Feedback Taylor Rule

ϕ 0.01 Intermediation Costs Debt Sensitivity

annum. The elasticity of substitution between domestically produced goods and imports η, as well

as that describing household intertemporal preferences σ, are both calibrated at 1. The inverse of

the Frisch elasticity of labor supply φ is set to 3 and the steady state markup in the goods market

µ is calibrated at 1.2. Compared to Gali and Monacelli (2005), we choose a higher value of the

Calvo probability (θ = 0.85) to make our model consistent with more recent empirical evidence on

the slope of the Phillips curve. As is standard in the DSGE literature, we also allow for interest

rate smoothing in the monetary policy rule by setting ρ to 0.9, and we assume standard feedback

coefficients to inflation (ϕπ = 1.5) and the output gap (ϕy = 0.125). As discussed in the next

section, we set the slope of the risk premium in the UIP condition ϕ to a relatively small value of

0.01, which is sufficient to induce stationarity for empirically relevant degrees of myopia.

Since the goal of our paper is to investigate the impact of myopia, we start by taking an agnostic

stance and show outcomes for values of m ranging from 0.5 to 1. For reference, we note that Gabaix

(2020) uses a value of 0.85, which implies that an innovation materializing in a year’s time would

affect decision rules by just over half as much as a contemporaneous one. However, some papers

suggest that even lower values of m cannot be ruled out. For example, empirical estimates of the

Euler equation by Fuhrer and Rudebusch (2004) are consistent with an m of 0.65. Relatedly, Gust

et al. (2021) estimate a closed economy New Keynesian model with a finite planning horizon as

in Woodford (2019), and arrive at discounting in the IS curve close to 0.5. Finally, Ilabaca et al.
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(2020) allow for a different degree of behavioral discounting by households and firms, estimating

corresponding values of m equal to 0.71 and 0.41, respectively.

3.3.2. Bayesian Estimation. We also perform a full Bayesian estimation of the model, more details

on which are provided in Appendix E. Broadly, the Home and Foreign economies are represented

by Canada and the US, respectively. Our baseline sample of quarterly data covers the period 1972-

2007, but we also verify the robustness of our results by using a subsample starting in 1982 (so that

it excludes the Great Inflation), and an extended sample that that ends in 2019 (so that it includes

the Great Recession and its aftermath up to the COVID-19 pandemic). The prior distributions of

estimated parameters are centered at the calibrated values discussed in the preceding section, and

their tightness is motivated by the DSGE literature that estimates open economy models (see, e.g.,

Adolfson et al., 2007; Justiniano and Preston, 2010).

Marked differences in values of posterior odds support high empirical relevance of behavioral dis-

counting, also in an open economy setting. More specifically, the value of m significantly deviates

from the prior that we centered at 0.85, with the posterior mean coming in as low as 0.53 for

our baseline data sample. Other parameter estimates are close to typical values reported in the

literature. In summary, our estimates strongly favor a high degree of behavioral discounting.

4. Stationarity and Determinacy

It is well understood that in small open economy models with rational agents the assumption of

incomplete asset markets engenders stationarity issues (see also Schmitt-Grohe and Uribe, 2003).8

Among several methods to induce stationarity considered in the NOEM literature, a debt-elastic

risk premium on foreign bond holdings is by far the most popular (Senhadji, 2003), and in our setup

it can be introduced by setting ϕ > 0. It is also well known that standard New Keynesian models

can generate sunspot equilibria when the interest rate does not respond sufficiently strongly to

endogenous variables. For example, if the policy rate only reacts to inflation (ϕy = 0), determinacy

requires it to respond more than one-for-one to deviations of inflation from target (ϕπ > 1, Taylor

principle). This canonical rational expectations case is illustrated in the bottom right panel of

8 The intuition is that when m = 1, and in the absence of a risk premium (ϕ = 0), the Home real interest rate becomes
tied to the (exogenous from the small economy’s perspective) foreign real interest rate via the UIP condition 14.
The IS curve 13 then implies that consumption has a unit root.
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Figure 1, which demonstrates, in particular, that any positive risk premium ensures stationarity,

while satisfying the Taylor principle guarantees uniqueness.

Figure 1. Stationarity and Determinacy Regions

Note: This figure shows the type of equilibrium in the linearized version of the model for different values of behavioral

discounting m, UIP risk premium parameter ϕ, and monetary policy feedback to inflation ϕπ. All other parameters

are as in our baseline calibration described in Table 1, except that we set ϕy = 0.

As the remaining panels reveal, things change dramatically when agents are myopic. Two effects are

at play. First of all, behavioral discounting exacerbates the stationarity problem. To see why, it is

instructive to inspect Equation (13), which clarifies that, except for the final term, the consumption

path becomes explosive whenever m < 1. While the endogenous evolution of net foreign assets

associated with the final term mitigates this effect somewhat, the associated feedback turns out

to be too weak to induce stationarity. As a result, and for standard parameter values adopted

in our calibration, the case for an additional stationarizing mechanism (such as the debt elastic

premium, ϕ > 0) becomes stronger when agents form behavioral rather than rational expectations.

In addition, and unlike in the rational case, we cannot use an arbitrarily small positive ϕ to achieve
13



stationarity. Intuitively, this is because myopic agents are less sensitive to future values of the risk

premium, and so the responses of their consumption to temporary income shocks are too small to

prevent boundless accumulation or decumulation of assets, unless ϕ is sufficiently large. This effect

is stronger for higher degrees of myopia and can be observed in Figure 1 by noting that the explosive

area tends to expand when m becomes smaller. Clearly, the size of this area also depends on other

model parameters, such as the import penetration ratio α. If the latter is large, exchange rate

movements have a stronger effect on consumption, which has a stationarizing property. Because

consumption underreacts due to myopia, the associated accumulation of net foreign assets lowers

the risk premium, which appreciates the exchange rate and hence increases consumption. Therefore,

the greater the openness to foreign trade, the lower the ϕ needed to induce stationarity.

The second consideration – documented by Gabaix (2020) in a closed economy setup – is that

behavioral discounting shrinks the indeterminacy region, so that a weaker response of the policy

rate to inflation may suffice to eliminate sunspot equilibria. This effect can be clearly seen in Figure

1, where the area corresponding to indeterminacy decreases in line with the cognitive discounting

parameter m. Interestingly, we find that openness to international trade affects how indeterminacy

regions change with myopia but this effect is small. For example, our baseline calibration implies

that, for m = 0.85, determinacy is established if ϕπ > 0.555 while this threshold drops to 0.545

when we cut the import penetration ratio by half. The explanation for this result can be found

in Section 6, where we show that myopia generates relatively less dampening of future interest

rate changes on inflation when the economy is more open to trade. Consequently, the ability of

discounting to reduce the complementarity between agents’ actions (reactiveness to other agents’

future decisions) is also smaller, making sunspot equilibria more likely.

Moreover, Figure 1 reveals how the two considerations discussed above interact in a non-trivial way:

for moderate degrees of discounting – such as those in its counterdiagonal panels – stability may

not require a debt-elastic risk premium, but can alternatively be achieved by sufficiently deviating

from the Taylor principle. As is well known from the New Keynesian literature, in that case one

eigenvalue moves inside the unit circle. It thus ensures model stability by offsetting the impact of

the unstable root associated with the Euler equation. This only “works” for moderate degrees of

discounting, however, with the upper left panel of Figure 1 highlighting a case in which stability can

only be achieved by setting the risk premium parameter ϕ sufficiently high. For this reason, and

also for ease of comparison with extant New Keynesian contributions, in the remainder we ensure
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stationarity by setting ϕ = 0.01. This proves sufficient for all the values of m that we consider,

while being sufficiently small to avoid unduly affecting the short-term dynamics of our model.

5. Exchange Rate Dynamics

As discussed in Section 3, our model implies a standard uncovered interest rate parity condition,

except for the fact that the expectation operators appearing in it are behavioral rather than rational.

Once these behavioral terms are reexpressed using their rational equivalents, we arrive at the

“behavioral” UIP condition (Equation 14), which is repeated here for convenience

ît −mEt {π̂t+1} = ι̂∗t −mEt

{
π̂∗
t+1 − Q̂t+1

}
− Q̂t, (24)

and where we define ι̂∗t ≡ î∗t −ϕB̂∗
t as the “premium adjusted” foreign nominal interest rate.9 These

observations have several strong and testable implications. First, we would expect the standard

UIP condition to hold when actual expectations are used instead of their rational equivalents,

particularly if actual expectations were, in fact, formed in a behavioral fashion.10 The former

appears in line with a growing body of evidence. For example, Kalemli-Ozcan and Varela (2021)

show that there are no overshooting and predictability reversal puzzles – for any currency – when

using actual exchange rate expectations to calculate the UIP premium. Our model therefore appears

broadly consistent with these new empirical findings.

While the results above are reassuring, it is also true that there are many possible ways of deviating

from rational expectations and it does not necessarily follow that the behavioral discounting route

proposed by Gabaix (2020) performs well in an open economy context. In what follows we therefore

analyze the forward premium puzzle of Fama (1984) as well as the predictability reversal puzzle of

Bacchetta and van Wincoop (2010) and Engel (2016) through the lens of our model. Crucially, we

demonstrate that our behavioral framework can match the patterns underlying those two sets of

puzzles, and we also explain the economic mechanism contributing to its empirical success.

9 We define the “premium adjusted” nominal interest rate for analytical convenience as it allows us to write the UIP
condition in its canonical form. Note that, since we calibrate ϕ to be small, ι̂∗t is very close to î∗t . We have verified
that all results presented further in this section, and which use the “premium adjusted” foreign rate, are very similar
to those obtained without such an adjustment.

10 Starting with the the influential work of Fama (1984) a large literature used realized exchange rates to docu-
ment violations of the UIP condition, showing, in particular, that high interest rate currencies do not sufficiently
depreciate, implying – on average – excess investment returns from carry trade strategies.
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5.1. Forward Premium. Under uncovered interest rate parity, the domestic currency is expected

to depreciate if the home interest rate exceeds the foreign. As alluded to above, however, Fama

(1984) famously showed that this simple prediction is at odds with the data, where high interest

currencies tend to offer higher returns even when an exchange rate depreciation is fully factored in.

We now investigate whether our behavioral model can help account for this feature of the data.

We first observe that behavioral agents correctly perceive the current level of the real exchange

rate and only discount its future level. Accordingly, the UIP condition (14) can be rewritten as

ît − ι̂∗t = mEt {∆ε̂t+1} − (1−m)Q̂t. (25)

Broadly, this equation points to two opposing forces affecting the forward premium. On the one

hand, the fact that the expected future depreciation is discounted tends to generate lower returns

on high-interest currencies, thus deepening the Fama puzzle. On the other hand, the premium will

be affected by the comovement between interest rates and the real exchange rate, which is typically

negative and hence acts in the opposite direction.

To move beyond such qualitative statements and to compare the relative contributions of both

terms, we first rewrite the behavioral UIP condition as

Et {∆ε̂t+1} =
1

m

(
ît − ι̂∗t

)
+

(
1

m
− 1

)
Q̂t. (26)

This formulation is designed to resemble “Fama (1984) regressions” typically used to document the

forward premium puzzle, i.e.,

∆ε̂t+1 = a0 + a1

(
ît − ι̂∗t

)
+ ϵt, (27)

where empirical estimates suggest values of the slope coefficient close to zero, or even negative,

while standard UIP counterfactually implies a1 = 1. Population regression techniques combined

with the omitted variable bias formula allow us to express the value of the a1 coefficient as

Ea1 =
1

m
+

(
1

m
− 1

) E
{
Q̂t

(
ît − ι̂∗t

)}
E
{(

ît − ι̂∗t

)2}

=
1

m
+

(
1

m
− 1

)
Corr

{
Q̂t, ît − ι̂∗t

} Std
{
Q̂t

}
Std

{
ît − ι̂∗t

} (28)

16



where, to fix attention, and as is standard in the literature, we subsequently focus on the case in

which monetary policy shocks are key drivers of real exchange rate and interest rate dynamics.

We first observe that for m = 1 the second term vanishes and so Ea1 = 1, replicating the original

forward premium puzzle. We also see that as m becomes lower than unity, the first term pushes

the model-implied regression coefficient above one, exacerbating the puzzle. Offsetting that, the

second term is negative for m < 1 as when home monetary shocks are dominant, the real exchange

rate is almost perfectly negatively correlated with the interest rate differential (or the home interest

rate in a small open economy setup).

Whether discounting helps address the Fama puzzle thus crucially depends on the variability of the

real exchange rate relative to that of the interest rate. Since the former clearly exceeds the latter

in floating exchange rate regimes, and also in our model, there are reasons to expect improvements

in fit. In Table 2 we confirm that conjecture by plugging in exact values of the standard deviations

into Equation (28) and computing the slope coefficient for different combinations of the interest

rate smoothing parameter (ρ) and discounting (m).

Table 2. Fama Regression Coefficients

Parameter m = 0.50 m = 0.75 m = 0.90 m = 1.00

ρ = 0.95 -0.07 -0.04 0.37 1.00

ρ = 0.90 0.17 0.36 0.67 1.00

ρ = 0.75 0.51 0.69 0.86 1.00

ρ = 0.50 0.75 0.86 0.94 1.00

Estimated model 0.44 (for m = 0.53, ρ = 0.84)

We find that a large degree of discounting, coupled with high interest rate smoothing, is capable of

generating negative values of the Fama coefficient, in line with empirical results based on realized

returns. Intuitively, the reason why such parameter combinations perform well is because higher

values of smoothing decrease the volatility of interest rates relative to the real exchange rate. This,

in turn, occurs because real exchange rates depend on the whole future path of interest rates, and

the fact that these become positively autocorrelated under greater smoothing tends to amplify the

variance of the sum (i.e., makes it exceed the sum of individual variances by more). Importantly,

and as shown by the final row in Table 2, the Fama coefficient implied by our estimates deviates

significantly from unity, which goes a long way towards resolving the forward premium puzzle.
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5.2. Predictability Sign Reversal. We now turn to Engel-style regressions and discuss our

model’s ability to match the empirical patterns documented in Bacchetta and van Wincoop (2010)

and confirmed in real form by Engel (2016). To that effect, we focus on regressions specified as

rxt+1 ≡ ît − î∗t −∆ε̂t+1 = bs,0 + bs,1

(
ît−s − î∗t−s

)
+ ϵt, (29)

where s = 0, 1, ....11 As first shown by Bacchetta and van Wincoop (2010), the coefficient bs,1 turns

from positive to negative in the data for some s. Engel (2016) additionally argues that the data

satisfy an even stronger requirement, namely that Cov
{
Et
∑∞

s=0 r
x
t+s+1, ît − î∗t

}
< 0, which can

be shown to be equivalent to
∑∞

s=0 bs,1 < 0. An immediate implication of this condition (Engel

condition henceforth) is that the level of the high-yielding country’s exchange rate is stronger than

implied by UIP, or, expressed alternatively, that exchange rate volatility exceeds what could be

predicted based on the simple uncovered interest rate parity condition.

To relate our open economy behavioral model to these stylized facts, Figure 2 provides an overview

of its key implications. Specifically, the left panels show our model-implied bs,1 coefficients as a

function of s (x-axis) for values of interest rate smoothing ranging from ρ = 0.95 in the top panel

to ρ = 0.5 in the bottom one. To highlight the role of discounting, each chart covers four different

m values, varying from m = 1 (no discounting / rational expectations) to m = 0.5 (discounting

in line with Gust et al. (2021)). Given the equivalence between Cov
{
Et
∑∞

s=0 r
x
t+s+1, ît − î∗t

}
< 0

and infinite sums of bs,1 appearing in the Engel condition, the right-hand panels additionally plot

the cumulative sums
∑T

s=0 bs,1 for values of T ranging from 0 to 500 (at which point there are no

discernible differences between the truncated and infinite sums).

The first four rows of Figure 2 confirm two important findings. First, and as shown in the left panels,

cognitive discounting is capable of generating sign reversals in Engel regression coefficients. We

see, in particular, that bs,1 eventually becomes negative for all values of the discounting parameter

m except for the rational expectations (RE) case of m = 1. It thus appears that the RE model’s

inability to match the sign reversal findings of Bacchetta and van Wincoop (2010) is a knife-edge

result specific to “full rationality”. Second, and as made clear by the right panels, our model can

account for Engel’s excess volatility puzzle, provided that there is sufficient cognitive discounting

and that interest rate smoothing is not excessive.

11 Note that for s = 0 the above is equivalent to a Fama-type regression (Equation 27), in which b0,1 = 1− a1.
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Figure 2. Engel Regression Results
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Note: The left panels show Engel regression coefficients, i.e., bs,1 from Equation (29), as a function of s, using the

calibrated version of the model for different values of m and ρ (first four rows) and its estimated version (last row).

The right panels plot the corresponding cumulative sums
∑T

s=0 bs,1 for T ranging from 0 to 500.

To build intuition for these findings we start by expressing excess returns as

Etr
x
t+1 ≡ ît − ι̂∗t − Et {∆ε̂t+1} = (m− 1)Et

{
Q̂t+1 + π̂t+1 − π̂∗

t+1

}
. (30)

We first note that the real exchange rate depreciates persistently in response to domestic policy

easing. This initially leads to an accumulation of net foreign assets on account of greater price

competitiveness. As we show in the next section, however, after some time the real exchange

rate ends up appreciating relative to its steady state, which facilitates decumulation of net foreign

assets, allowing them to converge to their steady state level. An implication of Equation (30) is
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that, in the presence of discounting, excess returns depend negatively on the real exchange rate.

Accordingly, the evolution of this premium will be the mirror image of what we described above,

i.e., an increase in the interest rate differential will lead to a persistent exchange rate appreciation

and an increase in excess return, followed by a depreciation and a fall in excess return below zero.

Which is precisely the sign reversal documented in Figure 2.

The intuition behind the second stylized fact is closely related to the argument of Bacchetta and van

Wincoop (2021), who show that – in their gradual portfolio adjustment model – the Engel condition

is violated whenever interest rate inertia is high. In both cases, higher interest rate autocorrelation

amplifies the initial response of excess returns, which also inherit some of the underlying persistence,

the confluence of which implies that they are not offset by future reversals.

Finally, and as documented in the last row of panels in Figure 2, both the sign reversal and the

Engel condition are satisfied in the estimated version of our model. This is fully in line with the

discussion above, as our Bayesian estimates imply a high degree of discounting and moderately

high levels of interest rate smoothing.

5.3. The Role of Market Incompleteness. As has become standard in the NOEM literature,

our model assumes that international financial markets are incomplete. We now discuss how the

results presented so far change if we adopt a less realistic, but analytically more tractable, complete

markets setup.

The key implication of complete markets is that the perfect international risk sharing condition

holds. Using our notation, it can be written in log-linear form as

σ
(
Ĉt − Ĉ∗

t

)
= Q̂t. (31)

Note that this relationship is not affected by myopia as long as subjective probabilities of future

states are the same for all agents, which we have assumed throughout. Further, as we show in

Appendix C, the last term in the IS curve (13) vanishes when markets are complete, leading to

Ĉt = mEtĈt+1 −
1

σ

(
ît −mEtπ̂t+1

)
. (32)
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Combining the modified IS curve and its Foreign analog with the risk sharing condition (31) yields

the following UIP relationship

ît −mEt {π̂t+1} = î∗t −mEt

{
π̂∗
t+1 − Q̂t+1

}
− Q̂t, (33)

which is like formula (14) in our baseline model except for the stationarizing risk premium com-

ponent ϕB̂∗
t no longer being present. As ϕ is assumed small, we can expect behavioral discounting

to help address UIP-related anomalies also when markets are complete. Indeed, as we show in

Appendix C, this version of our model implies very similar Fama regression coefficients to those

reported in Table 2 for the incomplete markets setup. It also generates very similar attenuation of

current and expected monetary policy shocks to what we discuss in the subsequent sections.

Figure 3. Engel Regression Results – Role of Market Incompleteness
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Note: The left panel shows the impulse response of the real exchange rate to a 25bp (100 bp annualized) negative

monetary policy shock, expressed in percent deviation from the steady state. The numbers are generated using

calibrated parameter values, with m = 0.85. The right panel shows the corresponding Engel regression coefficients,

i.e., bs,1 from Equation (29), as a function of s.

However, market incompleteness turns out to be key in the context of the predictability sign reversal

puzzle. The explanation is linked to the role played by the exchange rate in restoring the long-run

equilibrium, which we described in Section 5.2, and which we additionally illustrate in Figure 3.

As the figure demonstrates, when markets are incomplete, net foreign asset accumulation driven

by the initially-weak exchange rate must eventually be reversed, allowing the trade balance to

deteriorate. As indicated by formula (30), this is exactly what flips the excess return sign. While

the former relationship still holds in the complete markets case, net foreign assets no longer play
21



a role in equilibrium exchange rate dynamics, which eliminates the flip in the exchange rate and

excess returns.

6. Monetary Policy Transmission - Inspecting the Mechanism

We now investigate the impact of discounting on monetary transmission, highlighting, in particular,

the role played by openness. Our goal is to provide tractable, analytical foundations by working

with Home and Foreign real interest rates defined, respectively, as r̂t ≡ ît − mEtπ̂t+1 and r̂∗t ≡

î∗t −mEtπ̂
∗
t+1. Except for slight differences in these definitions,12 our approach closely follows that

of Gabaix (2020), i.e., we shall obtain valuable insights into how monetary policy and forward

guidance propagate by studying the impact of real interest rate changes in selected periods, while

holding their values fixed at all other horizons.

6.1. Real Exchange Rate. Our point of departure is the discussion of how monetary policy

affects the real exchange rate (RER). Because our focus is on the effects of domestic monetary

policy actions in a small open economy, we treat all foreign variables as fixed. Accordingly, the

RER reaction is key to understand the differences between the closed and open economy setups.

First, by iterating forward on the UIP condition (14), we arrive at

Q̂t = −Et

∞∑
T=t

mT−t
(
r̂T − r̂∗T + ϕB̂∗

T

)
, (34)

where responses of the real exchange rate to real interest rate changes at different horizons are

also depicted in the left panel of Figure 4.13 Both the formula and the figure make it immediately

apparent that cognitive discounting dampens the effects of future real interest rate changes on the

current exchange rate, making them less relevant the longer the horizon. In so doing, the move from

rational expectations to behavioral discounting thus appears to immediately address the exchange

rate forward guidance puzzle of Gaĺı (2020).

It is worth noting, and may seem puzzling, that the RER response depicted in Figure 4 is declining in

FG horizon at a rate faster than m, and even absent discounting (e.g., the purple line corresponding

12 To reiterate: in contrast to Gabaix (2020), we do not assume away the impact of biases in inflationary perceptions
on the real interest rate.

13 We normalize by dividing through the response to an unanticipated shock at horizon zero.
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Figure 4. Effects of Forward Guidance: Real Exchange Rate
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Note: This figure shows the normalized initial response of the real exchange rate as a function of forward guidance

horizon. The left panel depicts the case where the UIP premium ϕ = 0.01 and the right panel corresponds to the

case of no UIP premium (ϕ = 0).

to m = 1 shows decay even though one could, in principle, expect a flat line).14 This apparent

discrepancy – between the rate of decay as a function of forward guidance horizon and m – arises

because of the endogenous response of net foreign assets. The strength of that response varies

depending on FG horizon and it feeds back to the UIP premium. The right panel of Figure 4

corroborates this conjecture by applying Equation (34) while keeping ϕ equal to 0, and it shows,

in particular, that in that case the purple line remains flat.

To clarify why NFA responds differently at different FG horizons, even for m = 1, it proves

useful to iterate forward on the consumption Euler condition (Equation 13) to obtain the following

relationship

Ĉt = − 1

σ
Et

∞∑
T=t

mT−tr̂T + (1−m)
1− β

1 + σ
µφ

Et

∞∑
T=t

mT−tB̂∗
T . (35)

Absent discounting, and because we fix r̂t = 0 at all horizons except for the forward guidance

horizon H, the expression simplifies to

Ĉt =

 ∀t ≤ H : − 1
σ r̂H ,

∀t > H : 0.

We thus see that the initial response of consumption does not depend on H, and that consumption

remains elevated at that higher level for the entire duration of forward guidance. For example, an

14 Importantly, however, in that case the forward guidance puzzle is still present and FG remains very potent even at
distant horizons. This is because the purple line corresponding to m = 1 does not asymptote to zero but eventually
stabilizes at around 0.4.
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anticipated 1pp decrease in the real interest rate ten periods ahead (holding real rates in all other

periods unchanged) implies that consumption will be 1
σ percent above the steady state level for

exactly eleven periods. As we shall now discuss, a similar relationship can be derived for output (see

Equation 37), with the crucial difference that, for realistic calibrations, the interest rate elasticity

exceeds 1
σ . This means that the longer the horizon of an anticipated decrease in the real interest

rate, the longer the period over which the economy generates trade surpluses, which eventually

translate into larger NFA accumulation.

6.2. Output. Combining the consumption Euler Equation (13) with the resource constraint (18)

and the UIP condition (14), and using the small open economy assumption to eliminate foreign

variables, allows us to derive an IS curve for output15

Ŷt = mEtŶt+1 −
(
1− α

σ
+ η

α(2− α)

1− α

)
r̂t −

[
η
α(2− α)

1− α
ϕB̂∗

t − (1−m)(1− α)
1− β

1 + σ
µφ

]
B̂∗

t . (36)

Iterating forward on this equation yields

Ŷt = −
(
1− α

σ
+ η

α(2− α)

1− α

)
Et

∞∑
T=t

mT−tr̂T

−

[
η
α(2− α)

1− α
ϕ− (1−m)(1− α)

1− β

1 + σ
µφ

]
Et

∞∑
T=t

mT−tB̂∗
T , (37)

where the closed economy case readily obtains by setting α = 0 and imposing B̂∗
t = 0 for all t.

Initially focusing on the first line allows us to derive some key predictions. First we observe that,

relative to a closed economy, the same change in the real interest path will have a stronger direct

effect on output, unless trade elasticity η is very low. More specifically, the formal criterion can be

stated as

η <
1− α

2− α
σ−1 ≤ 1

2
σ−1,

which is satisfied for typical parameterizations used in the open economy macroeconomic literature,

including papers allowing for low trade elasticity.16 In addition, and in line with the closed economy

case, discounting dampens the effects of real interest rate changes occurring further into the future,

helping mitigate the output part of the FGP.

15 See also Appendix B for details of the derivation.
16 See Bodenstein (2010) for a discussion of the consequences of low trade elasticity.
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Figure 5. Effects of Forward Guidance: Open vs Closed Economy

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

O
u

tp
u

t

Open

0 2 4 6 8 10 12 14 16
0

5

10

15

In
fl
a

ti
o

n

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

O
u

tp
u

t

Closed

0 2 4 6 8 10 12 14 16
0

5

10

15

In
fl
a

ti
o

n

m=0.5 m=0.75 m=0.9 m=1

Note: This figure shows the normalized initial response of output and inflation as a function of forward guidance

horizon. The left panel represents the open economy with UIP premium of 0.01 and the right panel represents the

closed economy.

The effect of behavioral discounting on the initial response of output to current and future real

interest rate changes of a given size is depicted in the first row of Figure 5. As done for the

real exchange rate, we normalize by the contemporaneous output response, with the chart clearly

showing that lower m translates into a faster decay of FG efficiency (as a function of its horizon),

both in the open and closed economy cases.

The differences between the open and closed economy cases can be traced back to the endogenous

net foreign asset response, i.e., the second line of Equation (37) (which is absent in the closed

economy case, in which B∗
t ≡ 0). Following a pattern similar to the one described before, a longer

FG horizon leads to greater accumulation of net foreign assets, which tends to depress output. The

latter follows from the fact that the term in the square brackets is positive, at least for values of ϕ

necessary to induce stationarity. Overall, and in line with Figure 5, the rate of decay is faster in

an open economy, which actually also holds absent discounting. Crucially, however, when m = 1
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FG remains very efficient over very long horizons as the purple line does not go down to zero, but

rather asymptotes at around 0.6, consistent with studies confirming the presence of the FGP also

in rational expectations open economy models.

6.3. Inflation. We first focus on the domestic component of inflation, which is characterized in

Equation (15), repeated here for ease of reference

π̂H,t = βmEt{π̂H,t+1}+ κ

(
σĈt + φŶt +

α

1− α
Q̂t − (1 + φ)ẑt

)
.

Building on the preceding analysis, we know that – relative to the closed economy case – a change in

the real interest rates (current or future) translates into unchanged (ifm = 1) or greater responses of

consumption, greater responses of output (for typical values of trade and intertemporal elasticities),

with real exchange rate depreciations additionally boosting marginal cost. It then follows that

higher responsiveness of domestic inflation to real interest rate changes also translates into greater

responsiveness of CPI inflation.

However, as the second row of Figure 5 highlights, the FGP for inflation is much less pronounced

in an open economy, even without discounting. The reasons why may not appear immediately

obvious, particularly as domestic inflation is the discounted sum of marginal costs, and all three

marginal cost components depend on the future path of real interest rates. After some algebra,

where we drop productivity shocks to focus on the effects of domestic monetary policy and invoke

the small open economy assumption that allows us to treat foreign rates as exogenous, we can

characterize the relationship between inflation and domestic real rates as follows17

π̂t ≈ − κa

β(1−m)
Et

∞∑
T=t

[
mT−t+1 − (βm)T−t+1

]
r̂T − α

1− α
Et

∞∑
T=t

mT−tr̂T − α

1− α
Q̂t−1, (38)

where we have defined

a ≡ φ

(
1− α

σ
+ η

α(2− α)

1− α

)
+

1

1− α
,

and where the approximation comes from omitting several terms loading on NFA, which are quan-

titatively very small, and which would otherwise obscure the non-monotonic relationship between

forward guidance horizon T − t and inflation.

17 See Appendix B for full details of the derivation.
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In the limiting case β → 1, we arrive at

π̂t ≈ −κaEt

∞∑
T=t

(T − t+ 1)mT−tr̂T︸ ︷︷ ︸
Domestic Marginal Cost

− α

1− α
Et

∞∑
T=t

mT−tr̂T︸ ︷︷ ︸
Import Prices

− α

1− α
Q̂t−1, (39)

where the first term captures effects due to marginal cost, while the other one is related to the

direct effects of exchange rates on prices of imported goods. Notably, the key implications of

Equation (39) are perfectly consistent with the patterns documented in Figure 5. In particular,

and because of the first component (the only one present in the closed economy case), which is

a product of exponential decay and linear growth, the relationship between the effect on inflation

and FG horizon is linear for no discounting m = 1, non-monotonic for small discounting (increasing

and then decreasing), and decreasing for strong discounting.18 In an open economy the picture is

modified by the presence of the second component, which does not depend on the FG horizon for

m = 1, and the relative weight on which increases in openness α. As a consequence, the forward

guidance puzzle is less pronounced in an open economy, implying that the mitigating effect of

discounting on the FGP is also relatively smaller compared to the closed economy case.

7. Dynamic Effects of Monetary Policy

7.1. Conventional Monetary Shocks. Having developed intuition on how cognitive discounting

affects transmission of real interest rates, we now move on to more standard policy experiments.

We first study the dynamic responses to monetary policy (MP) shocks, defined conventionally as

innovations in the policy rule describing the evolution of the nominal rate (20). Broadly, since our

empirically motivated Taylor rule features interest rate smoothing, the outcomes shall end up being

a combination of standard monetary policy and forward guidance shocks studied in the preceding

sections. Given these tight links, in what follows we augment numerical simulations using the

analytical results just described.

Figure 6 presents impulse responses to 100bp (annualized) worth of conventional monetary easing,

contrasting the closed economy version of our model (row 1) with its fully-fledged, open econ-

omy counterpart (rows 2 and 3). We immediately see that discounting fairly efficiently dampens

the effects of current monetary policy shocks. Intuitively, this occurs because under interest rate

smoothing the policy rate will be lower for some time into the future, which behavioral agents

18 This explains the hump shape also documented, though not accounted for, in Gabaix (2020).
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Figure 6. Dynamic Responses to a Monetary Easing
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Note: This figure shows the impulse response functions to a 25bp (100 bp annualized) negative monetary policy

shock. The first row depicts responses of output, CPI inflation and the nominal interest rate for the closed economy.

The second and the third rows show IRFs for variables in the open economy. Responses of inflation and the interest

rate are in annualized percentage points.

“cognitively discount”, i.e., they expect a less low path than the one that ends up materializing.

Consistently with analytical results from the previous section, discounting matters more for do-

mestic inflation than for the exchange rate, and hence also for CPI. As output depends on the

CPI-deflated real interest rate, its response is also less sensitive to discounting in the open economy

case.

Another notable open economy finding is that discounting tends to make the accumulation of net

foreign assets more persistent. Consistently with the line of reasoning provided above, agents

underestimate the persistence of future interest rates and so end up being surprised by their actual

level, which plays out as additional unanticipated shocks, which in turn delay NFA accumulation.

This is entirely in line with the preceding discussion of stationarity issues, and specifically with the
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observation that net foreign assets are closer to being non-stationary under cognitive discounting.

More inertial NFA also translates into more persistence in the real exchange rate, delaying its

eventual appreciation relative to the steady state value, thus also postponing the sign reversal in

excess returns that we discussed in Section 5.2.

7.2. Low for Longer Policies. We now focus on a variant of monetary policy often dubbed as

“low for longer” (LFL). The idea, due to Reifschneider and Willams (2000), is that if the policy

rate cannot be lowered by the desired amount, it may be cut by less, but kept at that level for a

prolonged period of time. Model-based analyses (see e.g., Kiley and Roberts, 2017) have suggested

that these policies are effective, which is perhaps unsurprising as the commitment to keeping rates

low means that LFL policies inherit some of the (counterfactual) potency of forward guidance.

Figure 7. Low for Longer Policy
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Note: In this figure, we show the impulse response functions to two and a half years of a “Low for Longer” policy

for different values of m.
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The experiments we consider in this section implicitly assume that the central bank desires to

provide stimulus to the economy by unexpectedly deviating from the Taylor rule by 100bp (annu-

alized), as in Figure 6. Since the proximity of the effective lower bound makes that impossible, it

therefore lowers the policy rate by 10bp, but keeps it at that level for 10 quarters, with Figure 7

presenting the outcomes. Comparing these to Figure 6, for the the case of no discounting, confirms

that LFL is very effective in both closed and open economy cases, which implicitly reflects the

underlying FGP.

In line with our discussion in Section 6, which highlighted that the forward guidance puzzle was

more pronounced in a closed economy setting, we find that “low for longer” policies are particularly

efficient in that case as well. However, even for moderate levels of discounting, e.g., m = 0.9,

these results can flip sign, with LFL becoming less efficient than the corresponding “conventional”

stimulus. Finally, but also in line with our discussion in Section 6, Figure 7 highlights that the

potency of “low for longer” policies is relatively more affected by “cognitive discounting” in the

closed economy case.

8. International Monetary Policy Spillovers

As we shall show in this Section, our behavioral open economy model also features interesting im-

plications for international monetary spillovers. To analyze these, we first combine the consumption

Euler equation (13) with the resource constraint (18) and iterate on the outcome to arrive at

Ŷt = αŶ ∗
t︸︷︷︸

Demand Channel

+ η
α(2− α)

1− α
Q̂t︸ ︷︷ ︸

Expenditure Switching Channel

−1− α

σ
Et

∞∑
T=t

mT−tr̂T︸ ︷︷ ︸
Endogenous Home Policy Response

+(1−m)(1− α)
1− β

1 + σ
µφ

Et

∞∑
T=t

mT−tB̂∗
T︸ ︷︷ ︸

Myopia “Damper”

. (40)

The first two terms on the right hand side represent two traditional channels of international

spillovers. The first one captures the positive effect of an increase in foreign output, and hence

demand for Home economy’s exports. The second is associated with expenditure switching effects

caused by the endogenous reaction of the real exchange rate. As the exchange rate appreciates when

foreign interest rates go down, this channel acts in the opposite direction to the foreign demand
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channel, potentially more than offsetting the positive effects of an increase in foreign output.19

The third term describes the effects of an endogenous response of the Home real interest rate,

highlighting the fact that any meaningful evaluation of international spillovers must condition on

the monetary policy reaction of the recipient country.20 Finally, the last term shows up only under

myopia, and will typically make the response of Home output to Foreign monetary easing smaller,

as the net foreign asset position deteriorates due to an exchange rate appreciation.

Figure 8. Monetary Spillovers
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Note: This figure shows the impulse response functions to a 25bp (100 bp annualized) negative foreign monetary

policy shock. The first row shows the case where m∗ = m while the second row corresponds to m∗ = 1.

To provide more insight on how behavioral discounting affects the size of spillovers, and in line

with the preceding observation on their conditionality, we further assume that the Home monetary

authority always keeps the real interest rate constant, so that the third term in Equation (40)

disappears and the expenditure switching channel represented by the reaction of the real exchange

rate becomes exogenous to the Home economy. Iterating the foreign IS curve (21) forward, substi-

tuting in the outcome for foreign output, and then using the UIP condition (34) to substitute for

19 Notably, for given reactions of foreign output and the real exchange rate, the relative importance of these two
spillover channels does not depend on discounting.

20 Recall that, and as explained in Section 7.1, discounting moderates the Home interest rate channel.
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the real exchange rate, yields

Ŷt ≈
(
−α

σ
+ η

α(2− α)

1− α

)
Et

∞∑
T=t

mT−tr̂∗T , (41)

where the approximation comes from omitting terms depending on the net foreign asset position,

which are quantitatively small and hence immaterial for the results.

Note that, unless the trade elasticity is very low (the formal condition being again η < 1−α
2−ασ

−1 ≤
1
2σ

−1, see Section 6.2), the coefficient on the real interest rate path is positive and hence, assuming

constant real interest rates at Home at all times, output spillovers from current or expected future

monetary easing abroad are negative.

How is their magnitude affected by discounting? Similarly to the case of domestic effects discussed

in Section 6, the impact of future real interest rate changes on other countries’ output declines with

agent myopia, so that forward guidance becomes less powerful also in the context of international

spillovers. Furthermore, to the extent that foreign monetary policy easing generates persistent

effects on the foreign real rate, as is typically the case because of interest rate smoothing, the

international transmission of current policy easing in the Foreign economy is also weaker. This effect

is illustrated in the first row of Figure 8, which also demonstrates that the role of both spillover

channels decreases in the degree of myopia, resulting in a lower response in Home economy’s output,

conditional on it keeping its own real interest rate constant.

Finally, it is also worth noting that spillovers can be even less negative if agents are less myopic in

the Foreign economy compared to Home agents. In the more general case of m∗ ̸= m, Equation

(41) becomes

Ŷt ≈ −α

σ
Et

∞∑
T=t

m∗T−tr̂∗T︸ ︷︷ ︸
Demand Channel

+ η
α(2− α)

1− α
Et

∞∑
T=t

mT−tr̂∗T︸ ︷︷ ︸
Expenditure Switching Channel

, (42)

where, again, the first term represents the foreign demand channel while the second one corresponds

to the expenditure switching channel. Clearly, m∗ > m increases the importance of the former,

which acts towards positive cross-country comovement in output conditional on foreign monetary

shocks. We illustrate this effect in the second row of Figure 8 by assuming m∗ = 1, i.e. we consider

the extreme case of fully rational foreign agents. As explained, myopia of Home agents makes the

effects of foreign monetary policy easing less negative when the Home real interest rate is kept

constant, and can even turn them positive for a sufficiently high degree of discounting.

32



9. Optimal Monetary Policy

We finally discuss the implications of agents’ myopia for the optimal conduct of monetary policy.

To make our analysis tractable, we follow Gali and Monacelli (2005) and make several simplifying

assumptions.21 More specifically, we focus on the case of complete markets and assume the presence

of an employment subsidy that neutralizes the static monopolistic distortion in production of in-

termediate goods. We also stick to our baseline calibration by fixing the elasticity of intertemporal

substitution and price elasticity of international trade at unity. Following most of the behavioral

literature, including Gabaix (2020), the welfare criterion is defined as the utility of a representative

household under rational expectations. All of the above allows us to approximate the welfare loss

in quadratic form as (see Appendix D for derivations)

Ut ≈ −1− α

2
Et

∞∑
T=t

βT−t

[
µ

κ(µ− 1)
π̂2
H,T + (1 + φ)x̂2T

]
+ t.i.p., (43)

where x̂t ≡ log(Yt/Ȳt) is the output gap, defined as the log-deviation of output from its efficient

level Ȳt, which coincides with flexible price output under rational expectations, and t.i.p. stands

for terms independent of policy.

Having the welfare loss approximation in quadratic form allows us to characterize the optimal

policy problem to second-order, using the linearized equilibrium conditions that summarize agents’

decisions as constraints. The key one is the domestic Phillips curve (15), which we can rewrite in

output gap terms as follows

π̂H,t = mβEt{π̂H,t+1}+ κ(1 + φ)x̂t + ξt, (44)

where we also add a standard cost-push shock ξt to create a monetary policy tradeoff. Solving the

problem under commitment (timeless perspective) results in the following optimal targeting rule

π̂H,t +
µ− 1

µ
(x̂t −mx̂t−1) = 0, (45)

and the optimal producer price level follows

P̂H,t =
µ− 1

µ

[
x̂t − (1−m)

t−1∑
T=0

x̂T

]
(46)

21 By making these assumptions we essentially extend the analysis in Gali and Monacelli (2005) to the behavioral
case. See De Paoli (2009) for how market incompleteness complicates formulation of optimal policy under RE.
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with P̂H,t ≡ log(PH,t/PH,−1) = log(PH,t) denoting the log-deviation of the producer price index

from its initial level, and where the latter is normalized to unity without loss of generality.

Formulas (45) and (46) above are the same as in Gabaix (2020) and Benchimol and Bounader

(2019), who however consider closed economy setups where the distinction between domestic and

final consumption goods disappears. Absent cost-push shocks, it is then optimal for the central

bank to perfectly stabilize producer prices as that guarantees an efficient allocation. In contrast,

when cost-push shocks are present, the monetary authority should deviate from period by period

stabilization of producer prices. Importantly, and in line with optimal monetary policy analysis

with closed economy behavioral models, equation (46) implies that, unless m = 1 as in the RE case,

price level targeting is no longer optimal even in the long run: positive cost-push shocks (which

open a negative output gap) push the price level permanently up.

To illustrate and further study these results, Figure 9 plots optimal impulse responses to a positive

i.i.d. cost-push shock. When agents are forward-looking and the central bank can credibly commit

to future actions, it is optimal to generate a longer lasting recession even when the shock has zero

persistence. This is because promising future deflation helps bring the current inflation down. This

motive becomes weaker when agents (firms in this case) are myopic, and hence the optimizing policy

maker exploits it less. As a result, despite tightening more and generating a deeper fall in output

on impact, the outcome is a higher and permanent increase in producer prices. In this way, when

agents are myopic, optimal monetary policy under commitment comes closer to the discretionary

case. Indeed, in the extreme case of m = 0, the optimal responses to an i.i.d. cost-push shock

correspond to the discretionary policy outcome: output falls below its steady state level only in the

period of the shock while the price level goes up on impact and then remains flat.

These considerations have important consequences in an open economy context. Since, indepen-

dently of the degree of discounting, the optimal response is to tighten monetary policy, the exchange

rate appreciates on impact and then depreciates. However, while it eventually comes back to its

initial level when agents are fully rational, it becomes permanently weaker when they are instead

myopic, consistent with a permanent increase in the producer price level. An implication is that,

when monetary policy is conducted optimally, the nominal exchange rate follows a random walk,

even when all relative prices such as the terms of trade or the real exchange rate are stationary. Our

results thus suggest that attempting to use the exchange rate as a nominal anchor – a potentially
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Figure 9. Optimal Responses to a Cost-Push Shock
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Note: This figure shows the impulse response functions to a 0.25% i.i.d. cost-push shock. The purple and green

lines indicate the extreme cases of no discounting (m = 1) and full discounting (m = 0).

attractive alternative for emerging economies lacking monetary credibility (see, e.g., Frankel, 2010)

– becomes considerably less appealing when agents are myopic.

We finally note that optimal policy in an economy with behavioral agents makes the net foreign

asset position less responsive to shocks, as can be gleaned from the last panel of Figure 9. Again,

this feature reflects incentives of the policy maker to exploit forward-looking behavior of agents to

keep consumption down for longer, which is reflected in a positive value of net portfolio vis-a-vis

the rest of the world. As explained before, this incentive is lower when agents are myopic and, in

the extreme case of m = 0, net foreign assets do not respond at all to temporary cost-push shocks.
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10. Conclusions

In this paper, we have extended the standard open economy New Keynesian framework by adding

behavioral agents. We have shown that the resulting model significantly improves upon its fully

rational variant along many dimensions. First, it helps resolve several puzzles related to the un-

covered interest rate parity condition in a way that is consistent with recent empirical evidence

reassessing those puzzles using survey-based measures of expectations. Second, accounting for my-

opia decreases the efficacy of policies that rely on announcements of future actions, like “low for

longer”, thus mitigating the forward guidance puzzle. Third, by decreasing the relative strength of

the exchange rate channel, the behavioral open economy model can better account for international

output comovement. We have also shown that cognitive discounting has important implications

for the optimal conduct of monetary policy, including calling into question the desirability of using

the exchange rate as a nominal anchor.

While incorporating behavioral aspects in a consistent way is not costless, and doing so can quickly

become quite involved in more complex environments, we believe that the price is worth paying

as the benefits in the form of better empirical fit and more reasonable implications are significant.

As our analysis suggests, this is true both when working with closed and open economy models,

but, arguably, particularly so for the latter on account of the numerous anomalies which cognitive

discounting helps eliminate.
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Appendices

Appendix A. Key Derivations

In this Appendix we present the key steps necessary to derive the linearized equilibrium conditions

of a small open economy version of our model. Unless indicated otherwise, we use the variable

transformations defined in Section 3.

A.1. Household Budget Constraint and Optimality Conditions. Linearizing the budget

constraint (3) yields

B̂∗,h
t + B̂h

t = β−1
(
B̂∗,h

t−1 + B̂h
t−1 + µ−1(Ŵt + N̂h

t ) + D̂t − Ĉh
t

)
, (A.1)

where D̂t ≡ (Dt − D)/Y , and where we used the assumption of zero steady state assets (B∗ =

B = 0), as well as the result that the steady state labor share is the inverse of the (gross) product

markup µ.

Given the household’s utility function (1) and budget constraint (3), the optimization problem

yields the following linearized Euler equations associated with Home and Foreign bond holdings

Ĉh
t = ÊtĈ

h
t+1 −

1

σ
Êt

{
ît − π̂t+1

}
, (A.2)

Ĉh
t = ÊtĈ

h
t+1 −

1

σ
Êt

{
î∗t − π̂∗

t+1 + Q̂t+1 − Q̂t − ϕB̂∗
t

}
, (A.3)

where ϕ = Φ′(0), and the intratemporal labor supply condition is

Ŵt = σĈh
t + φN̂h

t . (A.4)

Combining equations (A.2) and (A.3) results in

Êt

{
ît − π̂t+1

}
= Êt

{
î∗t − π̂∗

t+1 + Q̂t+1 − Q̂t − ϕB̂∗
t

}
. (A.5)

Since this equation features expectations in aggregate variables that are beyond the control of an

individual agent, and which are expressed as deviations from their respective steady state values,

we can use the behavioral discounting formula (11) for k = 0, 1 to write

ît −mEt {π̂t+1} = î∗t −mEt

{
π̂∗
t+1 − Q̂t+1

}
− Q̂t − ϕB̂∗

t , (A.6)

which is the UIP condition (14) in the main text.

A.2. Deriving the Individual Consumption Function. Let us iterate the linearized budget

constraint forward and use the standard transversality condition to write

B̂∗,h
t−1 + B̂h

t−1 = Êt

∞∑
T=t

βT−t
(
Ĉh
T − µ−1(ŴT + N̂h

T ) + D̂T

)
. (A.7)
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Note that by multiplying the Euler equation (A.2) by β and iterating forward we obtain

Ĉh
t = (1− β)Êt

∞∑
T=t

βT−tĈh
T − β

σ
Êt

∞∑
T=t

βT−t
(
îT − π̂T+1

)
. (A.8)

Combining the two and rearranging yields

Ĉh
t = (1− β)

(
B̂∗,h

t−1 + B̂h
t−1

)
+ Êt

∞∑
T=t

βT−t

[
(1− β)

(
1

µ
(ŴT + N̂h

T ) + D̂T

)
− β

σ

(
îT − π̂T+1

)]
. (A.9)

We can now use the equilibrium condition (A.4) to eliminate individual labor supply

Ĉh
t = (1− β)

(
B̂∗,h

t−1 + B̂h
t−1

)
+ Êt

∞∑
T=t

βT−t

[
(1− β)

(
φ+ 1

µφ
ŴT − σ

µφ
Ĉh
T + D̂T

)
− β

σ

(
îT − π̂T+1

)]
, (A.10)

and again exploit Equation (A.8) to finally obtain(
1 +

σ

µφ

)
Ĉh
t = (1− β)

(
B̂∗,h

t−1 + B̂h
t−1

)
+ Êt

∞∑
T=t

βT−t

[
(1− β)

(
φ+ 1

µφ
ŴT + D̂T

)
− β

σ

(
1 +

σ

µφ

)(
îT − π̂T+1

)]
. (A.11)

The equation above is the individual consumption function that incorporates labor supply choice.

A.3. Deriving the IS Curve. Since Equation (A.11) features expectations only about aggregate

variables, we can apply to it the behavioral discounting formula (11) for k = 0, 1, 2, ....(
1 +

σ

µφ

)
Ĉh
t = (1− β)

(
B̂∗,h

t−1 + B̂h
t−1

)
+ Et

∞∑
T=t

(βm)T−t

[
(1− β)

(
φ+ 1

µφ
ŴT + D̂T

)
− β

σ

(
1 +

σ

µφ

)(
îT −mπ̂T+1

)]
, (A.12)

so that it now uses the rational expectations operator rather than the subjective one. Since we no

longer need to make a distinction between macroeconomic aggregates and individual choices, we

can drop indexing consumption and assets by h and use the Home bond market clearing condition

Bt = 0. After some algebra, we can write Equation (A.12) recursively(
1 +

σ

µφ

)
Ĉt = (1− β)

(
B̂∗

t−1 + B̂t−1 −mβB̂∗
t −mβB̂t

)
+ (1− β)

(
φ+ 1

µφ
Ŵt + D̂t

)
− β

σ

(
1 +

σ

µφ

)(
ît −mEtπ̂t+1

)
+mβ

(
1 +

σ

µφ

)
Et+1Ĉt+1. (A.13)
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Now we can use the budget constraint (A.1) and the Home currency bond market clearing condition

Bt = 0 to obtain(
β +

σ

µφ

)
Ĉt = (1− β)(1−m)βB̂∗

t +
1− β

µ

(
1

φ
Ŵt − N̂t

)
− β

σ

(
1 +

σ

µφ

)(
ît −mEtπ̂t+1

)
+mβ

(
1 +

σ

µφ

)
Et+1Ĉt+1. (A.14)

Finally, using the optimal labor supply condition (A.4) results in

Ĉt = mEtĈt+1 −
1

σ

(
ît −mEtπ̂t+1

)
+ (1−m)

1− β

1 + σ
µφ

B̂∗
t , (A.15)

which is the aggregate IS curve (13) in the main text.

A.4. Deriving the Phillips Curve. Aggregation of intermediate inputs into final goods according

to Dixit-Stiglitz formulas (4) yields the following isoelastic demand condition

Y f
H,t + Y ∗,f

H,t =

(
P f
H,t

PH,t

) µ
1−µ [

YH,t + Y ∗
H,t

]
, (A.16)

where the aggregate price indices are

PH,t =

[∫ 1

0

(
P f
H,t

) 1
1−µ

df

]1−µ

, and P ∗
H,t =

[∫ 1

0

(
P ∗,f
H,t

) 1
1−µ

df

]1−µ

, (A.17)

and where we used the law of one price P f
H,t = εtP

∗,f
H,t , which also implies PH,t = εtP

∗
H,t.

Using the demand conditions (A.16) and production technology (5) allows us to rewrite the firm

problem consistent with maximization of (6) as

max
P f
H,t

Êt

∞∑
T=t

θT−tΛt,T

[
P f
H,t − PT

WT

zt

](
P f
H,t

PH,T

) µ
1−µ [

YH,T + Y ∗
H,T

]
. (A.18)

The first order condition is

Êt

∞∑
T=t

θT−tΛt,T

[
P f
H,t − µPTMCT

]( P f
H,t

PH,T

) µ
1−µ [

YH,T + Y ∗
H,T

]
= 0, (A.19)

where MCt ≡ (WtPt)/(PH,tzt) is real marginal cost deflated by the producer price index.

As in a textbook closed economy case (see e.g. Gaĺı, 2015), linearizing around the zero inflation

steady state yields

P̂ ⋄
H,t = (1− βθ)

∞∑
T=t

(βθ)T−tÊt

{
π̂H,t+1 + ...+ π̂H,T + M̂CT

}
, (A.20)

where P̂ ⋄
H,t ≡ log(P f

H,t/PH,t), M̂Ct ≡ log(MCt/MC), π̂H,t ≡ log(PH,t/PH,t−1) and where we used

the result that all reoptimizing firms choose the same price to drop the f superscript. Since the

subjective expectation operator now concerns only variables beyond individual firm control and all
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of them are expressed as deviations from steady state, we can apply the discounting formula (11)

to obtain

P̂ ⋄
H,t = (1− βθ)

∞∑
T=t

(βθ)T−tEt

{
mπ̂H,t+1 + ...+mT−tπ̂H,T +mT−tM̂CT

}
. (A.21)

Note that this step differs from Gabaix (2020), who discounts all terms in the curly bracket of

Equation (A.20) by mT−t. By doing so he implicitly applies myopia to nominal rather than real

marginal cost, even though the former is not constant in the steady state (see also Benchimol and

Bounader (2019) for a discussion).

After some algebra, this can be written recursively as

P̂ ⋄
H,t − βθmEtP̂

⋄
H,t+1 = (1− βθ)M̂Ct + βθmEt {π̂H,t+1} . (A.22)

Note that the definition of the price index (A.17) implies

π̂H,t = (1− θ)(P̂ ⋄
H,t + π̂H,t) =

1− θ

θ
P̂ ⋄
H,t. (A.23)

Combining this with Equation (A.22) and rearranging yields

π̂H,t = mβEt {π̂H,t+1}+
(1− βθ)(1− θ)

θ
M̂Ct, (A.24)

which is Equation (15) in the main text.

A.5. Deriving the Marginal Cost Equation. The optimal composition of the consumption

basket (2) implies the following formula for the aggregate price index Pt

Pt =
[
(1− α) (PH,t)

1−η + α (PF,t)
1−η
] 1

1−η
, (A.25)

which leads to

P̂H,t = − α

1− α
P̂F,t = − α

1− α
Q̂t, (A.26)

where P̂H,t = log(PH,t/Pt) , P̂F,t = log(PF,t/Pt), and where the last equality follows from the

definition of the real exchange rate Qt = εtP
∗
t and the small open economy version of producer

currency pricing PF,t = εtP
∗
t .

Combining labor market clearing condition (9), with the firm-level production function (5), and

the firm’s demand conditions (A.16) yields

Nt =
YH,t + Y ∗

H,t

zt
∆t, (A.27)

where

∆t ≡
∫ 1

0

(
P f
H,t

PH,t

) µ
1−µ

df (A.28)
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is a measure of price dispersion. Defining aggregate output as the sum of domestic production and

exports results in the following aggregate production function

Yt ≡ YH,t + Y ∗
H,t =

zt
∆t

Nt, (A.29)

the linearized version of which is

Ŷt = ẑt + N̂t − ∆̂t. (A.30)

Given the problem of firms, their marginal cost deflated by producer prices is

M̂Ct = Ŵt − P̂H,t − ẑt, (A.31)

where P̂H,t = log(PH,t/Pt). Using Equation (A.26) to substitute in for P̂H,t, labor supply condition

(A.4) to eliminate Ŵt, Equation (A.30) to eliminate N̂t, and the well-known result that price

dispersion is of second order (see, e.g., Woodford, 2003) yields

M̂Ct = σĈt + φŶt +
α

1− α
Q̂t − (1 + φ)ẑt, (A.32)

which is Equation (16) in the main text.

A.6. Deriving the Goods Market Clearing Condition. Our definition of aggregate output

(A.29) together with market clearing conditions (10) imply

Yt = CH,t +
1− ζ

ζ
C∗
H,t. (A.33)

Plugging in for the optimal composition of the consumption basket then results in

Yt = (1− α)

(
PH,t

Pt

)−η

Ct +
1− ζ

ζ
α∗
(
P ∗
H,t

P ∗
t

)−η

C∗
t . (A.34)

The small open economy assumption and producer currency pricing imply C∗
t = Y ∗

t and P ∗
H,t =

PH,t/εt. This allows us to write

Yt = (1− α)

(
PH,t

Pt

)−η

Ct +
1− ζ

ζ
α∗
(
PH,t

PtQt

)−η

Y ∗
t . (A.35)

Linearization then yields

Ŷt = (1− α)Ĉt − (1− α)ηP̂H,t + αŶ ∗
t − αη(P̂H,t − Q̂t). (A.36)

Using Equation (A.26) to eliminate P̂H,t and rearranging terms results in

Ŷt = (1− α)Ĉt + αŶ ∗
t + η

α(2− α)

1− α
Q̂t, (A.37)

which is equation (18) in the main text.
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Appendix B. Additional Derivations

B.1. Deriving Equation (36). Eliminating consumption from Equation (13) using the resource

constraint (18) results in

Ŷt = mEtŶt+1 + α
(
Ŷ ∗
t −mEtŶ

∗
t+1

)
+ η

α(2− α)

1− α

(
Q̂t −mEtQ̂t+1

)
− 1− α

σ

(
ît −mEtπ̂t+1

)
+ (1−m)(1− α)

1− β

1 + σ
µφ

B̂∗
t , (B.1)

and exploiting the UIP condition (14) then yields

Ŷt = mEtŶt+1 + α
(
Ŷ ∗
t −mEtŶ

∗
t+1

)
+ η

α(2− α)

1− α

(
î∗t − ϕB̂∗

t −mEt

{
π̂∗
t+1

}
− ît +mEt {π̂t+1}

)
− 1− α

σ

(
ît −mEtπ̂t+1

)
+ (1−m)(1− α)

1− β

1 + σ
µφ

B̂∗
t . (B.2)

When considering the effects of Home monetary policy, we can drop foreign variables as they

are exogenous on account of the small open economy assumption. By rearranging and using the

definition of the ex ante real interest rate r̂t ≡ ît −mEtπ̂t+1 we then arrive at

Ŷt = mEtŶt+1 −
(
1− α

σ
+ η

α(2− α)

1− α

)
r̂t −

[
η
α(2− α)

1− α
ϕ− (1−m)(1− α)

1− β

1 + σ
µφ

]
B̂∗

t , (B.3)

which is Equation (36) in the main text.

B.2. Deriving Equations (38) and (39). By combining equations (15) and (16), and iterating

forward on the outcome, we obtain

π̂H,t = κEt

∞∑
T=t

(βm)T−t

(
σĈT + φŶT +

α

1− α
Q̂T − ẑt

)
, (B.4)

Note that each of the three endogenous variables defining real marginal cost (last bracket above) can

be expressed as a function of the current and expected future real interest rates, see in particular

equations (35), (37) and (34). Ignoring terms associated with the net foreign asset position (as they

are small), omitting productivity shocks (as we focus on the effects of domestic monetary policy),

and consistently dropping foreign variables (on account of the the small open economy assumption)

allows us to write

σĈt + φŶt +
α

1− α
Q̂t ≈ −aEt

∞∑
T=t

mT−tr̂T , (B.5)

where a ≡ φ
(
1−α
σ + ηα(2−α)

1−α

)
+ 1

1−α . Plugging this into Equation (B.4) yields

π̂H,t ≈ −κaEt [r̂t +m (1 + β) r̂t+1 + ...+mn (1 + β + ...+ βn) r̂t+n + ...]

= −κaEt

∞∑
T=t

mT−t+1 − (βm)T−t+1

m(1− β)
r̂T . (B.6)
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Recall that CPI inflation is given by Equation (17). Exploiting relationships (B.6) and (34), and

again ignoring terms related to net foreign assets, yields

π̂t ≈ − κa

m(1− β)
Et

∞∑
T=t

[
mT−t+1 − (βm)T−t+1

]
r̂T − α

1− α
Et

∞∑
T=t

mT−tr̂T − α

1− α
Q̂t−1, (B.7)

which is Equation (38) in the main text.

In the limit β → 1 we also have M → m, and Equation (B.6) becomes

π̂H,t = −κaEt [r̂t + 2mr̂t+1 + ...+ (n+ 1)mnr̂t+n + . . .] , (B.8)

which plugged into the definition of CPI (17) results in

π̂t = −κaEt

∞∑
T=t

(T − t+ 1)mT−tr̂T − α

1− α
Et

∞∑
T=t

mT−tr̂T − α

1− α
Q̂t−1, (B.9)

which is Equation (39) in the text.

Finally, the relative weight of the penultimate component in the formula above is

α
1−α

φ
(
1−α
σ + ηα(2−α)

1−α

)
+ 1

1−α

=
1

φ(η − σ−1) (2− α) +
(φ
σ + 1

)
α−1

,

and so it is clearly increasing in the economy’s openness α.

B.3. Deriving Equation (40) and (41). Let us rearrange the output IS curve (B.1) as follows

Ŷt − αŶ ∗
t − η

α(2− α)

1− α
Q̂t = mEt

{
Ŷt+1 + αŶ ∗

t+1 + η
α(2− α)

1− α
Q̂t+1

}
− 1− α

σ
Et

∞∑
T=t

mT−tr̂T + (1−m)(1− α)
1− β

1 + σ
µφ

B̂∗
t . (B.10)

Iterating this forward yields

Ŷt = αŶ ∗
t + η

α(2− α)

1− α
Q̂t −

1− α

σ
Et

∞∑
T=t

mT−tr̂T + (1−m)(1− α)Et

∞∑
T=t

mT−tB̂∗
T , (B.11)

which is Equation (40) in the main text.

To derive Equation (41), we iterate forward on the foreign IS curve (21) and use the outcome

to substitute for Ŷ ∗
t above, exploiting Equation 34 to substitute for Q̂t. After omitting the terms

associated with net foreign assets, assuming constant real interest rate in the Home economy r̂t = 0,

and rearranging we arrive at

Ŷt ≈
(
−α

σ
+ η

α(2− α)

1− α

)
Et

∞∑
T=t

mT−tr̂∗T , (B.12)

which is Equation (41) in the main text.
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Appendix C. Complete Markets Case

C.1. Deriving the IS Curve. When markets are complete, the budget constraint (3) can be

rewritten as

Ch
t + Êtqt,t+1A

h
t+1 = Ah

t +WtN
h
t +Dt, (C.1)

where Ah
t is real stochastic payoff of a portfolio of Arrow-Debreu securities purchased by household

h at time t− 1 and qt,t+1 is the pricing kernel so that Êtqt,t+1A
h
t+1 is the period-t price of a random

payment Ah
t+1 that occurs in period t+1 (see e.g. Woodford (2003) for a discussion). In a behavioral

model like ours, qt,t+1 can be interpreted as the price of a contingent claim that pays one unit of

good in some state at time t + 1, divided by the subjective probability of occurrence of that state

given information at time t.

It then immediately follows that in the steady state we have q = (1+ r)−1 = β. Linearizing around

the zero asset holdings equilibrium yields

ÊtÂ
h
t+1 = β−1

(
Âh

t + µ−1(Ŵt + N̂h
t ) + D̂t − Ĉh

t

)
. (C.2)

Optimization by households still implies the same household-level Euler equation (A.2) and in-

tratemporal optimality condition (A.4). This allows us to proceed exactly as in Appendix (A.2) to

obtain an individual consumption function that is similar to equation (A.11), and which features

expectations about aggregate variables only(
1 +

σ

µφ

)
Ĉh
t = (1− β)Âh

t

+ Êt

∞∑
T=t

βT−t

[
(1− β)

(
φ+ 1

µφ
ŴT + D̂T

)
− β

σ

(
1 +

σ

µφ

)(
îT − π̂T+1

)]
. (C.3)

The remaining derivations follows those presented in Appendix (A.3), except that we now need

to apply behavioral discounting to the expected payoff of the aggregate portfolio of Arrow-Debreu

securities ÊtÂt+1 = mEtÂt+1. This is the key step that makes the difference compared to the

incomplete markets case, in which only risk-free bonds exist and so there is no uncertainty on the

one-period asset return. As a result, we finally arrive at

Ĉt = mEtĈt+1 −
1

σ

(
ît −mEtπ̂t+1

)
, (C.4)

which is equation (32) in the main text and which, unlike its incomplete markets version (13), does

not feature the country’s net foreign assets position.

C.2. Implications. The Fama regression coefficients for the complete markets case are shown in

Table C.1. They are very similar to those reported in Table 2 that describes our baseline incomplete

markets setup.

Figure 10 presents the dynamic responses to monetary easing under complete markets. It shows

that behavioral discounting generates a very similar degree of attenuation in the short-term response
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Table C.1. Fama Regression Coefficients – Complete Markets Model

Parameter m =0.50 m =0.75 m =0.90 m =1.00

ρ = 0.95 -0.12 -0.17 0.25 1.00

ρ = 0.90 0.13 0.28 0.60 1.00

ρ = 0.75 0.49 0.66 0.83 1.00

ρ = 0.50 0.74 0.84 0.93 1.00

of output, inflation and the real exchange rate to that presented in Figure 6 that corresponds to

our baseline model with incomplete markets.

Figure 10. Dynamic Responses to a Monetary Easing – Complete Mar-
kets Model

5 10 15 20
0

0.5

1

Output

5 10 15 20
0

1

2

3
CPI Inflation (ann.)

5 10 15 20
-0.8

-0.6

-0.4

-0.2

0
Nominal Interest Rate (ann.)

5 10 15 20
0

0.2

0.4

0.6

0.8
Real Exchange Rate

5 10 15 20
0

0.5

1

1.5
PPI Inflation (ann.)

5 10 15 20
-1.5

-1

-0.5

0
Net Foreign Assets Position

5 10 15 20
0

0.5

1

1.5
Output (closed)

5 10 15 20
0

0.5

1

CPI Inflation (ann., closed))

5 10 15 20
-1

-0.5

0
Nominal Interest Rate (ann., closed)

m=0.5 m=0.75 m=0.9 m=1

Note: This figure shows the impulse response functions to a 25bp (100 bp annualized) negative monetary policy

shock for the model variant assuming complete markets. The first row depicts responses of output, CPI inflation and

the nominal interest rate for the closed economy. The second and the third rows show IRFs for variables in the open

economy. Responses of inflation and the interest rate are in annualized percentage points. In all the rows, purple

lines correspond to no discounting, i.e., m = 1, while the blue, red and yellow lines indicate values of m equal to 0.5,

0.75 and 0.9 respectively.
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Appendix D. Optimal Monetary Policy

D.1. Deriving a Welfare Loss Function. The goal of the social planner is to maximize

Ut = Et

∞∑
T=t

βT−t

[
(CT )

1−σ

1− σ
− (NT )

1+φ

1 + φ
)

]
, (D.1)

which differs from an individual household’s objective (1) in that it uses rational instead of be-

havioral expectations. Denoting period utility (term in the square bracket) by ut, its second order

Taylor expansion around the steady state is

ut ≈ u+ uCC

(
Ĉt +

1− σ

2
Ĉ2
t

)
+ uNN

(
N̂t +

1 + φ

2
N̂2

t

)
, (D.2)

where uCand uN are the steady state partial derivatives of u with respect to consumption and

labor. As shown by Gali and Monacelli (2005)), optimal steady state allocation for a small open

economy that takes world output and consumption as given implies −uN
uC

= (1−α)CN , which allows

us to write
ut − u

uCC
≈
(
Ĉt +

1− σ

2
Ĉ2
t

)
− (1− α)

(
N̂t +

1 + φ

2
N̂2

t

)
. (D.3)

When markets are complete so that the risk sharing condition (31) holds, the market clearing (18)

condition can be rewritten as

Ŷt = (1− α)Ĉt + αŶ ∗
t + η

α(2− α)

1− α
σ
(
Ĉt − Ĉ∗

t

)
, (D.4)

which simplifies to

Ĉt = (1− α)Ŷt + αŶ ∗
t , (D.5)

when σ = η = 1, which we will use henceforth, and where we also use the small open economy

implication C∗
t = Y ∗

t . This allows us to rewrite Equation (D.3) as

ut − u

uCC
≈ (1− α)

(
Ŷt − N̂t −

1 + φ

2
N̂2

t

)
+ t.i.p., (D.6)

where t.i.p. stands for terms independent of policy.

Let us now use the aggregate production function (A.30) to eliminate N̂t

ut − u

uCC
≈ −1− α

2

(
2∆̂t + (1 + φ)

(
Ŷt − ẑt

)2)
+ t.i.p., (D.7)

where we again exploited the fact that price dispersion ∆t is of second order. Note that, when

markets are complete so that Equations (31) and (D.5) hold, real marginal cost formula (16) can

be rewritten as

M̂Ct = (1 + φ)(Ŷt − ẑt), (D.8)

which implies that flexible price output is proportional to productivity, i.e., we have that

ut − u

uCC
≈ −1− α

2

(
2∆̂t + (1 + φ)x̂2t

)
+ t.i.p., (D.9)
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where x̂t ≡ log(Yt/Ȳt) is the output gap.

As the last step, we can use Lemma 1 and 2 in Gali and Monacelli (2005), originally proved by

Woodford (2003)

∞∑
T=t

βT−t∆̂T =
µ

2(µ− 1)

∞∑
T=t

βT−tVarP̂ f
H,T =

µ

2κ(µ− 1)

∞∑
T=t

βT−tπ̂2
H,T , (D.10)

where VarP̂ f
H,t is the cross-sectional variance of relative prices charged by Home producers. As a

result, we can finally write

Ut ≈ −1− α

2
Et

∞∑
T=t

βT−t

[
µ

κ(µ− 1)
π̂2
H,T + (1 + φ)x̂2T

]
+ t.i.p., (D.11)

which is Equation (43) in the main text.

D.2. Optimal Stabilization. The optimization problem is to minimize the welfare loss function

(43), subject to (44). The Lagrangian for this problem is

Et

∞∑
T=t

βT−t

[
µ

κ(µ− 1)
π̂2
H,T + (1 + φ)x̂2T + δT (π̂H,T −mβπ̂H,T+1 − κ(1 + φ)x̂T − ξT )

]
(D.12)

and the associated first-order conditions under commitment are

2x̂t − κδt = 0, (D.13)

2µ

κ(µ− 1)
π̂H,t + δt −mδt−1 = 0. (D.14)

Combining these two equations results in

π̂H,t +
µ− 1

µ
(x̂t −mx̂t−1) = 0, (D.15)

which is the formulation reported in the main text.

Appendix E. Bayesian Estimation Results

E.1. Data. The domestic block of our model is represented by Canada and the foreign block, which

is essentially a closed economy, is represented by the US. For these two countries, the estimation

uses quarterly data on output, inflation and interest rates, as well as the bilateral exchange rate.

All time series are taken from the Federal Reserve Economic Data (FRED) and transformed as

follows:

(1) Per-Capita Real Output Growth (yobst ): We use the real GDP series labeled as NGDPRSAXD-

CCAQ and quarterly population estimates 17-10-0009-01 (formerly CANSIM 051-0005)

yobst = 100

[
ln

(
GDPt

Popt

)
− ln

(
GDPt−1

Popt−1

)]
(E.1)
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(2) Inflation (πobs
t ): GDP deflator CANGDPDEFQISMEI

πobs
t = 100 ln

[
Deft
Deft−1

]
(E.2)

(3) Interest Rate (iobst ): 3-Month rate IR3TIB01CAM156N

iobst =
Rt

4
(E.3)

(4) Foreign Per-Capita Real Output Growth (yobs,∗t ): We take real GDP GDPC1 and population

level CNP16OV

yobs,∗t = 100

[
ln

(
GDP∗

t

Pop∗t

)
− ln

(
GDP∗

t−1

Pop∗t−1

)]
(E.4)

(5) Foreign Inflation (πobs,∗
t ): Implicit price deflator GDPDEF

πobs,∗
t = 100 ln

[
Def∗t
Def∗t−1

]
(E.5)

(6) Foreign Interest Rate (robs,∗t ): Effective federal fund rate FEDFUNDS

robs,∗t =
R∗

t

4
(E.6)

(7) Exchange Rate (eobst ): Canadian Dollar to US Dollar Exchange Rate CCUSMA02CAQ618N

∆eobst = 100 ln

[
RERt

RERt−1

]
(E.7)

The measurement equations linking the data to the model variables are

yobs,∗t = Ŷ ∗
t − Ŷ ∗

t−1 + y∗ (E.8)

πobs,∗
t = π̂∗

t + π∗ (E.9)

iobs,∗t = î∗t + π∗ + r∗ (E.10)

yobst = Ŷt − Ŷt−1 + y (E.11)

πobs
t = π̂H,t + π (E.12)

iobst = ît + π + r (E.13)

eobst = Qt −Qt−1 + π̂t + π − π̂∗
t − π∗ (E.14)

so that, rather than demeaning data prior to estimation, we use intercepts y, π, r, y∗, π∗, r∗ to

capture trend growth rate of output, average inflation and average real interest rate.

Our baseline sample runs from 1972:Q1 to 2007:Q4. However, for robustness, we also estimate the

model over the periods 1982:Q2–2007:Q4 and 1972:Q1–2019:Q4. In the latter case, which captures

the period when the US policy rate was constrained by the zero lower bound and asset purchase

programs were conducted, we replace the interest rate with the shadow rate estimated by Wu and

Xia (2016).
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E.2. Shocks. The model features seven stochastic shocks affecting monetary policy (νt and ν∗t ),

firm cost (ξt and ξ∗t ) and household intertemporal preferences (gt and g∗t ) in each of the two

countries, as well as an international risk premium shock (ϱt). Monetary shocks show up in the

Taylor rule (see Equation 20) while cost-push shocks enter the Phillips curve as in Equation (44).

Preference shocks are introduced as shifters in the subjective discount factor β, resulting in the

following modification of the IS curve (13)

Ĉt = mEtĈt+1 −
1

σ

(
ît −mEtπ̂t+1

)
+ (1−m)

1− β

1 + σ
µφ

B̂∗
t + gt −mEtĝt+1. (E.15)

Finally, the risk premium shock modifies the UIP condition (14)

ît −mEt {π̂t+1} = î∗t −mEt

{
π̂∗
t+1 − Q̂t+1

}
− Q̂t − ϕB̂∗

t + ϱt (E.16)

All shocks are defined as independent AR(1) processes, except for the monetary policy shocks that

we assume to be white noise.

E.3. Priors and Estimation Method. As is common practice in the DSGE literature, we fix

values of some of the parameters that are weakly identified when relying on standard macroeconomic

time series. This includes the openness parameter α, the discount factor β, elasticity of substitution

between domestic and foreign goods η and sensitivity of intermediation costs to the level of foreign

debt ϕ. All of them are set to the baseline calibration values presented in Table 1.

The remaining parameters are estimated jointly using Bayesian methods. We center the prior

distributions at values chosen in our baseline calibration, while their tightness is motivated by the

literature. Most importantly, the cognitive discounting parameter m is assumed to follow a beta

distribution with mean 0.85 (as chosen by Gabaix, 2020) and standard deviation of 0.05. The

Markov Chain Monte Carlo (MCMC) jump size in the Metropolis-Hastings algorithm is scaled to

ensure a target acceptance rate of around 25 percent. We use 4 parallel chains of 250,000 draws each

and a burn-in phase of 100,000, with convergence of the MCMC chains verified using diagnostic

tests based on trace plots and potential scale reduction factors. Estimation is conducted using

Dynare 4.6.4 (Adjemian et al., 2021).

E.4. Estimation Results. We report the posterior estimates obtained for the baseline sample

1972:Q2–2007:Q4. The results for the other two samples are very similar and available upon re-

quest. Table E.1 presents the characteristics of the prior and posterior distributions for structural

parameters and constants in the measurement equations while estimated shock properties are pre-

sented in Table E.2.
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Table E.1. Estimation: Structural Parameters

Parameter Description Prior Posterior

Dist. Mean SD Mean [5, 95]

m Cognitive Discounting B 0.85 0.05 0.53 [0.44, 0.62]

ϕπ H Taylor Rule, Inflation N 1.50 0.30 1.63 [1.23, 2.01]

ϕ∗
π F Taylor Rule, Inflation N 1.50 0.30 1.39 [1.07, 1.72]

ϕy H Taylor Rule, Output N 0.125 0.13 0.13 [0.04, 0.23]

ϕ∗
y F Taylor Rule, Output N 0.125 0.13 0.09 [0.006, 0.18]

ρ H Interest Rate Smoothing B 0.90 0.05 0.84 [0.80, 0.87]

ρ∗ F Interest Rate Smoothing B 0.90 0.05 0.80 [0.74, 0.86]

θ Calvo Probability B 0.875 0.10 0.95 [0.93, 0.97]

φ Inverse Frisch Elasticity G 3.00 0.75 2.74 [1.58, 3.83]

σ Intertemporal El. of Substitution G 1.00 0.40 3.11 [2.27, 3.91]

r SS H Real Rate N 0.50 0.25 0.23 [-0.16, 0.62]

r∗ SS F Real Rate N 0.50 0.25 0.68 [0.43, 0.92]

π SS H Inflation N 1.00 0.25 1.07 [0.91, 1.24]

π∗ SS F Inflation N 1.00 0.25 0.79 [0.64, 0.95]

y SS H Output Growth N 0.50 0.25 0.44 [0.38, 0.49]

y∗ SS F Output Growth N 0.50 0.25 0.44 [0.41, 0.46]

Note: B stands for Beta, G stands for Gamma and N stands for Normal distribution. H and F indicates Home and

Foreign, respectively. SS denotes the steady state and SD the standard deviation.

Table E.2. Estimation: Shocks

Parameter Description Prior Posterior

Dist. Mean SD Mean [5, 95]

ρg AR H Preference B 0.70 0.10 0.97 [0.96, 0.98]

ρ∗g AR F Preference B 0.70 0.10 0.92 [0.89, 0.96]

ρξ AR H Cost-Push B 0.70 0.10 0.46 [0.36, 0.55]

ρ∗ξ AR F Cost-Push B 0.70 0.10 0.89 [0.85, 0.93]

ρϱ AR Risk Premium B 0.70 0.10 0.98 [0.97, 0.99]

σν SD H Monetary Policy IG 0.25 Inf. 0.32 [0.28, 0.35]

σν∗ SD F Monetary Policy IG 0.25 Inf. 0.36 [0.32, 0.39]

σg SD H Preference IG 0.25 Inf. 4.46 [3.19, 5.65]

σg∗ SD F Preference IG 0.25 Inf. 2.80 [2.07, 3.50]

σξ SD H Cost-Push IG 0.25 Inf. 0.50 [0.43, 0.56]

σξ∗ SD F Cost-Push IG 0.25 Inf. 0.13 [0.11, 0.16]

σϱ SD Risk Premium IG 0.25 Inf. 0.37 [0.31, 0.43]

Note: B stands for Beta and IG stands for Inverted Gamma distribution. AR indicates AR(1) coefficient and SD

the standard deviation of innovation. H and F denote Home and Foreign, respectively.
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