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I.   INTRODUCTION 

Why do firms with long-term projects often borrow on a short-term basis? One answer from 
the debt maturity literature emphasizes the importance of risk under conditions of 
asymmetric information. Flannery (1986), Diamond (1991), and others provide intuitive 
models that rely on the volition of low-risk and high-risk firms with long-term projects 
choosing different maturities to reduce their financing costs or liquidity risks. Although 
other theories of debt maturity focus on the roles of agency costs (e.g., Myers, 1977; 
Barnea, Haugen, and Senbet, 1980), taxes (e.g., Brick and Ravid, 1985; Lewis, 1990), and 
other market imperfections, we concentrate on the role of asymmetric information and how 
it interacts with firm risk. The importance of debt maturity has also recently been 
highlighted in the context of policy concerns about financial crises and credit availability 
(e.g., Diamond and Rajan, 2001). 
 
In this paper, we test the empirical predictions of Flannery’s and Diamond’s theoretical 
models, and further explore the role of asymmetric information in debt maturity choices. 
Our data set provides an advantageous laboratory for these tasks. We match the maturities, 
risk ratings, and other contract terms of over 6,000 individual new loans to small businesses 
in 1997 from the Federal Reserve’s Survey of Terms of Bank Lending (STBL) with Call 
Report data on the 53 large U.S. banks that extend these credits. We also include data from 
an Atlanta Federal Reserve survey on whether and how these banks employ small business 
credit scoring technology (SBCS), which provides our measure of asymmetric information. 
Prior research supports the notion that SBCS can be used to reduce informational 
asymmetries (Berger, Frame, and Miller, forthcoming). 
 
We perform two main tests based on regressions of loan maturity on the risk rating of the 
loan, use of the SBCS technology, and other bank characteristics and loan contract terms. In 
Test 1, we examine whether maturity is an upward-sloping function of the risk rating as 
predicted by Flannery’s model versus a nonmonotonic function of the risk rating with the 
shortest maturities for the lowest and highest risk ratings as predicted by Diamond’s model. 
We perform Test 1 using only observations for banks that do not use the SBCS technology, 
given that the models predict that the relationships between debt maturity and firm risk 
ratings should be strongest when informational asymmetries are greatest. In Test 2, we 
examine the effects of reduced informational asymmetries from SBCS on debt maturities 
for each different risk rating. Test 2 allows us to test the implications of the effects of 
asymmetric information in both models and, perhaps more important, to examine the 
quantitative importance of informational asymmetries in debt maturity generally. A number 
of empirical papers examine the relationship between risk ratings and debt maturity 
(Test 1), although none to our knowledge examine this relationship using only observations 
for which informational asymmetries are expected to be the greatest. Some empirical 
studies examine the effects of reduced informational asymmetries on debt maturities, but 
none to our knowledge examine these effects by risk ratings (Test 2). 
 
Notably, our empirical tests are based on bank loans, rather than public debt securities as in 
the theoretical models and most of the empirical literature. The implications of the models 
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are the same in both contexts—to the extent that value is created by maturity choice, it is 
similarly created whether the firm chooses from a menu of contract terms from a bank or 
from its expectations of market reactions. 
 
By way of preview, the evidence supports the predictions of Flannery’s and Diamond’s 
models for low-risk firms—maturity is an upward sloping function of risk ratings (Test 1) 
and a reduction in informational asymmetries is associated with increased maturities 
(Test 2) for these firms.2 These findings for low-risk firms are also consistent with most of 
the empirical literature. However, our evidence for high-risk firms conflicts with the 
predictions of Diamond’s model and with much of the extant empirical literature. The most 
likely explanation for our difference from the literature for high-risk firms may be our use 
of bank loans rather than publicly issued debt, as banks may be better able than public 
markets to use tools other than short maturities to resolve asymmetric information problems 
for high-risk firms (Berlin and Loeys, 1988). We do, however, find that the predictions of 
Diamond’s model for high-risk firms appear to hold for one group of small businesses—
those without loan commitments—and we offer some possible explanations for this finding. 
 
Our findings strongly support the quantitative importance of asymmetric information in the 
debt maturity decision. The results of Test 2 suggest a very substantial increase in average 
maturity for low-risk firms when informational asymmetries are lessened. As well, we find 
that the results of Test 1 would be substantially weakened if it were applied to observations 
for banks using the SBCS technology. Both findings are consistent with the predictions of 
the theoretical models. In Flannery’s and Diamond’s models, asymmetric information 
causes some firms to choose short maturity because they are less likely than other firms to 
have problems rolling over their short-term debt either in terms of high interest rates (in 
Flannery’s model) or liquidity risk (in Diamond’s model). As shown below, reductions in 
informational asymmetries reduce these incentives and increase the average maturity for 
firms rated as low risk. 
 
Section II reviews the relevant empirical literature on debt maturity. Section III outlines the 
empirical tests. Section IV furnishes information on how the data samples were compiled, 
and Section V discusses the specific variables and their sample statistics. Section VI 
supplies the main empirical test results, while Section VII describes additional empirical 
checks. Section VIII presents some conclusions. The Technical Appendix formalizes our 
intuition regarding the effects of reduced informational asymmetries on debt maturity in 
Flannery’s and Diamond’s models.   
 

                                                 
2 For convenience, we refer in this paper to firms or loans with low and high risk ratings as “low-risk” and 
“high-risk” firms or loans, although the risk ratings may not always correspond to underlying risk of the firms 
or loans. 
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II.   FRAMEWORK FOR THE TESTS 

Flannery’s (1986) and Diamond’s (1991) models are closely related in that they both 
explain why risky firms with long-term projects might borrow on a short-term basis in the 
presence of asymmetric information. However, they differ in important ways and have 
some distinct empirical predictions. In this section, we briefly describe the intuition 
underlying these theoretical models and show how they may be tested in the same empirical 
model. 
 
In both Flannery’s and Diamond’s models, firms have two-period projects about which they 
have private information. The projects could be financed either using long-term debt—a 
two-period security, or by short-term debt—a succession of two one-period securities. The 
longer maturity has a higher interest rate, but some firms may still choose it because of 
anticipated problems in rolling over short-term debt. In Diamond’s model, some firms are 
not offered the option of long-term debt. 
 
In Flannery’s model, two types of firms that are initially observationally equivalent both 
have positive net present value (NPV) projects, and also have private information that one 
type is riskier than the other. At the end of one period, creditors learn whether projects were 
upgraded or not; firms with favorable private information (i.e., low-risk projects) have a 
higher probability of upgrade than those with unfavorable information (i.e., high-risk 
projects). At that time, all firms that initially chose short-term debt must roll it over at a 
new interest rate and incur additional transactions costs. 
 
In this model, if transactions costs are sufficiently high, a separating equilibrium may exist 
in which firms with favorable private information issue short-term debt at a relatively low 
interest rate and roll it over, and those with unfavorable private information issue long-term 
debt at a relatively high rate. Firms with unfavorable private information are willing to pay 
the high rate on long-term debt to avoid expected costs in rolling over short-term debt—the 
transactions costs plus a relatively high probability of paying a high rate in the second 
period. Firms with favorable private information, in contrast, face a lower probability of a 
high rate in the second period and so are willing to bear the transactions costs to obtain the 
lower rate on short-term debt in the first period. In equilibrium, creditors can infer some of 
what was initially firm private information and use it in assigning risk ratings—assigning 
lower risk ratings to firms that choose short-term debt and higher risk ratings to those that 
choose long-term debt. As a result, debt maturity is predicted to be positively related to risk 
ratings. While we refer to this prediction as arising from Flannery’s model, it is also 
consistent with related signaling models that do not rely on the presence of transactions 
costs (e.g., Kale and Noe, 1990, Titman, 1992). 
 
Diamond’s model differs from Flannery’s in that firms are not initially observationally 
equivalent and not all projects have positive NPVs. Firms have private information that 
their projects have positive or negative NPV. Creditors do not observe whether projects 
have positive or negative NPV, but are able to assign initial risk ratings based on other 
observational differences. No additional transactions costs are required for financing via 
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short-term debt. As in Flannery’s model, creditors learn whether projects were upgraded at 
the end of one period. Because some of the projects have negative NPV, creditors may 
refuse to roll over short-term debt at the end of one period, creating liquidity risk for firms 
with short-term debt. 
 
In Diamond’s model, firms with favorable private information (i.e., positive NPV projects) 
and sufficiently low risk ratings may choose short-term debt at relatively low interest rates 
because of a high likelihood of being able to roll over their debt. Those with favorable 
private information and intermediate risk ratings may choose long-term debt at a higher rate 
to reduce their greater liquidity risk of being unable to roll over short-term debt after one 
period. Firms with unfavorable private information (i.e., negative NPV projects) and either 
low or intermediate risk ratings may mimic the actions of firms with favorable private 
information—otherwise, they may be identified by creditors as having negative NPV 
projects and be denied credit. Thus, all firms rated as low-risk borrow short-term and all 
those rated as intermediate-risk borrow long term, whether their private information is 
favorable or unfavorable. 
 
Firms that are initially rated as high-risk in Diamond’s model may be refused the option of 
long-term debt because of a high probability of a negative NPV project. This is consistent 
with the debt contracting literature, in which the most restrictive contract terms are often 
used with the high-risk borrowers under conditions of asymmetric information (e.g., Berlin 
and Loeys, 1988; Berlin and Mester, 1993; Carey, Prowse, Rea, and Udell, 1993).  
 
However, if creditors can obtain sufficiently high returns from liquidation after the end of 
the first period, they may offer short-term debt to firms with projects rated as high-risk. 
Thus, Diamond’s model predicts debt maturity to be a nonmonotonic function of the risk 
ratings, with firms rated as low-risk and high-risk having short-term debt and firms rated as 
intermediate-risk having long-term debt. 
 
As discussed above, in Test 1, we examine whether maturity is an upward-sloping function 
of the risk rating as predicted by Flannery’s model versus the nonmonotonic function 
predicted by Diamond’s model. Thus, we test both theoretical models using the same 
empirical model. We argue that the use of the risk rating at the time the debt is issued gives 
appropriate tests of both theories. In Flannery’s model, creditors draw inferences from debt 
maturity choices, and their risk ratings reflect some of what was initially private 
information of the firms. In Diamond’s model, creditors’ risk ratings reflect only the initial 
assessments based on observable differences because no private information is revealed by 
maturity choice. Thus, both theories have testable empirical implications for the 
relationship between maturity and risk ratings at the time the credits are issued when 
evaluated under their own assumptions. 
 
As noted earlier, in Test 2, we examine the effects of reduced informational asymmetries 
from SBCS on debt maturities for each different risk rating as predicted by Flannery’s and 
Diamond’s models and further explore the quantitative impact of asymmetric information 
within the context of these models. Both models would predict an increase in average 
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maturity for firms rated as low-risk if informational asymmetries are reduced. In Flannery’s 
model, this occurs because the benefits to a low-risk firm from distinguishing itself via 
costly signaling from riskier firms are lessened as transparency is improved. That is, low-
risk firms need not bear the transactions costs of rolling over short-term debt if they are no 
longer in danger of being pooled with high-risk firms. In Diamond’s model, the removal of 
asymmetric information would turn some firms into transparent, low-risk firms with 
positive NPV projects and others into transparent, high-risk firms with negative NPV 
projects. The former set of firms should be indifferent to short-term versus long-term debt, 
since the liquidity risk issue is resolved. Assuming that some choose long-term debt, the 
average maturity for low-risk firms would increase relative to the case of asymmetric 
information in which all firms rated as low-risk choose short-term debt. The latter set of 
firms that are revealed to have negative NPV projects would be denied credit and so would 
have no effect on the observed relationship between maturity and risk ratings. 
 
Test 2 also addresses a potential shortcoming of Test 1 both here and in the empirical 
literature that the observed relationship between debt maturity and risk ratings may reflect 
other factors. In particular, there may be a problem if risk ratsings are assigned in part on 
the basis of the risks associated with the amount of time that the funds are tied up, as 
opposed to the credit risks of the firms. Test 2 examines different maturities for a given risk 
rating, minimizing the effects of this potential problem.  
 
 

III.   EMPIRICAL LITERATURE REVIEW 

This section first reviews the empirical evidence regarding debt maturity under conditions 
of asymmetric information. We focus on the relationship between maturity and risk ratings 
and the extent to which this relationship may be attributed to informational asymmetries as 
predicted by Flannery’s and Diamond’s models. We do not discuss findings with regard to 
other theories of debt maturity, such as agency costs and taxes. We then discuss how our 
empirical analysis differs from this literature. 
 

A.   Tests of Flannery’s and Diamond’s Models 

Several studies examine the relationship between risk ratings and firm debt maturity 
structure, or the stock of debt that has been built up over time to test the predictions of 
Diamond’s model. Barclay and Smith (1995) find that among publicly traded industrial 
firms with bond ratings, those with higher bond ratings tend to use more short-term debt 
and those with lower bond ratings tend to have more long-term debt. Those without bond 
ratings generally have more short-term debt. If one interprets firms with high bond ratings 
as low-risk, firms with low bond ratings as intermediate-risk, and unrated firms as high-
risk, then their results as a whole may be considered to be consistent with Diamond’s 
predicted nonmonotonic relationship. Subsequent studies by Stohs and Mauer (1996) using 
bond ratings for publicly traded industrial firms and Scherr and Hulbert (2001) using an 
accounting measure for risk ratings (Altman Z-Score) for small businesses also find 
evidence of a nonmonotonic relationship between firm risk ratings and debt maturity 
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structure. Johnson (2003) studies nonfinancial traded firms and uses three different types of 
risk ratings, two based on accounting data (firm size and earnings volatility), and one based 
on whether the firm’s debt is investment grade. Johnson’s accounting indicators have the 
nonmonotonic relationship with the debt maturity structure, but the indicator for investment 
grade debt is negatively related to the proportion of short-term debt, which may be 
considered to be contrary to the predictions of Diamond’s model, under which low-risk 
firms would have short-term debt. 
 
These studies do not use the relationship between risk ratings and maturity to test the 
predictions of Flannery’s model, although some inferences might be drawn using our 
framework for Test 1 discussed above. The nonmonotonic relationships in Barclay and 
Smith (1995), Stohs and Mauer (1996), and Johnson (2003) using bond ratings may be 
considered to be consistent with the predictions of Flannery’s model for low-risk firms, but 
not for high-risk firms. The relationships using accounting measures for risk ratings in 
Scherr and Hulbert (2001) and Johnson (2003) do not have implications for Flannery’s 
model. The risk rating in Flannery’s model is based at least in part on the revelation of 
private information by firm maturity choice. Although bond ratings may reflect such a 
revelation, accounting measures cannot. 
 
It is unclear, however, how well these empirical studies of debt maturity structure test the 
theoretical models. Flannery’s and Diamond’s models deal with the maturity of new debt 
issues at the time of origination, not the remaining time on the stock of old contracts. The 
use of the maturity structure does not distinguish between, for example, a newly issued one-
year bond and a 30-year bond with one year remaining—both contribute to the stock of 
one-year securities in the debt maturity structure. In addition, the debt maturity structure 
may reflect decisions made at different historical points in time when risk ratings and 
asymmetric information may have differed significantly from the sample period.3 
 
Several studies avoid the potential problems with the use of maturity structure and focus on 
the maturity of new debt issues. Mitchell (1993), Guedes and Opler (1996), and Ortiz-
Molina and Penas (2004) estimate the relationship between the maturity of new debt issues 
and risk ratings, although these studies do not use specifications that allow for the 
nonmonotonic function predicted by Diamond’s model. Mitchell (1993) and Ortiz-Molina 
and Penas (2004) use linear functions and Guedes and Opler (1996) use only two categories 
of risk ratings (investment grade versus non-investment grade).   
 
Mitchell (1993) uses data on publicly traded corporations and finds that those with higher 
bond ratings tend to have longer maturities. Ortiz-Molina and Penas (2004) use data on 
small businesses and specify an accounting measure for the risk rating (prior delinquency). 
They also find that firms rated as lower-risk tend have longer maturities than those rated as 
high-risk. The results presented in both papers may be consistent with Diamond’s model for 

                                                 
3 Barclay and Smith (1995, p. 629) make a similar point. 
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high-risk firms, but no strong conclusions may be taken because of the linear specifications. 
Finally, Guedes and Opler (1996) study traded corporations and find that firms with 
investment-grade ratings tend to issue shorter- and longer-term debt, while non-investment 
grade firms tend to issue debt with intermediate maturity, which would appear to conflict 
with some of the predictions of Diamond’s model. 
 
As above for the studies using debt maturity structure, the studies using new debt issues do 
not use the relationship between risk ratings and maturity to test the predictions of 
Flannery’s model, but we may draw inferences based on our Test 1 framework. The 
relationships found in the bond-ratings studies of Mitchell (1993) and Guedes and Opler 
(1996) appear to conflict with the upward-sloping function predicted by Flannery’s model. 
The relationship in Ortiz-Molina and Penas (2004) does not have implications for 
Flannery’s model because of the use of accounting data for risk ratings. 
 
Most of the studies discussed here—using both debt maturity structure and new debt 
issues—also include measures of asymmetric information in their specifications. Some 
studies specify variables that may reflect the degree to which a firm’s ex ante private 
information is favorable versus unfavorable. Barclay and Smith (1995), Stohs and Mauer 
(1996), and Johnson (2003) include the ex post change in operating earnings per share, 
while Guedes and Opler (1996) include the ex post change in stock returns. To the extent 
that Flannery’s model is important in determining debt maturity through a separating 
equilibrium, it may be expected that firms with favorable ex ante private information would 
tend to have short maturities and vice versa for those with unfavorable ex ante private 
information. However, the estimated effect of the ex post measures might be expected to be 
relatively weak because these measures are likely to be noisy gauges of ex ante private 
information. As well, the regression equations also include risk ratings as exogenous 
variables, which may also be indicators of favorable versus unfavorable private information 
under Flannery’s model. Consistent with these arguments, the authors find relatively weak 
results in the application of these variables. Barclay and Smith (1995), Stohs and Mauer 
(1996), and Johnson (2003) find that ex post increases in earnings are associated with short-
term debt, but the economic magnitudes are quite small, except in Johnson (2003). Guedes 
and Opler (1996) find no statistically significant relationship between maturity and a firm’s 
ex post change in stock returns. 
 
Many of these empirical studies also specify measures of asymmetric information or 
informational opacity of the firm regardless of whether the private information is favorable 
or unfavorable.  Such measures are analogous to the SBCS variable that we use to measure 
asymmetric information in our Tests 1 and 2. Barclay and Smith (1995) find that firms with 
lower valuations, higher R&D spending, and more growth potential tend to issue more 
short-term debt, consistent with the notion that greater informational asymmetries are 
associated with shorter maturity. Analogously, three of the studies find that smaller firms—
which are likely to relatively opaque—tend to issue more short-term debt (Stohs and 
Mauer, 1996; Scherr and Hulbert, 2001; Ortiz-Molina and Penas, 2004). The evidence with 
regard to firm age is less clear. Scherr and Hulbert (2001) find that older firms issue less 
short-term debt, while Ortiz-Molina and Penas (2004) find that older firms issue more 



 

 

- 10 - 
  

 

short-term debt. However, as noted above, none of the studies to our knowledge distinguish 
the effects of asymmetric information on maturity by risk rating. 
 

B.   How Our Empirical Analysis Differs from the Literature 

Clearly, there is room for additional empirical work on debt maturity. Some of the studies 
use data on debt maturity structure, rather than new debt issues, and those using new debt 
issues employ specifications that do not allow for the nonmonotonic function predicted by 
Diamond’s model. Moreover, none of the studies to our knowledge interact the effects of 
asymmetric information with the risk ratings.  In this paper, we use data on new debt issues, 
employ a specification that allows for the nonmonotonic function predicted by Diamond’s 
model, and interact the effects of asymmetric information with the risk ratings. We also 
argue that our approach has several other advantages. 
 
First, our focus on bank loans to small businesses is advantageous, since small businesses 
tend to fit the profile of risky firms under conditions of asymmetric information for which 
the theories are written.  The small business loans used here have a broad range of 
maturities from one day to thirty years.  Most other empirical studies focus on corporations 
issuing debt in public markets, although two of the others also use small business data 
(Scherr and Hulburt, 2001; and Ortiz-Molina and Penas, 2004). 
 
Second, we include several additional loan contract terms in the regressions to help control 
for other important factors that may affect maturity. Other studies are often unable to 
control for all of these potentially confounding factors, which may be directly related to risk 
ratings, informational asymmetries, and debt maturity. 
 
Third, our use of information about whether and how banks use the SBCS technology 
provides a very clean measure of asymmetric information that confers advantages to both of 
our tests. Test 1 focuses on loans made by banks that have not adopted the SBCS 
information technology, given that the relationships between debt maturity and firm risk 
ratings should be strongest when informational asymmetries are greatest. Other studies do 
not distinguish the effects of risk ratings by the level of informational asymmetries. Test 2 
differentiates the effects of the differences in asymmetric information by risk rating for the 
first time. We argue that it is important to conduct these tests by risk rating, given that the 
theoretical model predictions vary with firm ratings. 

 
IV.   BRIEF OUTLINE OF THE EMPIRICAL TESTS 

To test the theoretical models, we combine data on the maturities, risk ratings, and other 
contract terms of loans to small businesses with facts about the banks that extend these 
loans and information on whether and how these banks employ the small business credit 
scoring (SBCS) lending technology. We base our two tests on a simple regression model of 
the maturities of the individual loans: 
 



 

 

- 11 - 
  

 

ln(1+Maturity) = α + β1*SCORE + γ2*RISK2 + γ3*RISK3+ γ4*RISK4   

  + δ2*SCORE*RISK2 + δ3*SCORE*RISK3 + δ4*SCORE*RISK4 

  + Control variables for the lending bank and loan contract terms. (1) 
 
The dependent variable is the natural log of one plus Maturity, where Maturity is the time 
in years until full repayment of the loan is scheduled. The one is included to avoid taking 
the log of a value close to zero. SCORE is a dummy variable taking a value of one if the 
SBCS technology is employed in conjunction with another lending technology to reduce 
informational asymmetries, and zero if SBCS is not used. As discussed below, loan 
observations from banks that use SBCS in ways that are ambiguous with respect to 
reducing informational asymmetries—using scores to automatically approve/reject 
applicants—are excluded. RISK1 through RISK4 are dummy variables for risk ratings on 
the loan from safest (RISK1) to riskiest (RISK4). We treat RISK1 as the base category and 
exclude the RISK1 and SCORE*RISK1 variables, i.e., we set γ1 ≡ δ1 ≡ 0. Thus, we estimate 
loan maturity as a function of measures of informational asymmetries, risk ratings, and their 
interactions, as well as some control variables. We provide more details on the data sources, 
variables and estimation procedures below. 
 
In Test 1, we examine whether maturity is an upward-sloping function of the risk ratings as 
predicted by Flannery’s model versus the nonmonotonic function predicted by Diamond’s 
model. We evaluate predicted maturities for RISK1, RISK2, RISK3, and RISK4 at 
SCORE = 0, i.e., for loans made by banks that have not adopted SBCS. We focus on non-
scoring banks for Test 1 because the relationships between maturity and risk ratings should 
be strongest when informational asymmetries are greatest. We test the difference in 
predicted maturity for the safest risk rating RISK1 versus the two intermediate risk ratings, 
RISK2 and RISK3. Thus, we test H0: γ2 = 0 and H0: γ3 = 0, where the subscript 0 refers to 
the null hypothesis. Similarly, we test the difference in predicted maturity for the highest 
risk rating RISK4 versus RISK2 and RISK3, i.e., the null hypotheses H0: γ4 - γ2 = 0 and H0: 
γ4 - γ3 = 0. Although Flannery’s original model had only two firm risk categories, the 
extension to incorporating intermediate categories is straightforward. 
 
Thus, Test 1 examines whether the lowest-risk and highest-risk firms have shorter or 
longer maturities than intermediate-risk firms. Both Flannery’s and Diamond’s models 
predict the lowest-risk firms to have shorter maturity than intermediate-risk firms, i.e., 
HA:F,D: γ2 > 0 and HA:F,D: γ3 > 0, where the subscript A refers to the alternative hypothesis, 
subscript F to Flannery’s model, and subscript D to Diamond’s model. Flannery’s model 
also predicts the highest-risk firms to have longer maturities than intermediate-risk firms, 
i.e., HA:F: γ4 - γ2 > 0 and HA:F: γ4 - γ3 > 0. In contrast, Diamond’s model predicts 
shorter maturities for the highest-risk firms than for intermediate-risk firms, i.e.,           
HA:D: γ4 - γ2 < 0 and HA:D: γ4 - γ3 < 0. Thus, we test the following null versus alternative 
hypotheses in Test 1. 
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Test 1: a) H0: γ2 = 0 versus HA: F,D: γ2 > 0,  
 b) H0: γ3 d= 0 versus HA:F,D: γ3 > 0, 
 c) H0: γ4 - γ2 = 0 versus HA:F: γ4 - γ2 > 0 and HA:D: γ4 - γ2 < 0, 
 d) H0: γ4 - γ3 = 0 versus HA:F: γ4 - γ3 > 0 and HA:D: γ4 - γ3 < 0. (2) 
 
In Test 2, we examine the effects of reduced informational asymmetries from SBCS on debt 
maturity for each risk rating. As discussed, for a reduction in asymmetries, Flannery’s 
model would predict an increase in maturity for low-risk firms and smaller increases in debt 
maturity for intermediate-risk firms. Diamond’s model would predict a similar increase in 
maturity for low-risk firms. 
 
We assess the effect of the reduction in informational asymmetries by testing for the 
difference in predicted maturity for SCORE = 1 versus SCORE = 0 for each risk rating. For 
the safest firms (RISK1 = 1), we test the null hypothesis H0: β1 = 0. Similarly, we test null 
hypotheses for the differences in predicted maturity for SCORE = 1 versus SCORE = 0 for 
the other three risk ratings, RISK2 (H0: β1 + δ2 = 0), RISK3 (H0: β1 + δ3 = 0), and 
RISK4 (H0: β1 + δ4 = 0).4 As well, we test the null of whether the predicted differences are 
equal for the intermediate risk ratings with the safest risk rating, i.e., H0: δ2 = 0 and H0: 
δ3 = 0. Both Flannery’s and Diamond’s models would predict an increase in maturity for 
low-risk firms as informational asymmetries are reduced, i.e., HA:F,D: β1 > 0. Flannery’s 
model would also predict maturity increases for firms with intermediate risk ratings from 
reduced informational asymmetries, but these increases would be smaller than for the safest 
risk rating, i.e., HA:F: β1 + δ2 > 0 and δ2 < 0 and HA:F: β1 + δ3 > 0 and δ3 < 0.5 Thus, we test 
the following hypotheses in Test 2: 
 
Test 2: a) H0: β1 = 0 versus HA:F,D: β1 > 0,  
 b) H0: β1 + δ2 = 0 and δ2 = 0 versus HA:F: β1 + δ2 > 0 and δ2 < 0, 
 c) H0: β1 + δ3 = 0 and δ3 = 0 versus HA:F: β1 + δ3 > 0 and δ3 < 0, 
 d) H0: β1 + δ4 = 0. (3) 
 
We test the null hypothesis for RISK4 in (d) for completeness, although neither of the 
theories predicts a significant effect of a change in asymmetric information on maturity for 
the highest-risk firms.  
 

                                                 
4 We test each of these coefficient sums separately, rather than the joint test (H0: β1 = δ2 = δ3 = δ4 = 0), 
because our focus is on the changes in maturity in each of the risk ratings from a reduction in informational 
asymmetries, rather than the general effect across the risk ratings. 
5 The δ2 and δ3 coefficients must be negative so that the increases in maturity for intermediate-risk firms 
(β1 + δ2 and β1 + δ3) are less than the increase for the low-risk firms (β1). 
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V.   COMPILATION OF THE DATA SET 

We combine data from three sources to obtain the variables to estimate Equation 1 and 
conduct Tests 1 and 2. The first source is the Federal Reserve’s Survey of Terms of Bank 
Lending (STBL), which contains details on the contract terms of all new domestic 
commercial and industrial (C&I) loans issued by surveyed banks during one or more days 
of the first week of the second month of each quarter. Starting in the second quarter of 
1997, the banks report risk ratings on each loan as well. The STBL includes almost all of 
the largest U.S. banks plus a stratified random sample of smaller banks. 
 
The second source is the set of regulatory reports on the banks that issue the loans. The 
bank Call Report and other regulatory files provide information on the balance sheets, 
income statements, ownership changes, markets, and so forth for all U.S. banks. 
 
Our third data source is a January 1998 telephone survey conducted by the Federal Reserve 
Bank of Atlanta, which provides information on whether and how surveyed banks use the 
SBCS lending technology. The data include whether and when the technology was 
implemented, the sizes of credits that are scored, whether the credit scores are used in 
automated approval/rejection and pricing decisions, and whether the bank purchased credit 
scores. The survey queries 190 of the 200 largest U.S. banking organizations, of which 
99 institutions respond. See Frame, Srinivasan, and Woosley (2001) for a more detailed 
discussion of the survey. 
 
Our data set is compiled from the intersection of these three sources, so that complete 
information is available on the contract terms and risk ratings on each loan, the bank that 
extended the loan, and whether and how that bank uses the SBCS technology. The sample 
contains observations from the second, third, and fourth quarters of 1997, when the risk 
ratings are available from the STBL and the SBCS information is available from the credit 
scoring survey. We identify 53 banks that respond to the STBL during these three quarters 
and also respond to the January 1998 credit scoring survey.6 
 
We include only loans with total credit size under $250,000, because SBCS models are 
generally only designed for credits up to this size. Total credit size is calculated as the 
maximum of the loan amount and size of the commitment under which it is drawn, if any. 
As is standard procedure in bank lending research, we refer to these credits as small 
business loans, although in some cases they may be small credits to large businesses.7 
 
We also divide the sample into credits under $100,000 (< $100K), and credits of $100,000 
to $250,000 ($100–250K) because some banks only use SBCS to evaluate credits < $100K, 
while others use the technology to evaluate credits up to $250K. In the full SBCS survey, 
                                                 
6 Two banks that respond to both surveys are eliminated because they do not report risk ratings. 
7 We exclude fixed-rate loans (less than 2 percent of the observations) to construct a more homogenous 
sample. 
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all of the banks that used SBCS (62 of the 99 responding banks) applied the technology to 
credits < $100K and 74 percent of these banks (46 of the 62 SBCS users) also applied it to 
credits of $100–250K (Frame, Srinivasan, and Woosley 2001). Other research also suggests 
that SBCS may have different effects for the two loan size classes (Berger, Frame, and 
Miller, forthcoming). 
 
As noted earlier, we focus on the use of the SBCS technology when it is likely to reduce 
informational asymmetries. This is most likely to occur when the SBCS technology is used 
in conjunction with another lending technology, i.e., when the credit score is added to the 
information set produced by financial statement lending, asset-based lending, relationship 
lending, or other lending technology.8 Following this logic, we include loans from banks 
that use SBCS only if they also use another lending technology in the decision to accept or 
reject the credit application. Banks that report on the SBCS survey that they use the SBCS 
technology to automatically accept/reject credit applications are deleted from our samples 
because the effects of this use of the technology on informational asymmetries are 
ambiguous. Thus, our empirical treatment of a reduction in informational asymmetries is 
based on the difference between banks that use SBCS in conjunction with another lending 
technology to make the loan underwriting decision and banks that do not use SBCS at all. 
Consistent with this treatment, other research using these survey data finds evidence 
consistent with the hypothesis that the use of SBCS as a complement to other technologies 
improved accuracy in evaluating creditworthiness, resulting in significantly lower loan risk 
(Berger, Frame, and Miller, forthcoming). 
 
 

VI.   VARIABLES AND SUMMARY STATISTICS 

Table 1 provides means and standard deviations of the variables used in the regressions and 
tests, shown separately for the two samples, credits < $100K and credits of $100–250K. 
Maturity is measured as the time in years before the scheduled repayment of all principal 
and interest, and ranges from one day to 30 years. For a significant minority of loans that 
have no stated maturity, we impute maturity as the time until the interest is first 
compounded or paid. If this date is not reported, we treat these as one-day or overnight 
loans. We discuss altering these assumptions in the robustness section below. As shown, the 
average maturity is over one year for both samples. 

                                                 
8 It is theoretically possible that the banks adopting SBCS were those that tended to have worse loan quality, 
and hence even after implementing SBCS have more information asymmetry than their competitors. 
However, some of the other research using the SBCS data suggest that this is not the case. Investigations of 
the SBCS adoption decision find that it is unrelated to the bank’s prior commercial loan charge-off ratio 
(Frame, Srinivasan, and Woosley, 2001) and to the bank’s prior ratio of small business lending to assets 
(Berger, Frame, and Miller, forthcoming). 
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Table 1. Variables and Summary Statistics for the Two Samples 

 

 Means and standard deviations for variables used in estimation. Both samples combine loan 
observations from banks that do not use credit scoring technology (SCORE = 0) with loan observations from 
banks that use credit scoring technology but not to automatically approve/reject loans (SCORE = 1). Maturity is 
the time in years before the repayment of principal and interest is scheduled to be completed. SCORE is a 
dummy variable that equals one if the bank adopted credit scoring technology before the loan was made. RISK1, 
RISK2, RISK3, and RISK4 are dummy variables that equal one if the loan is rated "minimal," "low," 
"moderate," and "acceptable" risk, respectively. RISK1 is excluded from the regressions as the base case.  GTA 
is the gross total assets of the bank ($000). NPL is the bank's ratio of nonperforming loans (past due 30 days or 
more days or nonaccrual) to total loans. GTA and NPL are measured from the previous year's December Call 
Reports to mitigate potential endogeneity problems. COLLAT is a dummy that equals one if the loan is secured.  
COMMIT is a dummy variable that equals one if the loan is made under commitment.  CREDIT SIZE is the 
maximum of the loan amount and the amount of commitment, if any.   

   Credits < $100K   Credits of $100–250K  

   (N=3622) (N=2910)  
 Dependent Variable      
 Maturity 1.505 1.234  
   (1.726) (1.877)  
 Credit Scoring and Risk Variables    
 SCORE 0.624 0.528  
   (0.484) (0.499)  
 RISK1 0.035 0.019  
   (0.185) (0.136)  
 RISK2 0.118 0.073  
   (0.323) (0.260)  
 RISK3 0.610 0.488  
   (0.488) (0.500)  
 RISK4 0.237 0.421  
   (0.425) (0.494)  
 Bank Variables       
 GTA 17,048,837 30,832,584  
   (34,625,844) (45,515,624)  
 NPL 0.014 0.014  
   (0.012) (0.009)  
 Loan Contract Terms    
 COLLAT 0.719 0.789  
   (0.449) (0.408)  
 COMMIT 0.610 0.815  
   (0.488) (0.389)  
 CREDIT SIZE ($000) 43.58 183.72  
   (32.47) (45.00)  
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The variable SCORE equals one if the bank reports that it employs SBCS for that size 
category of loans and does not use it for automatic accept/reject decisions (data from banks 
that use SBCS for automatic accept/reject decisions are deleted). We set SCORE = 0 if the 
bank does not use SBCS for that size category. As shown, more than half of the sample 
loans are made by banks that use SBCS. 
 
The RISK1 through RISK4 variables are dummies for risk ratings on the loan assigned by 
the bank from safest (RISK1) to riskiest (RISK4). RISK1 equals one when the bank reports 
on the STBL that the loan carries “minimal” risk. RISK2 equals one when the loan carries 
“low” risk. RISK3 equals one when the loan carries “moderate” risk. RISK4 equals one 
when the loan carries “acceptable” risk.9 As shown, most of the loans have the two highest 
risk ratings.10 
 
We control for bank size because different sized banks may treat small business borrowers 
differently. The regressions include ln(GTA), the natural log of bank gross total assets. 
There are no small banks in the samples because the SBCS survey queries only large 
institutions. The average GTA is about $17 billion for credits < $100K and about 
$31 billion for credits of $100–250K, and the overall range of banks is from about 
$1.5 billion to $245 billion. The difference in sample means occurs because the small banks 
more often use SBCS only on credits < $100K.11 
 
We control for the loan portfolio health of the bank, which may affect the bank’s 
proclivities to lend to risky firms, to lend at different maturities, or to make new loans. The 
regressions include NPL, the bank’s ratio of nonperforming loans to total loans. The 
average NPL in both samples is 0.014, meaning that 1.4 percent of loans are past due 
30 days or more days or are on a nonaccrual basis. Both GTA and NPL are constructed 
from the December 1996 Call Report.  We use bank data from prior to the loans being 
issued to help mitigate potential endogeneity problems. 
 
We control for three loan contract terms, a dummy for whether collateral is pledged 
(COLLAT); a dummy for whether the loan is drawn under a commitment (COMMIT); and 

                                                 
9 The STBL instructions relate the rating of 1 with AA-rated corporate bonds and the rating of 2 with BBB 
corporate bonds. It is more difficult to provide a bond equivalent for ratings of 3 and 4. We exclude loans 
rated 5, “special mention or classified asset,” because they are more likely renewals of problem loans rather 
than new, independent loans. We also exclude loans from banks that did not report comparable loan ratings. 
10 Extant research suggests that these ratings provide a reasonable ordinal ranking of risks, but are far from 
perfect. Berger (2004) shows that higher risk ratings are generally associated with higher interest rate 
premiums (e.g., premiums of about 35 basis points more for RISK2 loans than RISK1 loans), but that some 
institutions may have problems translating their own ratings into the STBL categories. Morgan and Ashcroft 
(2003) find that the STBL risk ratings help predict future CAMEL downgrades as expected, but do not add 
much information to loan interest rates in predicting future nonperforming loans. 
11 We do not include bank fixed effects because they would be almost perfectly correlated with the SCORE 
variable. Only 2 of the 53 banks adopted SBCS during the sample period – the other 51 either have 
SCORE = 0 or SCORE = 1 for all observations. 
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the total credit size, including the amount of any commitment (CREDIT SIZE). These 
variables may be associated with asymmetric information, risk ratings, and maturity choice, 
so exclusion of these variables may create spurious relationships between maturity and the 
key exogenous variables. However, these variables could also introduce an endogeneity 
problem because the bank and the firm may trade off among maturity and other contract 
terms. As a consequence, we run all regressions with and without contract terms to evaluate 
the robustness of our results.12 Table 1 shows that most of the loans are secured and drawn 
under commitments. The means of CREDIT SIZE are about $44,000 for credits < $100K 
and about $184,000 for credits of $100–250K.  
 
Finally, the regressions include Q3 and Q4, two seasonal dummy variables that indicate 
whether the loan was made in the third and fourth quarters of 1997, respectively (not shown 
in tables). A dummy for the second quarter dummy is excluded as the base case. 
 
 

VII.   EMPIRICAL TEST RESULTS 

A.   Main Regression Results 
Table 2 shows our main regressions for loan maturity based on the specification in Equation 
(1). We run OLS regressions separately for credits < $100K and for credits of $100–250K, 
and run each regression both with and without the potentially endogenous loan contract 
terms, COLLAT, COMMIT, and ln(CREDIT SIZE). Robust standard errors are calculated 
using a clustering correction that accounts for heteroskedasticity and for correlations among 
observations from the same bank.13 

                                                 
12 Prior research offers empirical evidence that contract terms are endogenous based on a sample of revolving 
bank loans to large firms (Dennis, Nandy, and Sharpe, 2000). These authors provide a structural model that 
incorporates a number of firm-level characteristics, which allows them to identify the system and construct 
instrumental variables. Unfortunately, our data has no firm-specific information that would allow for such an 
approach. 
13 We use the Huber-White sandwich estimator to compute standard errors (Huber, 1967; White, 1982). 
Independence is relaxed for loan observations from the same bank, but maintained for loan observations from 
different banks. The results are materially unchanged when we use random effects or the standard White 
correction instead of clustering. 
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Table 2. Maturity Regressions 

 

 OLS regressions for ln(1+Maturity), where Maturity is the time in years before the repayment of 
principal and interest is scheduled to be completed. Both samples combine loan observations from banks that do 
not use credit scoring technology (SCORE = 0) with loan observations from banks that use credit scoring 
technology but not to automatically approve/reject loans (SCORE = 1). Regressions include RISK2, RISK3, and 
RISK4, dummy variables that equal one if the loan is rated "low," "moderate," and "acceptable" risk, 
respectively (RISK1 or "minimal" risk is excluded as the base case); ln(GTA), the natural log of gross total 
assets of the bank ($000); NPL, the bank's ratio of nonperforming loans (past due 30 days or more days or 
nonaccrual) to total loans; COLLAT, a dummy that equals one if the loan is secured; COMMIT, a dummy 
variable that equals one if the loan is made under commitment; and ln(CREDIT SIZE), the natural log of the 
maximum of the loan amount and the amount of commitment ($000), if any. Regressions also include Q3 and 
Q4, which indicate the quarter in which the loan was made.  Q2 is excluded as the base case (our sample 
includes the final three quarters of 1997). Robust t-statistics are calculated using a clustering correction for 
correlations among observations from the same bank (we impose a zero correlation across banks), and 
heteroskedasticity.  Significance at the 10 percent, five percent and one percent levels is denoted by *, **, and 
*** respectively. 

  Credits < $100K Credits of $100–250K 
Variables: Contract Terms No Contract Terms Contract Terms No Contract Terms
  Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 
Intercept 2.901*** 4.11 2.999*** 3.93 1.092 1.53 1.137** 2.05 
     Credit Scoring and Risk     
SCORE 0.251*** 2.97 0.167** 2.26 0.403*** 3.05 0.387*** 3.08 
RISK2 0.345*** 3.27 0.236** 2.29 0.151 1.15 0.143 1.10 
RISK3 0.436*** 8.38 0.285*** 5.60 0.247** 2.44 0.236** 2.32 
RISK4 0.470*** 4.82 0.312*** 3.44 0.307*** 2.69 0.300*** 2.72 
SCORE*RISK2 -0.156 -1.19 -0.143 -1.15 -0.226 -1.31 -0.211 -1.20 
SCORE*RISK3 -0.352*** -3.57 -0.260*** -2.82 -0.442*** -3.13 -0.428*** -3.05 
SCORE*RISK4 -0.390*** -2.72 -0.318** -2.62 -0.550*** -3.42 -0.542*** -3.31 
     Bank Size and Loan Portfolio Health     
ln(GTA) -0.158*** -3.52 -0.155*** -3.12 -0.053 -1.50 -0.048 -1.36 
NPL -1.914 -1.02 -2.221 -1.03 -1.702 -0.68 -1.831 -0.73 
     Loan Contract Terms     
COLLAT 0.184*** 4.13    -0.041 -0.74    
COMMIT -0.264*** -3.36     -0.004 -0.02     
ln(CREDIT SIZE) 0.001 0.05     0.029 0.47     
                
Adj. R-Squared 0. 160 0. 100  0. 029  0. 030   
N 3622    3622    2910    2910    
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For expositional convenience, we first briefly discuss the control variable results. The data suggest 
that larger bank size is associated with shorter maturities, consistent with theories that larger banks 
have a comparative disadvantage in small business lending, all else equal. Higher nonperforming 
loan-to-asset ratios are also associated with shorter maturities, consistent with the expectation that 
banks with portfolios in poor condition may be more cautious with the contract terms on new loans. 
Collateral is associated with shorter maturities for credits < $100K, consistent with the expectation 
that banks may both require that collateral be pledged and that maturity be short for firms subject to 
significant moral hazard or adverse selection problems. Collateral has no statistically significant 
effect for credits of $100–250K. Commitments are associated with shorter maturities for smaller 
credits, perhaps because commitments are substitutes for long maturities on the loans themselves. 
Finally, total credit size is not strongly associated with loan maturity, although this finding may in 
part reflect the fact that there is relatively little variation in credit size within each sample (< $100K, 
$100–250K). 
 
We show the main results of our key exogenous variables graphically in Figure 1. Using the 
parameter estimates from the regressions, we map the predicted maturities for the four 
different risk ratings, holding the control variables at their sample means in each case. We 
evaluate the predictions separately for SCORE = 0 (solid lines) and for SCORE = 1 (dashed 
lines). We use the predictions for SCORE = 0 in Test 1 to determine the effect of risk on 
maturity when informational asymmetries are at their greatest.  We use the predicted 
differences for each risk rating between SCORE = 1 and SCORE = 0 in Test 2 to see the 
how the effects of reducing informational asymmetries affects maturity by risk rating. 
 
Test 1 findings: The effects of risk on debt maturity 
 
Turning first to the Test 1 findings, loan maturity appears to be an upward-sloping function of risk 
in Figure 1. As shown in panel (a) of the figure (and replicated in the first column of Table 3), for 
credits < $100K with loan contract terms included, the predicted maturities for non-scoring banks 
for RISK1, RISK2, RISK3, and RISK4 are 0.67, 1.36, 1.58, and 1.67 years, respectively. Thus, 
maturity goes up by a full year, more than doubling, as firms move from the low-risk to the high-
risk ratings, with most of the increase occurring between RISK1 and RISK2. We will test below 
whether this large increase is statistically significant. The upward slope for SCORE = 0 is also 
apparent in the other three panels, with the largest increase always being between RISK1 and 
RISK2. The upward slope throughout is consistent with Flannery’s model, and the upward slope 
between low-risk and intermediate-risk is also consistent with Diamond’s model. However, the 
finding that maturity does not fall for high-risk firms does not appear to be consistent with 
Diamond’s model, which would predict relatively short maturities for these firms. 
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We show the formal statistical tests of Test 1 in Table 3 for the two samples, credits 
< $100K and $100–250K, using the regressions with and without the contract terms 
included. For each of these four cases, we first show the predicted maturity for each risk 
rating, evaluated at SCORE = 0 and the sample means for the control variables. As shown 
in Equation (2) and discussed in Section III above, we then test the difference in predicted 
maturity for the safest risk rating RISK1 versus the two intermediate risk ratings, RISK2 
and RISK3, evaluated at SCORE = 0, i.e., the null hypotheses H0: γ2 = 0 and H0: γ3 = 0. We 
also test the difference in predicted maturity for the highest risk rating RISK 4 versus 
RISK2 and RISK3, i.e., the null hypotheses H0: γ4 - γ2 = 0 and H0: γ4 - γ3 = 0. We are able to 
reject the null hypothesis in favor of the alternative that the lowest-risk loans (RISK1) have 
shorter maturities than the intermediate-risk loans (RISK2, RISK3) in six of eight cases, 
consistent with the predictions of Flannery’s and Diamond’s model. Notably, we are able to 
reject the null in favor of the alternative that RISK1 loans have shorter maturity than either 
or both of RISK2 and RISK3 loans in all four regressions. These findings are also 
consistent with most of the findings in the empirical literature. 
 
However, we cannot reject the null hypothesis that the highest-risk loans (RISK4) have the 
same maturities as the intermediate-risk loans (RISK2, RISK3). Thus, although the 
predicted values for RISK4 at SCORE = 0 are the highest in Figure 1, they are not 
statistically significantly different than the predicted values for RISK2 and RISK3. This 
finding conflicts with the predictions of Diamond’s model and contrasts with most of the 
empirical literature that uses historically based debt maturity structure. Importantly, this 
finding does not suggest that Diamond’s model does not apply to any of the high-risk firms, 
but rather that such effects could be empirically dominated by other high-risk firms for 
which maturity does not increase with risk ratings. 
 
We also note that the results of Test 1 would be substantially weaker if it were applied to 
observations for which SCORE = 1, with reduced informational asymmetries from SBCS. 
As shown by the dashed lines in panel (a) of Figure 1 (and replicated below in Table 4), for 
credits < $100K with loan contract terms included, the predicted maturities for RISK1, 
RISK2, RISK3, and RISK4 are 1.14, 1.59, 1.33, and 1.32 years, respectively, for 
SCORE = 1 banks. Thus, predicted maturity rises less between RISK1 and RISK2 for 
SCORE = 1 than for SCORE = 0 (0.45 years versus 0.69 years), and then falls for the 
higher risk ratings. The statistical significance is also weaker and in some cases nonexistent 
for SCORE = 1 (not shown in tables). These results highlight the importance of 
informational asymmetries in the theoretical models and in the determination of debt 
maturity. 
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Table 3. Test 1: The Effects of Risk on Debt Maturity  

 
The measured effects of loan risk on predicted loan maturity, evaluated at SCORE = 0 (not using the credit 
scoring technology) for each loan risk rating, holding the control variables at the sample mean. Predicted 
maturities are based on the Table 2 regressions.  We include a correction for the mean of the error on the 
assumption of normality (values are multiplied by exp(0.5*MSE2)). Rows (a) and (b) also show the difference in 
predicted maturities between low-risk loans (RISK1) and intermediate-risk loans (RISK2 and RISK3, 
respectively). Rows (c) and (d) show the difference in predicted maturities between high-risk loans (RISK4) and 
intermediate-risk loans (RISK2 and RISK3, respectively). Significance at the 10 percent, five percent, and one 
percent levels is denoted by *, **, and *** respectively.  Significance levels and t-statistics are based on the 
coefficients of the risk variables, as shown in Equation (2).   

Credits < $100K 

Contract Terms No Contract Terms 

Row Risk 
Rating 

Predicted 
Maturity, 

SCORE = 0 

Differences between Risk 
Ratings t-stat Row Risk 

Rating 

Predicted 
Maturity, 

SCORE = 0

Differences between Risk 
Ratings t-stat 

(a) RISK1 0.67 RISK1, RISK2 -0.69*** -3.27 (a) RISK1 0.98 RISK1, RISK2 -0.54** -2.29 
(b) RISK2 1.36 RISK1, RISK3 -0.91*** -8.38 (b) RISK2 1.52 RISK1, RISK3 -0.68*** -5.60 
(c) RISK3 1.58 RISK4, RISK2 0.31  0.89 (c) RISK3 1.65 RISK4, RISK2 0.24 0.54 
(d) RISK4 1.67 RISK4, RISK3 0.09  0.33 (d) RISK4 1.76 RISK4, RISK3 0.11  0.26 

            
              

Credits of $100–250K 

Contract Terms No Contract Terms 

Row Risk 
Rating 

Predicted 
Maturity, 

SCORE = 0 

Differences between Risk 
Ratings t-stat Row Risk 

Rating 

Predicted 
Maturity, 

SCORE = 0

Differences between Risk 
Ratings t-stat 

(a) RISK1 0.74 RISK1, RISK2 -0.27 -1.15 (a) RISK1 0.76 RISK1, RISK2 -0.27 -1.10 
(b) RISK2 1.01 RISK1, RISK3 -0.48** -2.44 (b) RISK2 1.03 RISK1, RISK3 -0.46** -2.32 
(c) RISK3 1.22 RISK4, RISK2 0.34 1.06 (c) RISK3 1.22 RISK4, RISK2 0.34 0.48 
(d) RISK4 1.35 RISK4, RISK3 0.13  0.32 (d) RISK4 1.37 RISK4, RISK3 0.15  0.10 
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Test 2 findings: The effects of enducing informational asymmetries on debt maturity 
Turning next to the Test 2 findings, in Figure 1 loan maturity appears to increase when 
shifting from SCORE = 0 to SCORE = 1 for the lower-risk ratings, but decrease for the 
higher-risk ratings. As shown in panel (a) of the figure (and replicated in Table 4) for 
credits < $100K with loan contract terms included, the predicted maturity for RISK1 
increases from 0.67 years for SCORE = 0 to 1.14 years for SCORE = 1. This predicted 
increase of 0.48 years, or about 72 percent, for the low-risk firms from employing the credit 
scoring technology in conjunction with another lending technology is substantial in 
magnitude. For RISK2, the predicted maturity increase is 0.23 years, from 1.36 to 
1.59 years. However, for RISK3 and RISK4, the predicted maturities actually fall when 
moving from SCORE = 0 to SCORE = 1. The same qualitative pattern appears in the other 
three panels. Notably, for the low-risk credits of $100–250K, the predicted maturity more 
than doubles from SCORE = 0 to SCORE = 1, suggesting an even larger quantitative role 
for asymmetric information in explaining debt maturity for these larger credits. The 
increase in maturity for lower-risk firms from a reduction in informational asymmetries is 
consistent with Flannery’s and Diamond’s models, but the fall in maturity for the higher-
risk firms is not consistent with these models. 
 
Turning to formal statistical tests of Test 2, we test the difference in predicted maturity for 
SCORE = 1 versus SCORE = 0 by risk rating as shown in Equation (3) above. We test the 
null hypotheses of no effect of SCORE for each of the risk ratings, i.e., we test H0: β1 = 0, 
H0: β1 + δ2 = 0, H0: β1 + δ3 = 0, and H0: β1 + δ4 = 0, for RISK1, RISK2, RISK3, and 
RISK4, respectively. These tests are shown in Table 4. For the intermediate risk ratings, 
RISK2 and RISK3, we also test null hypotheses of no difference in effect from the safest 
firms RISK1, i.e., we test H0: δ2 = 0 and H0: δ3 = 0 for RISK2 and RISK3, respectively. 
These tests are easily culled from the regression equation results shown in Table 2. As 
shown in Table 4, we are able to statistically reject the null hypothesis in favor of the 
alternative that SBCS increases maturities for the lowest-risk loans (RISK1) for all four 
estimations. The large, statistically significant increase in maturity is consistent with the 
predictions of Flannery’s and Diamond’s models that reductions in informational 
asymmetries reduce the benefit for low-risk firms from borrowing short-term. However, we 
cannot statistically reject the null hypothesis that the movement from SCORE = 0 to 
SCORE = 1 has no effect for the other risk ratings. As shown in Table 2, none of the 
estimates of δ2 are statistically significant. The estimates of δ3 are negative and statistically 
significant, consistent with a predicted reduction in maturity for RISK3 firms relative to 
RISK1 firms from a reduction in informational asymmetries. However, as shown above, the 
total effect for this risk rating, β1 + δ3, is not statistically significant. 
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Table 4. Test 2: The Effects of Reduced Informational Asymmetries  

from Small Business Credit Scoring on Debt Maturity 
 

 The measured effects of credit scoring and loan risk on predicted loan maturity, evaluated at 
SCORE = 0 (not using the credit scoring technology) and SCORE = 1 (using the credit scoring 
technology, but not to automatically approve/reject loans) for each loan risk rating, holding the control 
variables at the sample mean. Predicted maturities are based on the Table 2 regressions. We include a 
correction for the mean of the error on the assumption of normality (values are multiplied by 
exp(0.5*MSE2)). Rows (a), (b), (c), and (d) also show the difference in predicted maturity between 
SCORE = 1 and SCORE = 0 for RISK1, RISK2, RISK3, and RISK4 loans, respectively.  Significance 
at the 10 percent, five percent, and one percent levels is denoted by *, **, and *** respectively.  
Significance levels and t-statistics are based on the coefficients of the risk variables, as shown in 
Equation (3). 
    Credits < $100K 

   Contract Terms No Contract Terms 

Row Risk 
Rating 

Predicted 
Maturity, 

SCORE = 0 

Predicted 
Maturity, 

SCORE = 1 
Difference t-stat 

Predicted 
Maturity, 

SCORE=0 

Predicted 
Maturity, 

SCORE=1 
Difference t-stat 

(a) RISK1 0.67 1.14 0.48*** 2.97 0.98 1.44 0.46** 2.26 
(b) RISK2 1.36 1.59 0.23 0.69 1.52 1.62 0.10 0.17 
(c) RISK3 1.58 1.33 -0.25  -0.97 1.65 1.48 -0.18 -0.77 
(d) RISK4 1.67 1.32 -0.35  -0.95 1.76 1.40 -0.36  -1.15 

          

            
    Credits of $100K - $250K 

   
Contract Terms No Contract Terms 

Row Risk 
Rating 

Predicted 
Maturity, 

SCORE = 0 

Predicted 
Maturity, 

SCORE = 1 
Difference t-stat 

Predicted 
Maturity, 

SCORE=0 

Predicted 
Maturity, 

SCORE=1 
Difference t-stat 

(a) RISK1 0.74 1.60 0.86*** 3.05 0.76 1.56 0.80*** 3.08 
(b) RISK2 1.01 1.41 0.40  1.29 1.03 1.42 0.39  1.24 
(c) RISK3 1.22 1.14 -0.08 -0.39 1.22 1.13 -0.09 -0.40 
(d) RISK4 1.37 0.86 -0.51  -1.10 1.37 1.03 -0.34  -1.13 
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VIII.   ADDITIONAL EMPIRICAL CHECKS 

We conduct some additional empirical checks to ensure that our main findings are robust 
and are not the product of particular choices of samples, variables, or specifications, and do 
not reflect spurious outcomes due to endogeneity problems. 
 

A.   Sample and Specification Changes 

We first perform a number of checks based on changes in sample and specification. We try 
altering the sample by excluding loans with the longest one percent and 5 percent of 
Maturity to investigate whether outliers drive our results. In both cases, our findings remain 
materially unchanged. We also try altering the dependent variable by replacing ln 
(1+Maturity) with the level of Maturity, and the main results continue to hold. Similarly, 
we try replacing the dependent variable with ln(1+Duration), where Duration is the 
weighted-average time until all scheduled principal and interest payments are made. Again 
the main results hold, with somewhat weaker statistical significance. In addition, we try 
including more control variables for the lending bank and its market: the bank’s age, 
dummies indicating whether the bank survived a merger or was acquired by a different 
holding company in the previous three years, and the weighted-average market Herfindahl 
index of deposit concentration and the weighted-average personal income growth in all of 
the bank’s local markets—with no qualitative effect on the main results. To control for 
potential asset-liability maturity matching, we try including the proportion of the bank’s 
time deposits that mature in less than one year, again with no qualitative effect on the main 
results. 
 
We also try altering our maintained hypothesis regarding the effects of SBCS on 
informational asymmetries. In our main specification, we include loans from banks that use 
SBCS only if they do not use the technology to automatically accept/reject credit 
applications, so that we have only observations in which another lending technology is used 
in the key underwriting decision. We try partially relaxing this constraint by also including 
observations from banks that do not use SBCS to set loan terms, and banks that develop 
their own SBCS models, which are also indicators that the bank is using SBCS in 
conjunction with another lending technology. Again, the test results are materially 
unchanged. 
 
As noted above, for loans with no stated maturity (18.5 percent of credits < $100K and 
29.5 percent of credits of $100–250K), we impute maturity as the time until the interest is 
first compounded or paid if reported, or assign maturity of one day otherwise. Our results 
are robust to an alternative imputation that assigns a maturity of zero for all of these loans. 
When we exclude the loans with no stated maturity from the sample of credits < 100K, the 
Test 1 results retain economic and statistic significance, but the Test 2 results do not. When 
we exclude these loans from the sample of credits of $100–250K, both the Test 1 and the 
Test 2 results retain economic and statistical significance. Our results are also robust to the 
exclusion of all overnight loans.    
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For a sizable minority of the credits in our samples (16.8 percent of credits < $100K, 
26.3 percent of credits of $100–250K), the bank maintains an unqualified ability to call the 
credit at any time. One possible explanation of our lack of support for Diamond’s model for 
high-risk firms is that the bank offers these firms callable loans with long maturities, using 
the call option instead of short maturity to address asymmetric information problems. To 
test this, we redefine maturity to equal zero if the loan is callable, regardless of the stated 
maturity. For both credit size samples, the Test 1 and Test 2 results hold with essentially 
unchanged economic and statistical significance. The main results are also robust to the 
exclusion of all callable loans. 
 
In addition, we run Test 1 for larger credits of $250,000 to $1 million ($250–$1M) and 
$1 million to $10 million ($1M–$10M). Since SBCS technology is generally not used on 
these larger credits, we can run Test 1 using all banks that respond to the STBL survey, 
whether or not they respond to the SBCS survey. However, we cannot run Test 2 for these 
larger credits, since we cannot examine the effect of SBCS on these loans. We run Test 1 
on these two credit size classes separately and also run these tests by bank size class to 
avoid confounding the effects of differences in size with difference in risk. We also run 
these tests for the full STBL sample and for the 53 large banks included in our main 
samples here for which we have SBCS information to be sure that sample selection does 
not explain the findings. That is, we run Test 1 for larger credits for several different 
samples of larger credits using the same hypothesis specification as in Equation (i) and 
using the same regression specification as in Equation (ii) except that the SCORE variable 
and interactions are deleted. In all cases, we find no statistically significant relationship 
between maturity and risk rating for either low-risk or high-risk firms, so the findings are 
not consistent with either Flannery’s or Diamond’s models for larger bank credits. This may 
suggest that asymmetric information problems are less severe on these larger loans or that 
the banks have methods other than maturity to help resolve information problems on larger 
loans.14 
 
Finally, we analyze subsamples delineated by whether the credits were secured with 
collateral (COLLAT = 1) or not (COLLAT = 0), and drawn under a commitment 
(COMMIT = 1) or not (COMMIT = 0). Like maturity, collateral and commitments are loan 
contracting tools that may be used to help mitigate information problems. The subsample 
regressions may give insight into whether collateral or commitments may substitute for 

                                                 
14 For purposes of comparability, we also reran Test 1 for the credits < $100K and credits of $100K-$250K 
deleting the SCORE variable and interactions. The deletion of SCORE and interactions in effect removes our 
distinction between firms that are likely to have greater versus lesser informational asymmetries (SCORE = 0 
versus SCORE = 1) within the pool of firms in a given credit size sample. We found the results for low-risk 
firms to be robust for the credits < $100K, but statistical significance was lost for the credits of $100K-$250K. 
Again, this is consistent with the hypothesis that the informational opacity problems are greater for smaller 
credits, although the distinction is less sharp without the use of the SCORE variable. 
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maturity in reducing information problems. These regressions may also give inferences 
about clientele effects, or how the use of maturity may vary for different types of firms.15 
 
For the COLLAT = 1, COLLAT = 0, and COMMIT = 1 subsamples, the main results 
generally hold with similar coefficients, albeit with weaker statistical significance 
apparently due to the reduced degrees of freedom in estimation.16 The findings that the 
results generally hold for the COLLAT = 1 and COMMIT = 1 subsamples suggest that 
these contract terms more likely complement, rather than substitute for maturity in dealing 
with asymmetric information problems. 
 
However, we do find different results for the COMMIT = 0 subsample that are consistent 
with Diamond’s model for both low-risk and high-risk firms.  In Test 1 for the credits < 
$100K that are not commitment draws, the predicted maturities for RISK1, RISK2, RISK3, 
and RISK4 at SCORE = 0 are 1.00, 1.64, 2.38, and 1.53, respectively. The predicted values 
for RISK1 and RISK4 are considerably shorter than the predicted value for RISK3, and the 
differences are statistically significant (t-statistics of 10.30 and 2.99, respectively). For the 
credits of $100–250K, the curve also has the nonmonotonic shape for the COMMIT = 0 
subsample, although the differences are not statistically significant. Thus, for Test 1, we 
find a nonmonotonic relationship between risk and maturity that is consistent with 
Diamond’s model for this subsample. In Test 2, there is little change from the main results 
for the COMMIT = 0 subsample. 
 
The collateral and commitment subsample findings support the robustness of our main 
findings in most cases, although the exception for COMMIT = 0 is the most interesting. 
The finding of short maturity for high-risk firms without loan commitments—as in 
Diamond’s model—is consistent with a clientele effect in which these firms may be offered 
only short maturities to help mitigate their information problems because they tend to be 

                                                 
15 Most of the theoretical research on collateral suggests that safer firms tend to pledge collateral to signal 
their quality (e.g., Bester, 1985; Chan and Kanatas, 1985), but most of the empirical literature finds that 
riskier firms tend to pledge collateral more often (e.g., Berger and Udell, 1990). These results are consistent 
with the hypothesis that firms rated as riskiest may not be offered a credit alternative without collateral 
requirements, similar to Diamond’s argument for firms rated as high-risk.  Similarly, commitment contracts 
may help banks resolve information problems by offering various sets of contract terms – up-front fees, usage 
fees, unused line charges, interest rates, and so forth – that induce firms to reveal their types or to choose 
higher net present value projects (e.g., Boot, Thakor, and Udell, 1987; Berkovitch and Greenbaum, 1991). 
16 In most cases, the coefficient estimates are similar, but statistical significance declines as the estimated 
standard errors are higher.  To check whether this was due primarily to the reduction in degrees of freedom, 
we note that under the standard classical assumptions of i.i.d. random errors, reducing the sample size should 
increase the standard errors at the rate (n-k)1/2, where n-k is the degrees of freedom (subsample size n minus 
number of regressors k).  We found that the estimated standard errors for the subsamples generally increased 
at approximately this rate.  For example, the estimated standard error on RISK2 is 0.225 in the COLLAT = 0 
subsample for credits < $100K, and takes the value 0.103 in the full sample, creating a ratio of 0.225/0.103 = 
2.18. This ratio is close to what would be predicted by the ratio of the square roots of degrees of freedom as 
the subsample size is reduced from 3622 to 1016, with 11 regressors, or [(3622-11)/(1016-11)]1/2 = 1.92. 



 

 

- 28 - 
  

 

relatively opaque. This may also occur because firms without commitments tend to be those 
without strong banking relationships to help address their information problems. 
 

B.   The Potential Endogeneity of the Loan Risk Ratings 
A potential endogeneity problem in our main results could occur because to some extent, 
the measured risk ratings may be endogenous to the SCORE variable. In particular, the 
significant maturity increase for RISK1 firms when shifting from SCORE = 0 to 
SCORE = 1 in Test 2 could be driven by a reassessment of firm risk following SBCS 
adoption. That is, the finding could reflect a migration of firms with generally longer 
maturities from the RISK2, RISK3, or RISK4 ratings being relabeled as RISK1 because 
they are thought to be lower risk as a result of credit scoring instead of our interpretation 
that credit scoring reduced informational asymmetries and led to longer maturities. To 
examine this possibility, we show in Table V the results of logit regressions for the 
probability that RISK1 = 1 for the same samples and with the same explanatory variables 
other than RISK as in the main regressions. If a reassessment of risk due to credit scoring 
explained our Test 2 result, we would expect a positive coefficient on SCORE as firms with 
relatively high maturities from the other risk ratings move into the low-risk rating. As 
shown, the coefficient of SCORE is not statistically different than zero in any of the four 
logit equations, making the alternative explanation of our main Test 2 finding relatively 
unlikely. 
 

C.   The Potential Endogeneity of SBCS 

Our test results could alternatively be driven in part by the potential endogeneity of the 
choice to adopt the SBCS technology. Some conditions that face the lending bank for which 
we are unable to control may affect both the maturity of its newly issued loans and its 
probability of adopting SBCS. In this event, the observed associations between SCORE and 
Maturity may be spuriously determined. To mitigate this potential problem, we try 
excluding observations from banks that adopted SBCS within one year of the time the loan 
is issued. That is, we create a time barrier of at least one year between the conditions under 
which SBCS is adopted and the conditions under which the maturity is chosen to reduce 
any spurious association.  The main results are robust to this change.17 

                                                 
17 We also attempt to deal with this potential endogeneity with a Heckman correction, using banks’ past small 
business loans/GTA ratio as the instrument.  However, this instrument does not have a significant effect on 
the probability of adopting SBCS in the first-stage regression, making the results unreliable. 
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Table 5. Risk Rating Regressions 

 

Logit regressions for the probability that the risk rating equals one ("minimal" risk loans) versus the probability 
that the risk rating equals two, three, or four ("low," "moderate," and "acceptable" loans, respectively). Both 
samples combine loan observations from banks that do not use credit scoring technology (SCORE = 0) with 
loan observations from banks that use credit scoring technology but not to automatically approve/reject loans 
(SCORE = 1). Regressions include ln(GTA), the natural log of gross total assets of the bank ($000); NPL, the 
bank's ratio of nonperforming loans (past due 30 days or more days or nonaccrual) to total loans; COLLAT, a 
dummy that equals one if the loan is secured; COMMIT, a dummy variable that equals one if the loan is made 
under commitment; ln(CREDIT SIZE), the natural log of the maximum of the loan amount and the amount of 
commitment ($000), if any.  Regressions also include Q3 and Q4, which indicate the quarter in which the loan 
was made. Q2 is excluded as the base case (our sample includes the final three quarters of 1997). Regressions 
for Credits of $100K - $250K exclude NPL, because the variable has an unreasonably large coefficient when it 
is included.  Significance at the 10 percent, five percent and one percent levels is denoted by *, **, and *** 
respectively. 
  Credits < $100K Credits of $100–250K 
Variables: Contract Terms No Contract Terms Contract Terms No Contract Terms
  Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 
Intercept 11.372*** 4.94 8.196*** 4.31 -3.732 -1.00 3.170 1.38 
    Credit Scoring     
SCORE 0.093 0.41 -0.197 -0.94 0.113 0.40 0.035 0.13 
    Bank Size and Loan Portfolio Health     
ln(GTA) -0.920*** -6.23 -0.708*** -5.70 -0.454*** -3.20 -0.417*** -2.97
NPL -1.879 -0.30 -5.066 -0.74         
    Loan Contract Terms     
COLLAT 1.458*** 4.91    -0.140 -0.40    
COMMIT -1.456*** -6.76     0.104 0.26     
ln(CREDIT SIZE) -0.210** -2.00     1.438** 2.44     
               
Pseudo-R2 0.132 0.050  0.035  0.022   
N 3622    3622    2910    2910    
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IX.   CONCLUSIONS 

We test the implications of theoretical models of Flannery (1986) and Diamond (1991) 
concerning the effects of risk and asymmetric information on debt maturity and further 
explore the importance of asymmetric information in debt maturity choices. The theoretical 
models, empirical tests of these models, and recent international financial crises, have 
raised significant academic and policy interests in issues related to debt maturity. 
 
The extant empirical literature does not come to consensus regarding these theories, which 
may be due to several factors. Many of the studies use data on debt maturity structure, but 
the theoretical models are based on the maturity of new debt issues at the time of 
origination, not the remaining time on the stock of old contracts. The studies that use data 
on new debt issues employ specifications that do not allow for the nonmonotonic function 
predicted by Diamond’s model. In addition, none of the empirical studies distinguish the 
effects of asymmetric information on maturity by risk rating, as implied by the theories. In 
this paper, we use data on new debt issues, employ a specification that allows for the 
nonmonotonic function predicted by Diamond’s model, and interact the effects of 
asymmetric information with the risk ratings. Other advantages of our approach include the 
use of a very clean measure of asymmetric information based on the use of credit scoring 
technology. 
 
We test the theories using data on the maturities, risk ratings, and other contract terms of 
over 6,000 newly issued individual loans to small businesses, data on the banks that extend 
these loans, and information on whether and how these banks employ small business credit 
scoring, a lending technology that may reduce informational asymmetries. Our Test 1 
examines the effects of the banks’ risk ratings on maturity under conditions in which 
informational asymmetries are expected to be great (no credit scoring), while our Test 2 
examines the effects of a reduction in informational asymmetries (the use of credit scoring 
in conjunction with another lending technology) on maturity for each of the different risk 
ratings. Both the performance of Test 1 under conditions of greatest informational 
asymmetries and the performance of Test 2 by different risk ratings are unique to the 
literature. We also perform a number of robustness checks to be sure that our findings are 
not the product of particular choices of samples, variables, or specifications, and do not 
reflect spurious outcomes due to endogeneity problems.  
 
Our test results are consistent with the predictions of both Flannery’s and Diamond’s 
models for low-risk firms. All else equal, these firms tend to have significantly shorter 
maturities than other firms (Test 1), and these maturities tend to increase by significant 
amounts when informational asymmetries are reduced (Test 2). The latter result also 
suggests a strong quantitative role for asymmetric information in the determination of debt 
maturity. For high-risk firms, our main test results conflict with the predictions of 
Diamond’s model and with many of the prior empirical studies. All else equal, high-risk 
firms do not have significantly different maturities than intermediate-risk firms, whereas 
Diamond’s theory would predict that banks would impose short maturities on the riskiest 
firms. 
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Our finding for high-risk firms may reflect in part an important difference between banks 
and public debt markets. Banks may have comparative advantages over public markets in 
gathering information, renegotiating loans, and enforcing other loan contract terms, such as 
collateral and restrictive covenants. Thus, banks may be better able than public markets to 
use tools other than short maturities to help resolve moral hazard and adverse selection 
problems for risky firms. Some additional checks of the data are consistent with this 
possibility and suggest that within the category of bank loans, the results differ with the 
degree of informational asymmetries. 
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THE EFFECTS OF REDUCED INFORMATIONAL ASYMMETRIES ON DEBT MATURITY 
 

In this appendix, we formalize our intuition regarding the effects of reduced informational 
asymmetries on debt maturity in Flannery’s and Diamond’s models. For complete 
derivations of the models, see Flannery (1986) and Diamond (1991). 
 

A.   Flannery’s (1986) Model 

We focus on the case in Flannery’s model in which positive transaction costs and 
asymmetric information are assumed. These two assumptions create the possibility of the 
separating equilibrium that has received considerable attention in the literature and is the 
subject of our empirical tests. Different equilibria predictions may arise when one or both 
of these assumptions are relaxed.1 Here, we briefly show how the separating equilibrium 
arises, and then examine the effect of a reduction in informational asymmetries. 

 
At time t = 0, each firm needs an amount D to finance an investment project. At both t = 1 
and t = 2, the value of the project is reevaluated and upgraded with probability p and 
downgraded with probability (1-p).  Firms default on debt only in the case of two 
consecutive downgrades – all other outcomes yield revenue sufficient to repay the loan. 
Lenders charge default premiums on long term debt issued at t = 0 and on short-term debt 
issued following a downgrade at t = 1 to reflect the possibility of two consecutive 
downgrades.  Lenders do not charge default premiums on short-term debt issued at t = 0 or 
on short-term debt issued following an upgrade at t = 1 because the lender cannot be 
subjected to a second consecutive downgrade on these contracts.  Every debt issue costs the 
firm a fixed transactions cost C > 0, so firms that issue long-term debt a t = 0 pay C, while 
firms that rollover successive short-term debt pay 2C. 
 
Each firm has either a good project or a bad project.  Both types of projects have positive 
net present values (NPVs) and positive probabilities of default.  They differ in their 
probabilities of being upgraded at t = 1 and t = 2, pg for good projects and pb for bad 
projects, with pg > pb.  At t = 0, lenders do not observe whether a firm’s project is good or 
bad, but do know pg, pb, and the proportion of firms with good projects. At t = 1, lenders 
also learn whether each project was upgraded or downgraded. 
 
Long-term debt may default at t = 2, so lenders charge a default premium that reflects their 
estimate of expected loss, i.e., a premium that reflects average borrower risk. As a result, 
firms with good projects pay an excessive default premium relative to their expected losses, 
while firms with bad projects pay too small a premium relative to their expected losses. The 
value of firm equity is therefore lower (higher) than it would otherwise be for firms with 

                                                 
1 If neither transaction costs nor asymmetric information are present, then firms operating under Flannery’s 
framework are indifferent to short- and long-term debt, leading to an indeterminacy of equilibrium.  If 
asymmetric information is present but transaction costs are not, the result is a pooling equilibrium in which all 
firms issue short-term debt. 
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positive (negative) private information. This “misinformation” value of equity for a long-
maturity borrowing strategy is given by  
 

VL
mis(•) = (D - M) * [2(E(p) - p) + (p2 - E(p2))] / [2E(p) - E(p2)]. (A1) 

 
where (D-M) represents the lender’s realized loss in the case of two consecutive 
downgrades, E is the expectations operator conditional on the lender’s information, and p = 
pg or pb for borrowers with good or bad projects, respectively. The misinformation value for 
firms with good projects, denoted VL

mis(G), is negative since (E(p) - p) < 0, while the 
misinformation value for firms with bad projects, VL

mis(B), is positive since (E(p) - p) > 0. 
 
Although short-term debt can not default at t = 1, if a downgrade is realized in the first 
period, then there is a nonzero probability of default on short-term debt that matures at 
t = 2. Given a first period downgrade, firms with good projects who issue short-term debt 
will pay an excessive default premium in the second period while firms with bad projects 
will pay too small a premium. The “misinformation” value of equity for a short-maturity 
borrowing strategy is given by 

 
VS

mis(•) =  (D - M) * [(1 - p)(E(p) - p + pE(p) - E(p2))] / [ E(p) - E(p2) ]. (A2) 
 
The misinformation value for firms with good projects, VS

mis(G), is again negative, while 
the misinformation value for firms with bad projects, VS

mis(B), is again positive based on 
the signs of (E(p) - p).  
 
If C ≥ VS

mis(B), then firms with bad projects will issue long-term debt. When this holds, 
firms with good projects choose short-term debt if the added cost of a rollover strategy is 
smaller than their (negative) misinformation value in the pooling equilibrium, i.e., if 
VL

mis(G) < - C, resulting in a separating equilibrium. Thus, the borrowers’ contract choices 
reveal some of their private information, allowing the lender to reassess borrower risk and 
incorporate this information in the lender’s risk ratings in equilibrium, giving a positive 
relationship between debt maturity and the lender’s risk rating. For purposes of empirical 
predictions across many lenders and borrowers, we generalize from the two discrete points 
in Flannery’s model to the monotonic upward-sloping relationship discussed in the text of 
the paper. 
 
With these arrangements, we now consider the effect of a reduction in informational 
asymmetries in Flannery’s model. We assume that at t = 0, the lender learns the private 
information of some fraction λ of firms with good projects and some fraction γ of firms with 
bad projects. For the other borrowers that do not have their private information revealed, we 
assume that the conditions for the separating equilibrium hold, so that the upward-sloping 
relationship between debt maturity and lender risk ratings holds. Under these assumptions, 
the fraction λ of firms with good projects and the fraction γ of firms with bad projects with 
no private information will all issue long-term debt to minimize transactions costs. This 
occurs because E(p) = p, which implies VL

mis(G) = VS
mis(B) = 0, which in turn implies 

C ≥ VS
mis(B) and VL

mis(G) ≥ - C. Combining the firms with and without private information, 
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all firms with bad projects issue long-term debt (regardless of γ), whereas only the fraction 
λ of firms with good projects issue long-term debt.  The new slope of the line depends on 
the value of λ.  If λ = 0, then there is no reduction in informational asymmetries for firms 
with good projects, and the slope is unchanged. If λ = 1, then all private information 
regarding good projects is eliminated and the slope is zero.  For λ ∈ (0,1), the slope remains 
positive, but has a flatter slope.  Thus, in terms of empirical predictions, the reduction in 
informational asymmetries in Flannery’s model is expected to maintain the upward-sloping 
curve discussed in the text, but to raise the average maturity for all but the highest-risk 
borrowers. 
 

B.   Diamond’s (1991) Model 

Diamond’s model incorporates liquidity risk into a two-period framework similar to that in 
Flannery’s model.  At t = 0, firms need $1 to finance an investment project. In an 
alternative investment available to investors, $1 invested at t = 0 returns R at t = 1 or R2 if it 
is invested until t = 2. Each firm has either a good project or a bad project. Good projects 
return a cash flow of X > R2 with certainty at t = 2, and have positive NPV. Bad projects 
return a cash flow of X with probability π at t = 2, and return zero otherwise. It is assumed 
that πX < R2, and that all bad projects have negative NPV.  Each firm also receives the 
payoff C > 0 if it retains control of its project at t = 2, and all projects can be liquidated at 
t = 1 for L.2 
 
Firms have private information about whether their projects are good or bad. At t = 0, the 
lenders’ information about the firm is restricted to the credit rating f, which represents the 
probability that the firm’s project is good given the available information. For a credit 
rating f, a firm can receive funding if lenders receive an expected return of R per period. 
The higher is the credit rating, the lower is the interest rate charged by the lender to cover 
default risk.  During the first period, each project receives either an upgrade or a 
downgrade.  Lenders observe this performance at t = 1, and revise the credit rating 
accordingly.  Denote the revised credit rating conditional on an upgrade (downgrade) as fu 
(fd), such that fu > f > fd.  All bad projects are downgraded.  This normalizes fu at 1, since all 
projects upgraded are known to be good.  Good projects are downgraded with probability e, 
such that e = [fd( 1 - f)]/[f(1 - fd)] by Bayes’s Law.   
 
From these conditions, one can derive that for sufficiently high credit ratings of f ∈ (S,1], 
firms with good projects prefer short-term debt to long-term debt, with the lower limit S 
given by  

S = {π[R2 - LR + fd (C + X - R2 )]} / {(1 - π) (LR -  fd (C + X ).3 (A3) 
 
                                                 
2 Liquidation can be interpreted to include situations in which a firm loses control of its project at t = 1 and the 
lender attempts to capture maximum repayment. 
3 The equality holds for liquidation L that is not efficient: L ∈ ([π + fd(1-π)]X/R, [(π + fd(1-π))X + fdC]/R). 
When L is efficient enough, all good project borrowers will issue short-term debt. 
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The underlying intuition is simple. For firms with good projects, the probability of 
downgrade, e = [fd( 1 - f)]/[f(1 - fd)], is decreasing in f.  For sufficiently high f (f > S), firms 
are willing to accept the relatively low liquidity risk of liquidation following a downgrade, 
because of the relatively high probability of an upgrade that will give them a low interest 
rate at t = 1. Firms with bad projects and high credit ratings would also choose short 
maturity—mirroring the choices of firms with good projects with their same credit rating—
to avoid revealing that they have negative NPV projects, which would be denied credit. 
 
In the model, firm preferences for long-term debt may not always be feasible. A firm with a 
given credit rating f can issue long-term debt as long as lenders receive an expected return 
of R2. The expected return meets this criterion if and only if the credit rating is sufficiently 
high, i.e., f > [R2 - πX]/[1 - π]. If lenders can obtain sufficiently high returns from 
liquidation given a downgrade at t =1, then short-term debt is feasible for firms with 
f > [Xfd + R2(1 - fd) - LR]/[X-LR] even when long-term debt is not.4 
 
This constraint imposed on high-risk firms completes the relationship between firm risk and 
debt maturity: high-risk firms (f ∈ ( [Xfd + R2(1 - fd) - LR]/[X-LR] , [R2 - πX]/[1 - π] ]) and 
low-risk firms (f ∈ ( S , 1 ]) issue short-term debt, while intermediate-risk firms                  
(f ∈ ( [R2 - πX]/[1 - π] , S ]) issue long-term term debt.5 For purposes of empirical 
predictions across many lenders and borrowers, we generalize from the two maturity 
lengths and discontinuous jumps at different levels of risk rating in Diamond’s model to the 
nonmonotonic curve discussed in the text of the paper.  
 
Given these specifications, we next consider the effect of a reduction in informational 
asymmetries in Diamond’s model. Suppose there are n firms, divided evenly among low-, 
intermediate-, and high-risk credit ratings, and again divided evenly between those with 
good and bad projects. That is, there are n/6 low-risk firms with good projects, n/6 low-risk 
firms with bad projects, and so on. 
 
To model a reduction in asymmetric information, assume that lenders learn the private 
information of some fraction λ of firms, evenly distributed across the credit ratings and 
between good and bad projects. The (1 - λ)n firms with unrevealed private information 
operate within the context of the model as above. Among these firms, (1 - λ)n/3 high-risk 
firms issue short-term debt, (1 - λ)n/3 intermediate-risk firms issue long-term debt, and      
(1 - λ)n/3 low-risk firms issue short-term debt. 
 
The λn firms that no longer have private information face different lending constraints. The 
λn/2 firms revealed to have good projects are all evaluated as low-risk and should be 
indifferent to short- and long-term debt because there is no longer any liquidity risk and 
transactions costs are not present in Diamond’s model.  We assume that some fraction ρ of 

                                                 
4 The condition that must hold is L > [π + fd(1-π)]X/R. 
5 Firms with extremely poor credit ratings (f ∈ [ 0, [Xfd + R2(1 - fd) - LR]/[X-LR] ]) do not receive credit. 
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these λn/2 firms choose long-term debt and the fraction (1 – ρ) choose short-term debt. The 
other λn/2 firms that are revealed to have bad projects do not receive financing because bad 
projects have negative NPV. 
 
Combining the firms with and without private information, there is a change in average 
maturity for low-risk borrowers from the Diamond model in which all firms have private 
information.  A total of (1 – λ)n/3 + (1 – ρ) λn/2 of the low-risk firms issue short-term debt, 
and ρλn/2 of them issue long-term debt. There is no change for high-risk and intermediate-
risk borrowers, other than there are fewer of them. All (1 - λ)n/3 high-risk firms issue sho 




