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I Introduction

In this article we ask what type of equilibrium behaviour results in a multi-stage game in which the
players are able to in�uence the probability of breakdown (�default�) after each stage by their own
actions in that stage. This type of game corresponds to many interesting economic environments.
For example, think of two commercial banks that �ercely compete in the market for customer loans.
It has been widely recognized in the banking literature that increased competition can undermine
prudent bank behaviour.2 The mechanism is as follows. Competition erodes bank pro�ts, lower
pro�ts imply lower bank charter values, and lower charter values increase moral hazard incentives
for banks to make riskier loans. With su¢ cient competition, banks may �nd it worthwhile to
gamble. The induced riskiness translates into higher default probabilities, or � in more game-
theoretic terms �into lower continuation probabilities to reach the next time period. In e¤ect, this
simple mechanism implies that the banks�risky actions over time have endogenized the discount
factor. In such a dynamic framework with endogenous discounting, it is not at all trivial what
type of equilibrium behaviour will result. In this article we characterize and analyze a stationary
equilibrium in a dynamic game with endogenous discounting from a game-theoretic perspective.

Our starting point is a two-player, multi-stage game with an in�nite horizon in which the players
face the same �stage�game in every period, and the players�overall payo¤ is a discounted sum of
the payo¤s in every stage. We assume that the probability of reaching the next stage is determined
by the players�actions in the current stage. Hence, in this game the discount factor of the players
is endogenous, which e¤ectively implies that current play has a direct impact on future per-period
attainable payo¤s. It is this particular feature that distinguishes our multi-stage game from the
usual repeated game. Repeated games do not allow any in�uence of past and current play on future
feasible actions or payo¤ functions. The �physical environment�of our game is changing while that
of a repeated game is memoryless. As a consequence, it is no longer the case that playing a Nash
equilibrium of the stage game in every period constitutes a stationary subgame perfect equilibrium
of the multi-stage game with endogenous discounting.

Dynamic games with in�nitely many stages in complex environments generally feature a continuum
of equilibria. The usual equilibrium concept to be used in such settings is the Markov perfect
equilibrium, but these equilibria are typically hard to characterize.3 Instead, we will take a simpler
route. We will focus on a stationary equilibrium in which the players are myopic. Myopic play
describes a situation in which the players take the future strategies of their opponents as given,
irrespective of the actual history of the game. Therefore, as players do not perceive any in�uence
on subsequent play, the �continuation value�of the game is �xed. This allows an intuitive and easy
derivation of equilibria. We �nd that the myopic equilibrium actions of the in�nite-horizon multi-
stage game are equal to the Nash equilibrium actions of some induced (one-shot) �limit�game. The
myopic equilibrium of the in�nite-horizon multi-stage game corresponds to the in�nite repetition of
a Nash equilibrium of this limit game. In this sense, for the derivation of a stationary equilibrium,
it is as though the limit game takes over the role of the stage game in a repeated game, but now

2See Hellman, Murdock, and Stiglitz (2000) for a dynamic model that aims to understand the interaction between
�nancial liberalization and prudential regulation. It shows that the potential scope for gambling increases whenever
the intensity of competition increases. Similar results are also obtained by, e.g., Bolt and Tieman (2004) and Keeley
(1990).

3When studying equilibrium behaviour in complex dynamic environtments, attention is often focused on equilibria
in a smaller class of so-called �Markov�strategies in which the past in�uences current play only though its e¤ect on
a state variable; see Fudenberg and Tirole (1991).
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corrected for the endogenous impact of the discount factor on the per-period payo¤s.

We also ask whether this myopic equilibrium has any intuitive appeal. Interestingly, the stationary
myopic equilibrium is singled out when studying limiting equilibria of the multi-stage game with
a �nite horizon. In particular, we show that if the number of stages in the �nite-horizon multi-
stage game tends to in�nity, then the unique subgame perfect equilibrium actions in (almost) every
stage become arbitrarily close to the Nash equilibrium actions of the limit game. The myopic
equilibrium is the only equilibrium of the in�nitely many equilibria that survives this equilibrium
selection mechanism. We argue that this selection is interesting and makes good sense. It is what
happens if players for some reasons are not able to coordinate on a good equilibrium. We may
say that playing a Nash equilibrium of the limit game in every period in a multi-stage game with
endogenous discounting is the perfect analog of playing a Nash equilibrium of the stage game in
every period in a repeated game.

The setup of the remainder of the paper is as follows. The next section de�nes the multi-stage game
with in�nitely many stages, in which the discount factor is endogenized. In section III, we derive
the stationary myopic equilibrium. The equilibrium selection mechanism is described in section IV.
Section V describes an illustrative example, and the last section concludes.

II De�ning the multi-stage game with endogenous discounting

An important building block of our dynamic multi-stage game, which we dub G, is the stage game,
say g, which is played in every period t, t � 0. Assume that the stage game is a (symmetric)
two-player simultaneous move-game with �nite action spaces Ai, i = 1; 2, and stage game payo¤
functions �i : A! R, i = 1; 2, where A = A1 �A2. The nonempty set of Nash equilibrium actions
of the stage game g is denoted by AN (g) � A.4 For simplicity, we assume that the stage game g
has a unique Nash equilibrium in pure actions aN with corresponding payo¤s �N = �(aN ). We will
discuss this uniqueness restriction later on.

The players�overall payo¤ is a discounted sum of the payo¤s in every stage. In our multi-stage game
G, the discount factor represents a combination of the players�exogenous rate of time preference
and an endogenous continuation probability.5 As long as the game continues, the players�current
actions determine the common probability to reach the next stage, denoted by pt = p(at), with
pt 2 [0; 1] and at 2 A. In particular, assuming a common rate of time preference r > 0 for both
players, then for t � 1 we may write the discount factor as

�t+1 =
1

(1 + r)
� p(at); at 2 A; (1)

with 0 � �t < 1 for t � 1, and �0 = 1. Hence, note that the discount factor that discounts the next
period�s payo¤s to the present time will only depend on current actions.

4The set AN is nonempty if the strategy space Ai is a compact and convex set of an Euclidean space, and payo¤
function �i(a) is continuous and quasi-concave on Ai.

5See Fudenberg and Tirole (1991) for a similar interpretation of the discount factor. They show that in�nitely
repeated games can represent games that terminate in �nite time with probability one. Key is that the conditional
probability of reaching the next period is bounded away from zero. Also, Osborne and Rubinstein (1990) analyze
a bargaining model that combines risk of breakdown and time preference as driving forces to reach an agreement
quickly.
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To de�ne the dynamic game, we must specify the players�strategy spaces and payo¤ functions. We
assume that the players observe the realized actions at the end of each period. We start the game
at t = 0, with H0 the set of �null�histories preceding t = 0, indicating that nothing has happened
before t = 0. Denoting At = A� � � � � A the t-fold multiplication of A, then for t � 1, let history
ht 2 At

ht = (a0; a1; : : : ; at�1); ak 2 A; 0 � k � t� 1 (2)

be the realized choices of actions at all periods before t, and let Ht be the set of all possible period-t
histories. The set H of all possible histories of the game G can be represented by the in�nite union
of the sets of all possible period-t histories. That is, we de�ne

H =
1[
t=0

Ht: (3)

Strategies for the players are rules telling the players how to move at each stage for each possible
history up to that stage. Since both players observe ht, a (pure) strategy �i for player i in the
dynamic game is a sequence of maps �ti �one for each period t �that map possible period-t histories
ht 2 Ht to actions ait 2 Ai. Formally, for i = 1; 2,

�i : H ! Ai: (4)

The set of all such strategies is �i, and � = �1 � �2.

Any strategy pro�le � = (�1; �2) 2 � uniquely determines an outcome of the game that is valued
by the players. We assume that both players maximize their (expected) present value

Vi(�) =
1X
t=0

 
tY
s=0

�(�(hs))

!
�i(�(ht)); (5)

where �(�(h0)) = �0 = 1.

Finally, if �i 2 �i and ht 2 Ht, then �it �the continuation of �i after ht �is the strategy de�ned
by

�it(h� jt) = �i(ht; h� jt); � � t; (6)

where (ht; h� jt) 2 H� is the history ht followed by history h� jt (with appropriate conventions for
histories of length 0). The corresponding continuation value of the game from stage t onward is
given by

Vi(�it) =
1X
�=t

 
�Y
s=t

�(�it(hsjt))

!
�i(�it(h� jt)); (7)

where �(�it(htjt)) = 1 and �i(�it(htjt)) = �i(�(ht)).

III Equilibrium analysis

In this section we will characterize a stationary myopic equilibrium of the multi-stage game, in
which the discount factor is endogenized. But before we do so, we �rst turn to the case where the
discount factor is exogenously given.
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A. Equilibrium with an exogenous discount factor

The case of an exogenous discount factor takes us back to the familiar repeated games framework, in
which the players play the stage game in every period. We are interested in a stationary equilibrium,
where actions do not change over time. So, the corresponding strategy pro�le � prescribes �i(h) = a,
a 2 A, for every history h 2 H. For a �xed discount factor �(at) = � for all at 2 A, player i�s
present value of the in�nite sequence of payo¤s reduces to

V Fi =
1X
t=0

�t�i(a) =
�i(a)

1� � : (8)

Focus on the unique Nash equilibrium aN 2 AN (g) of the stage game g. It is well known that
playing the Nash equilibrium aN of the stage game g in every period t is a stationary subgame
perfect equilibrium of the game G under a �xed discount factor (see, e.g., Fudenberg and Tirole
(1991)). Consider the next proposition.

Proposition III.1. If aN is a Nash equilibrium of the stage game g, then the strategy pro�le �N

such that �N (h) = aN , for every history h 2 H, induces a stationary subgame perfect equilibrium
of the game G with exogenous discounting.

Under the strategy pro�le �N the future play of player j is independent of how player i plays today,
so his best reply is to play to maximize his current payo¤, that is, to play aNi given that player j
plays his static Nash action.6

B. Equilibrium with an endogenous discount factor

In this subsection we characterize a stationary equilibrium of the game G with an endogenous
discount factor �(a), a 2 A, where the players act myopically. Myopic play here means that the
players do not perceive any in�uence of current actions on subsequent play.

We are interested in a stationary equilibrium, where actions do not change over time. Again, the
corresponding strategy pro�le � prescribes �i(h) = a, a 2 A, for every history h 2 H. Hence, the
endogenous discount factor will also be constant over time, i.e., �t = �(a) < 1 for all t. The present
value for player i now reduces to

V Ei =

1X
t=0

�t(a)�i(a) =
�i(a)

1� �(a) : (9)

Imposing constant actions over time is not innocuous in our game, since current actions are able to
in�uence next day�s attainable payo¤s via the discount factor, and may therefore a¤ect equilibrium
actions over time. Fixing actions in this nonstationary environment is as though the players are
committed once and for all to choosing a particular action, say (a�i ; a

�
j ), at t = 0, and play this

action forever after. So, even when �for whatever reason �one of the players has deviated from

6Obviously, when the Nash equilibrium is not unique, playing any sequence of di¤erent Nash equlibria of the stage
game in every period is a subgame perfect equilibrium of the (in)�nitely repeated game.
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playing her speci�ed action a�i , her opponent will still believe that in the future she will stick to
her action a�i again. Given the opponent�s �myopic�beliefs, in equilibrium, it is optimal for him
to also stick to his action a�j . However, a fully rational player j may wish to change his action
in the future if player i deviates from playing a�i today. Under myopic play, when calculating her
�rst-order condition, player i does not take into account that player j may respond in the future.
Myopic play - in the sense that players do not perceive any in�uence on subsequent play - allows
us to derive constant equilibrium actions in the in�nite-horizon multistage game.

In particular, as we will see in the next subsection, when analyzing the corresponding �nite-horizon
multistage game, subgame perfect equilibrium actions are not constant over time. They di¤er in
every period, but they converge to constant actions as the number of stages tends to in�nity. These
converged actions are exactly the constant myopic equilibrium actions that we want to characterize
in the in�nite-horizon multistage game.

In our de�nition, the players are said to be myopic if they take the continuation value of the game
as �xed.7 Consider the next formal de�nition of myopic play.

De�nition III.2. Myopic play: the players take the continuation value of the game as given. That
is, for a given � 2 � we assume

Vi(�it(h� jt)) = Vit; for every ht 2 Ht; � � t: (10)

In our game, de�nition III.2 implies that whatever the actual history of play, the players take V Ei
as given from every period onward. The �rst-order conditions characterize the stationary myopic
equilibrium of the game G. In particular, player i�s maximization problem becomes

max
ai

�i(a) + �(a)V
E
i : (11)

As V Ei is taken as given, the �rst-order condition for a maximum implies

@�i(a)

@ai
+
@�(a)

@ai
V Ei = 0:

Using stationarity, we can insert equation (9) to get

@�i(a)

@ai
+
@�(a)

@ai

�i(a)

1� �(a) = 0; (12)

which is equivalent to

(1� �(a))@�i(a)
@ai

+ �i(a)
@�(a)

@ai
= 0: (13)

Equation (13) characterizes the stationary myopic equilibrium of our game G yielding equilibrium
actions a� 2 A and corresponding equilibrium strategy pro�le �ME

i (h) = a�, for every h 2 H.

Interestingly, these myopic actions of the in�nite-horizon game G are equal to the Nash equilibrium
actions of a related one-shot limit game. To see this, let us now look at the one-shot game gL that
is derived from the stage game g but with modi�ed payo¤ functions, given by

�Li (a) =
�i(a)

1� �(a) ; a 2 A: (14)

7 Interestingly, in a repeated-game setting, Hausken (2005) also studies equilibrium behavior where players are
myopic. However, in his analysis, myopia means a discount factor equal to zero, which is a di¤erent notion than the
one used here.
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The limit game gL corrects the payo¤s of stage game g for the endogenous impact of the disount
factor. In particular, the payo¤s of gL represent the discounted sum of the per-period payo¤s of g,
discounted at a constant rate given that equilibrium actions are constant over time.

After some algebraic manipulation, the �rst-order conditions for a Nash equilibrium of gL imply
that

(1� �(a))@�i(a)
@ai

+ �i(a)
@�(a)

@ai
= 0: (15)

Hence, from equations (13) and (15), it is clear that Nash equilibrium actions of the limit game gL

correspond one-to-one to myopic equilibrium actions a� of G. That is, a� 2 AN (gL). Consider the
next proposition.

Proposition III.3. If a� is a Nash equilibrium of the limit game gL, then the strategy pro�le �ME

such that �ME(h) = a�, for every history h 2 H, induces a stationary myopic equilibrium of the
game G with endogenous discounting.

So, to calculate the myopic equilibrium actions of the in�nite game it is su¢ cient to derive the
Nash equilibria of the limit game. From comparing proposition III.1 with proposition III.3, we can
say that playing a Nash equilibrium of the limit game in every period of the multi-stage game with
endogenous discounting is the perfect analog of playing a Nash equilibrium of the stage game in
every period of the repeated game with exogenous discounting.

IV Finite horizon and equilibrium selection

Dynamic games often show a continuum of equilibria. In this section we argue that our stationary
myopic equilibrium survives if we consider limiting subgame perfect equilibria of the �nite horizon
dynamic game GT by letting T !1.

The �nite horizon game GT is de�ned in the same way as G but restricted to T +1 stages in which
the stage game g is played, t running from 0 to T . The game GT has a unique subgame perfect
equilibrium, which can be found by backward induction.

Consider the game GT . Obviously, in the very last stage T , the unique Nash equilibrium actions
aNT = a

N of the stage game g are played, so that aNT 2 AN (g) with equilibrium payo¤s ��Ti = �i(aNT ),
i = 1; 2. In the penultimate stage T � 1, both players correctly anticipate that Nash equilibrium
actions aNT will be played in the next period. However, by their actions aT�1 in stage T � 1 they
are able to in�uence the last period�s discount factor via �T = �(aT�1). In fact, since the period T
outcome is known in advance in stage T � 1, it will be subgame perfect to play Nash equilibrium
actions aNT�1 of a modi�ed stage game gT�1 with payo¤ functions

�T�1i (a) = �i(a) + ��
T
i �(a); a 2 A: (16)

Hence, aNT�1 2 AN (gT�1). Clearly, aNT�1 6= aNT , since the discount factor is endogenous. Similarly,
in stage t, t < T , as part of a subgame perfect equilibrium, the players will play Nash equilibrium
actions aNt of the modi�ed stage game gt with payo¤ functions

�ti(a) = �i(a) + ��
t+1
i �(a); a 2 A; (17)
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with ��t+1i = �t+1i (aNt+1). So, a
N
t 2 AN (gt). By backward induction this process goes on until we

reach the very �rst stage 0, yielding Nash equilibrium actions aN0 of the modi�ed stage game g0.
That is, aN0 2 AN (g0).8 In this way, backward induction allows us to construct a unique subgame
perfect equilibrium of the �nite horizon game GT . This subgame perfect equilibrium induces an
outcome path of Nash equlibrium actions faN0 ; aN1 ; � � � ; aNT g.

We are interested what happens to the period-t Nash equilibrium actions aNt , t = 0; : : : ; T , as the
number of periods of the �nite-horizon game GT gets large. We will show that if some stability
condition is satis�ed, period-t Nash equilibrium actions aNt converge to the Nash equilibrium actions
a� of the limit game gL. Hence, the myopic equilibrium of the in�nite-horizon game is the sole
survivor when analyzing subgame perfect equilibria of the �nite-horizon game in the limit. This is
the message of our main result.

The proof of proposition IV.1 centers around the modi�ed stage game. Let us take a closer look at
the modi�ed stage game gk with payo¤ functions

�ki (a; k) = �i(a) + k�(a); a 2 A; (18)

where parameter k plays the role of future equilibrium pro�ts. Denote the corresponding Nash
equilibrium actions of gk by aN (k) 2 AN (gk), and de�ne mapping z(k) as follows:

z(k) = �ki (a
N (k); k): (19)

In fact, the iteration process ks+1 = z(ks), for s = 0; : : : ; T , describes the evolution of the period-
(T � s) Nash equilibrium actions and payo¤s of GT over time. In particular, starting with k0 = 0,
in the �rst round (s = 0) we have

k0 = 0 ) aN (k0) = a
N
T ) k1 = �i(a

N (k0); k0) = ��
T
i ;

k1 = ��
T
i ) aN (k1) = a

N
T�1 ) k2 = �i(a

N (k1); k1) = ��
T�1
i ;

and so on until we arrive at aN (kT ) = aN0 . We are looking for a �xed point k
� = z(k�) that is

asymptotically stable, and inducing aN (k�) = a�.

First, for a �xed point k� of z(k) it must hold that

k� = �i(a
N (k�)) + k��(aN (k�)); (20)

or, equivalently,

k� =
�i(a

N (k�))

1� �(aN (k�)) : (21)

Hence, at k = k�, the Nash equilibrium actions aN (k�) of the modi�ed game gk
�
correspond to the

Nash equilibrium actions of the game with payo¤ functions �i(a)=(1 � �(a)), which is exactly the
limit game gL. Therefore, k� = �Li (a

�) and aN (k�) = a�.

Second, to check asymptotic stability, let us look at the derivative dz(k)=dk; that is,

dz(k)

dk
=
d�ki (a

N (k); k)

dk
=

@�ki
@aNi (k)

@aNi (k)

@k
+

@�ki
@aNj (k)

@aNj (k)

@k
+
@�ki
@k

: (22)

8Note that as an initial condition in the recursion we set gT = g.
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Note that @�ki =@k = �. By the envelope theorem the �rst term drops out, leaving

dz(k)

dk
=

@�ki
@aNj (k)

@aNj (k)

@k
+ �(aN (k)): (23)

After some straightforward manipulations, we �nd

dz(k)

dk
=

�
� @2�ki =@ai@k

@2�ki =@ai@aj + @
2�ki =@

2ai

�
@�ki

@aNj (k)
+ �(aN (k)): (24)

For asymptotic stability, we need jdz(k)=dkj � 1. Let us write dz(k)=dk = B(aN (k); k)+ �(aN (k)),
where

B(aN (k); k) =

�
� @2�ki =@ai@k

@2�ki =@ai@aj + @
2�ki =@

2ai

�
@�ki
@k

: (25)

Then, for the �xed point k� of z(k) to be asymptotically stable, the following condition must hold

jB(a�; k�) + �(a�)j < 1: (26)

Since 0 � �(a�) < 1, condition (26) holds if jB(a�; k�)j is su¢ ciently small; i.e., condition (26) is
satis�ed if jB(a�; k�)j < 1� �(a�). Consider the next proposition.

Proposition IV.1. Consider the �nite horizon game GT . If stability condition (26) is satis�ed,
then for every � > 0 and for every 0 � t <1, there exists T > t, such that for every 0 � s � t we
have that j�Ns � ��j < �.

In fact, since T !1 as t!1, from the above proposition we can easily deduce that if the number
of stages of the game GT approaches in�nity, then in (almost) all periods the stage-t subgame
perfect equilibrium actions aNt get arbitrarily close to the one-shot Nash equilibrium actions a� of
the induced limit game gL. To put it di¤erently, the subgame perfect equilibrium actions of the
�nite-horizon game GT converge to the myopic equilibrium actions of the in�nite-horizon game G.

V An illustrative example

Consider two duopolists who are engaged in Bertrand competition over time. We label this in�nite-
horizon game G. The stage game g is as follows. In period t, if �rms 1 and 2 choose prices pt1 and
pt2, respectively, the quantity that consumers demand from �rm i is

qi(p
t
i; p

t
j) = a� pti + bptj ;

where b > 0 re�ects the extent to which �rm i�s product is a substitute for �rm j�s product. We
assume that there are no �xed costs of production and that marginal costs are constant at c, where
c < a, and that �rms choose their prices simultaneously in every period t. The time-t pro�ts to
�rm i when it chooses the price pti and its rival chooses the price p

t
j is

�i(p
t
i; p

t
j) = qi(p

t
i; p

t
j)(p

t
i � c) = (a� pti + bptj)(pti � c):

It is now straightforward to calculate the Nash equilibrium of the stage game g. For 0 < b < 2, the
(symmetric) Nash equilibrium prices are given by

pN1 = p
N
2 =

a+ c

2� b :
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Fierce competition, driving prices down sharply, may destabilize the market as a whole and increase
the risk of breakdown for the players. Thus, by the prices the �rms choose over time, they are able
to in�uence the discount factor. To keep things analytically tractable, we assume a very simple
linear scheme

�t+1 = �(p
t
1; p

t
2) =

pt1 + p
t
2

(1 + r)v
; pti � 0; pt1 + pt2 � v;

where r > 0 denotes the common rate of time preference, and v � 1 a scale parameter. This simple
formalization tries to grasp that lower prices tend to disrupt the market.9 We normalize a zero
probability of continuation at the point where the total price pt1 + p

t
2 is equal to zero. The limit

game gL has payo¤ functions

�Li (pi; pj) =
�i(pi; pj)

1� �(pi; pj)
=
v(1 + r)(a� pi + bpj)(pi � c)

v(1 + r)� (pi + pj)
:

In solving for the Nash equilibrium of gL, the best reply functions are given by

pRi (pj) = v(1 + r)� pj �
q
(c� v(1 + r) + pj)(a� v(1 + r) + (1 + b)pj):

Naturally, the intersection of these best reply functions gives the Nash equilibrium prices (p�1; p
�
2)

of the limit game gL :

p�1 = p
�
2 =

v(1 + r)(2� b) + a+ c(1 + b)
2(3� b)

�
p
(v(1 + r)(2� b) + a+ c(1 + b))2 � 4(3� b)((a+ c)v(1 + r)� ac)

2(3� b) :

Note that for v !1 the endogenous e¤ect of discounting disappears and, hence, p�i ! pNi .

Looking at the �nite-horizon game GT where Bertrand competition takes place for only T periods,
we are interested in the Nash equilibrium prices of the modi�ed stage game gk with payo¤ functions

�ki (pi; pj ; k) = �i(pi; pj) + k�(pi; pj) =
k(pi + pj)

v(1 + r)
+ (a� pi + bpj)(pi � c):

The best reply functions are

�pRi (pj) =
1

2

�
bpj + a+ c+

k

v(1 + r)

�
;

yielding (symmetric) Nash equilibrium actions (pN1 (k); p
N
2 (k)) of the modi�ed stage game g

k,

pN1 (k) = p
N
2 (k) =

k

(2� b)v(1 + r) +
(a+ c)

2� b :

For k = 0 we retrieve the Nash equlibrium actions of the stage game g so that pN1 (0) = p
N
2 (0) =

(a+ c)=(2� b). The mapping z(k) = �k(pN1 (k); pN2 (k); k) can be represented by

z(k) = d0 + d1k + d2k
2:

9Obviously, imposing a probability distribution to capture the endogenous e¤ect on the discount factor would be
more realistic, but it would also complicate matters in our example. See Bolt and Tieman (2004) for an application
of the uniform and beta distribution.
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Figure 1: Convergence to a myopic equlibrium

Note: The left panel describes the mapping z(k); the right panel show the convergence toward k� and p�i as
a function of the number of stages of GT .

(See the Appendix for the explicit formula.) Solving for the �xed point k = z(k) gives us k�, which
veri�es (pN1 (k

�); pN2 (k
�)) = (p�1; p

�
2) (see Appendix). To see whether it is a stable �xed point we

need to check jdz(k)=dkj < 1 at k = k�. Following equations (24)-(26), we derive

B((pN1 (k); p
N
2 (k)); k) =

�
2k + b(a� c(1� b))v(1 + r)

((2� b)v(1 + r))2

�
�
�

1

(2� b)v(1 + r)

�
;

which, in absolute value, is smaller than 1� �(pN (k)) for su¢ ciently large v. Hence, the iteration
scheme ks+1 = z(ks) is asymptotically stable and converges toward k�.

To illustrate further, let us plug in the following numerical values: a = 2, b = 1, c = 1, r = 0:05, and
v = 20. Given these parameter values we retrieve Nash equilibrium prices (pN1 ; p

N
2 ) = (3; 3) of the

stage game g. The limit game gL yields (p�1; p
�
2) = (3:32; 3:32), which are the myopic equilibrium

actions of the in�nite horizon game G. Note that by endogenizing the discount factor, stationary
equilibrium prices rise by 10 percent. From the modi�ed stage game gk we derive

pN1 (k) = p
N
2 (k) = 3 + 0:05k;

which induces iteration scheme ks+1 = z(ks), where

z(k) = 4:00 + 0:38k + 0:005k2:

Solving for the �xed point yields k� = 6:80, and (pN1 (k
�); pN2 (k

�)) = (p�1; p
�
2) = (3:32; 3:32). Checking

the stability condition gives B((3:32; 3:32); 6:80) = 0:13 < 1 � �((3:32; 3:32)) = 0:67. In Figure 1,
the left panel shows the mapping z(k) and its convergence point k�.10 The right panel shows the
rate of convergence toward the �xed point k� and the corresponding myopic equilibrium actions
(p�1; p

�
2). We see that convergence is fairly rapid; already after s = 10 rounds time T �s equilibrium

actions become very close to the myopic equilibrium actions.

10 In the example, the quadratic mapping z(k) = k has obviously two roots, k� = 6:80 and k� = 129:7. However,
this last solution is not asymptotically stable, and does therefore not correspond to a myopic equilibrium.
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VI Discussion and concluding remarks

In many economic situations, agents are able to in�uence the probability of default by the (risky)
actions they take themselves over time. But if players have a direct impact on the probability of
reaching the next stage, equilibrium behaviour among these players gets more complicated. Just
playing a Nash equilibrium of the stage game in every period is no longer part of a stationary
subgame pefect equilibrium of the multi-stage game with endogenous discounting. In this paper,
we have shown that there is an intuitive way to deal with this problem.

If players are assumed to be myopic, then stationary myopic equilibrium of the in�nite-horizon
multi-stage game corresponds to the in�nite repetition of a Nash equilibrium of an induced, one-
shot limit game. In this sense, for the derivation of a stationary equilibrium, it is as though this
limit game takes over the role of the stage game in a repeated game, but now corrected for the
endogenous impact of the discount factor on the per-period payo¤s.

Interestingly, the stationary myopic equilibrium is the sole survivor when studying limiting subgame
perfect equilibria of the multi-stage game with a �nite horizon. In particular, we show that if
the number of stages in the �nite-horizon multi-stage game tends to in�nity, then the unique
subgame perfect equilibrium actions in (almost) every stage become arbitrarily close to the myopic
equilibrium actions of the in�nite-horizon multi-stage game. We feel that this selection mechanism
is interesting and makes good sense. It is what happens if players for some reason are not able to
coordinate on a good equilibrium. We may say that playing a Nash equilibrium of the limit game
in every period in a multi-stage game with endogenous discounting is the perfect analog of playing
a Nash equilibrium of the stage game in every period in a repeated game.

The derived myopic equilibrium seems intuitive and the equilibrium selection mechanism is ap-
pealing. But some di¢ culties remain. First, there is the question of uniqueness of equilibria.
We assumed that the Nash equilibrium of the stage game is unique. This need not be the case.
However, multiplicity of equilibria poses no real problem as long as one focuses on one particular
equilibrium of the stage game. It is straightforward to show that for every Nash equilibrium of the
stage game, there exists a corresponding myopic equilibrium of the dynamic game with endogenous
discounting.

Second, it might be the case that although the stage game has a unique Nash equilibrium, some
of the corresponding modi�ed stage games have multiple Nash equilibria. Then, most likely, con-
vergence towards a myopic equilibrium is lost, and in this case there seems no simple way to
characterize a stationary equilibrium.

Third, we might ask what our analysis implies for the special but widely analyzed case of the stage
game being a (two-by-two) bimatrix game. Interestingly, when we repeat the one-shot Prisoners�
Dilemma with its unique but ine¢ cient Nash equilibrium, it can be readily shown that by making
the discount factor contingent on the four possible strategies of the stage game, the players could
move to the e¢ cient outcome after some time. Moreover, the di¤erences in the discount factor
need only be slight to trigger this switch to an e¢ cient outcome, provided that the horizon of the
game is �long" enough. However, one needs to be careful when interpretating the limit game in
this bimatrix case. Evidently, the analysis gets more complicated if the bimatrix game has more
than one Nash equilibrium.

In all, these above-mentioned di¢ culties open up an interesting avenue for further research, the
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more so since dynamic games in which players control their own breakdown probabilities seem to
correspond to very natural economic phenomena.
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Appendix

In section V, when we substitute (pN1 (k); p
N
2 (k)) in �

k(pN1 (k); p
N
2 (k); k), this yields

z(k) = d0 + d1k + d2k
2;

where

d0 =
(a� c(1� b))2
(2� b)2 ;

d1 =
a(4� b) + c(4� b(3� b))

v(1 + r)(2� b)2 ; and

d2 =
3� b

(v(1 + r)(2� b))2 :

Solving for the �xed point z(k�) = k� gives

k� = � v(1 + r)
2(3� b) (a(4� b) + c(4� b(3� b))� (2� b) (v(2� b)(1 + r)

�(2� b)
p
(v(1 + r)(2� b) + a+ b(1 + c))2 � 4(3� b)((a+ c)v(1 + r)� ac)

��
:

After some algebraic manipulation, substituting k� into pNi (k) we can show that p
N
i (k

�) = p�i .
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