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I.   INTRODUCTION 

The concepts of forecast combination and forecast encompassing are closely related. Often 
times, there are several competing forecasts of a target variable that come from different 
sources or models. One way to utilize all the competing forecasts is to merge them into a 
single, combined forecast. Forecast encompassing tests are used to determine whether one of 
a pair of forecasts contains all the useful information for prediction. If this is not the case and 
rather both models contain some incremental information, there is potential to form a 
combined forecast that blends the useful information of the two (or more) forecasts. 

This paper proposes an algorithm that uses encompassing tests to combine forecasts. The 
algorithm is based on a simple idea: if a forecast is encompassed by another, it is excluded 
from the combination. Once all the encompassed forecasts are eliminated, the combined 
forecast is obtained by taking an arithmetic average. To assess the usefulness of this 
approach, an extensive empirical analysis is undertaken using a U.S. macroeconomic data 
set. There are 110 target variables to be forecast, and for each of the target variables, about 
70 to 150 alternative forecasts to be used in combinations. For each of the 110 cases, the 
combined forecast obtained with the algorithm is compared with a benchmark model. The 
results are encouraging as the algorithm forecasts outperform benchmark model forecasts, in 
a MSE sense, in a majority of cases. 

The approach proposed here differs from most of the literature on forecast combinations in 
that it suggests reducing the number of available forecasts before combining them. Much of 
the forecast combination literature concentrates on how to optimally combine a given set of 
forecasts.2 A straightforward approach is to use linear regressions to obtain weights, as 
proposed by Granger and Ramanathan (1984). This could be done by regressing the target 
variable on the set of all available forecasts, and then using the regression coefficients as 
weights. Gupta and Wilton (1987) propose nonparametric methods for calculating weights. 
The possibility of structural change or state-dependent relationships led researchers to 
develop time-varying combination methods; see Diebold and Pauly (1987) and Zellner, 
Hong, and Min (1991). Finally, Diebold and Pauly (1990) propose Bayesian shrinkage 
methods. Most of these methods take the number of alternative forecasts as given, and then 
seek to find the best weights for combining them. Although weights of some forecasts can be 
(close to) zero, generally all forecasts enter the combination. 

Methods that choose among alternative forecasts before combining them could enhance 
predictive power. Examples along this line of research include Schmittlein, Kim, and 
Morrison (1990) and Swanson and Zang (2001). Schmittlein, Kim, and Morrison propose 
using Akaike Information Criteria (AIC) for combining forecasts, and provide Monte Carlo 
evidence on the usefulness of their approach. Swanson and Zhang consider other model 
                                                 
2 See surveys by Newbold and Harvey (2002) and Timmerman (2006). 
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selection approaches in addition to AIC, and also provide a real-time empirical analysis. 
They find that an approach based on the Schwartz Information Criterion (SIC) may provide a 
useful alternative to other forecast combination methods. Note that both papers examine 
model selection approaches to reduce the dimension of the forecast combination, rather than 
using statistical testing. Interestingly, although forecast combinations and forecast 
encompassing principle are closely related, the latter is rarely used for combining forecasts, 
but rather for evaluating them. 

II.   THE ENCOMPASSING PRINCIPLE 

Let 1f  and 2f  be two alternative sets of forecasts of a variable. Assume that one of the two 
sets, say 1f , performs better by some criteria, say Root Mean Square Error (RMSE). The idea 
behind forecast combinations is that the poorly-performing forecast may provide some 
marginal information that is not contained in the better forecast. In such a case, the combined 
forecast will perform better then either forecast alone. However, if the poorly-performing 2f  
contains no useful marginal information, than it is said that 1f  encompasses 2f . 

To formally test for forecast encompassing, I will use the Harvey, Leybourne, and Newbold 
(HLN, 1998) test. The HLN (1998) test is based on the well-known forecast evaluation test 
developed by Diebold and Mariano (DM, 1995). The DM test is used to test for equal 
predictive ability of two competing forecasts. It considers a sample of loss differential series 

td , defined as 1 2( ) ( )t t td L e L e= − ; where ( )L  is some arbitrary loss function, such as MSE; 

ite  is the τ -step-ahead forecast error of the model i ; 1, 2i = ; and 1, ,t T= L . Equal 

predictive accuracy amounts to ( ) 0tE d = , and the test is based on the observed sample 

mean ( ) 1
1 T

tt
d T d

=
= ∑ . Assuming covariance stationarity of the loss differential series, the 

DM test has an asymptotic standard normal distribution under the null hypothesis of equal 
predictive accuracy. The test statistic is as follows: 
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where iγ  is the ith autocovariance of d , estimated by ( )( )1
1

ˆ T
i t t it i

T d d d dγ −
−= +

= − −∑ . 

HLN (1997) assess the performance of the DM test using Monte Carlo simulations. The 
authors recommend two simple modifications to the DM test that would improve the power 
of the test in small samples, resulting in the modified version of DM (MDM): (i) Compare 
the test statistic with critical values from the Student’s t-distribution with 1T −  degrees of 
freedom, instead of the standard normal, so as to reduce size distortions; and (ii) Modify the 

test statistic as ( ) 1 21 2 11 2 1MDM T T T DMτ τ τ− −⎡ ⎤= + − + −⎣ ⎦ . 

The HLN forecast encompassing test is closely related to the DM test. It is simply obtained 
by modifying td  to ( ) titjtit eeed ,,, −= . The null hypothesis is that model i forecast 
encompasses model j. That is, all the relevant information of model j is contained in model i. 

III.   DATA AND OUT-OF-SAMPLE FORECASTS 

The data set used is from Marcellino, Stock and Watson (2006), and consists of 
172 macroeconomic series from 1959:1 through 2002:4. (Most data are monthly, but 
converted to quarterly; the Data Appendix provides a detailed description.) Forecast 
combinations are produced for 110 of these series called target variables; series with a short 
time span are not forecast. For each variable to be forecast, other series in the data set are 
used as predictors. Simple models in the form of bivariate regressions are used to produce 
forecasts with each of these alternative predictors. Forecasts of the alternative models are 
then used in combinations. 

The bivariate linear regressions used to obtain pseudo out-of-sample forecasts are of the 
form: 

 
1 1

0 0

q p

t i t i i t i t
i i

Y Y X eα γ β
− −

− −
= =

= + + +∑ ∑  (3) 

 

where tY  is the target variable to be forecast, iX  is a predictor, and te  is an error term. The 
lags of the variables X and Y are chosen using the SIC, where 1 4p≤ ≤  and 0 4q≤ ≤ . SIC is 

calculated as ( )2
1

ln 1 lnn
tt

SIC n n k nε
=

= +∑ ) , where n is the number of observations, and k is 

the number of regressors including the constant. Regressions of this type are run for all 
available predictors X  in the data set. In order to simulate real-time forecasting, models are 
re-estimated at each period. 

The first estimation sample used to construct a set of forecasts is from the first quarter of 
1959 to the last quarter of 1969, providing out-of-sample forecasts for the first quarter of 
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1970. I then expand the sample by one period, re-estimate the models, and produce forecasts 
for the second quarter of 1970, and so forth, ending with a final forecast for the fourth quarter 
of 2002. The maximum number of out-of-sample forecasts across time with this data set 
is 131. 

To forecast price variables, all other series are used as predictors; however, real variables are 
not forecast using price variables. As a consequence, the number of forecasts produced that is 
used in the combination at a point in time depends on whether the target is a real or price 
variable. When the target is a price variable, the number of forecasts available at each period 
is close to 171, as all available predictors are used for forecasting price series. The exact 
number will be less than 171 as some series do not go back to 1959, and some were 
discontinued. Since price series are excluded from forecasting real series, the number of 
forecasts in that case is about 70. 

To obtain the benchmark forecast, the simple arithmetic average of all available forecasts is 
taken. As demonstrated in many studies, simple averaging works very well in many 
applications and is extremely difficult to beat consistently even with sophisticated models; 
hence, it is a natural benchmark. 3 This benchmark forecast combination is called AVE 
forecast. The other forecast combination, also a simple average, but obtained after the 
number of forecasts in the combination is reduced by employing the encompassing 
algorithm, is called the EAL forecast (after the encompassing algorithm). 

IV.   THE ENCOMPASSING ALGORITHM 

For each target variable, there are several alternative models, each corresponding to a 
different series in the data set. Each model produces a set of pseudo out-of-sample forecasts, 
starting from the first quarter of 1970 to the end of the sample. The algorithm uses pseudo 
out-of-sample forecasts as inputs. The idea is to compare all models available forecasts with 
each other using encompassing tests, eliminate those that are encompassed by others, and 
take the average of the remaining forecasts. The comparisons are done bilaterally, using the 
HLN (1998) forecast encompassing test. Once the pseudo out-of-sample forecasts are 
obtained, the following steps are taken to eliminate forecasts encompassed by others, and 
obtain the EAL combination. 

Step 1. Start at time t and calculate the RMSE of the out-of-sample forecasts for each model 
using out-of-sample forecasts up to time t-1, and realized values. Rank the models according 
to their past performance based on RMSE. 

Step 2. Pick the best model (i.e., model with the lowest RMSE), and test sequentially 
whether the best model forecast encompasses other models, using the HLN test. If the best 
                                                 
3 On the forecasting performance of simple averaging, see the surveys by Clemens (1989), Newbold and Harvey 
(2002), and Timmerman (2006). 
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model encompasses the alternative model at some significance level α , delete the alternative 
model from the list of models. 

Step 3. Repeat Step 2, with the second best model. Note that the list of models now contains 
only those that are not encompassed by the best model, and the best model. 

Steps 4 and 4+ Continue with the third best model, and so on, until no encompassed model 
remains in the list. 

Last step: Calculate the EAL forecast by taking the average of all remaining models’ 
forecasts. 

There are several issues to consider in applications. First, an initial set of out-of-sample 
forecasts is required in order to apply the HLN (1998) test. One option is to use all available 
forecasts prior to the date the forecast is being produced. An alternative would be to choose a 
rolling window of a fixed number of observations. I will present results for all available 
forecasts and the last 20 forecasts, denoted by , 20m all= , respectively. To start the 
applications, out-of-sample forecasts before 1980 are used as inputs, and then the sample is 
expanded by one-quarter to simulate real-time forecasting. Thus, the comparisons of forecast 
combinations are based on post-1980 data. Note that some series do not go back to 1959, and 
there is need to accumulate some data points before including the series in combinations. I 
impose the condition that there should be at least 30 observations for a variable to be 
included. So effectively, the window size is 30 in most cases. I then experiment with a 
window size of 40, which does not affect the conclusions of the paper. 

The second concern is the choice of the significance level α  of the HLN test. I will 
experiment with a range of significance levels ( 0.01α = , 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 
0.35, 0.40, 0.45) to explore whether a subrange would appear as maximizing the forecasting 
power. Finally, there is the problem of outliers. To tackle this issue, forecasts that are more 
than five standard deviations away from the target variable are considered as extreme and 
removed from combinations. 

The proposed algorithm has some desirable properties. A common problem facing modelers 
attempting to utilize large data sets is that in many cases the number of variables in the data 
set exceeds the number of observations. In those cases, it is difficult or impossible to use 
conventional model selection techniques, such as linear regression techniques. The method 
proposed in this study can easily deal with this problem. A large number of alternative 
forecasts should not pose any major problems, except for computing time. Another advantage 
of the algorithm is that it does not require knowledge of the models that produce alternative 
forecasts; all that is needed is the set of forecasts. 
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V.   RESULTS 

A.   Does the Algorithm Work? 

I compare the models by looking at the relative forecasting performance based on RMSE. 
The benchmark for each target variable is the AVE model. RMSE are calculated both for the 
benchmark model and the algorithm forecasts. The ratio EAL AVERMSE RMSE  gives a scale-
free metric, where a ratio less than one indicates that the algorithm forecast outperforms 
simple averaging.  

Table 2 reports the averages of the relative RMSEs for the 110 target variables for each 
significance level and two different training sample sizes. The results suggest that when 
m all=  and the significance level is greater then 0.15, the EAL forecasts provide some 
modest gains compared to the AVE forecasts.   

Visual illustrations of the distribution of relative RMSE are provided in Figures 1a-d. The 
figures present results for m all=  and 0.15,0.25,0.35α = , and 0.45, respectively. In the 
figures, the vertical axis shows the relative RMSEs, while the horizontal axis contains the 
110 target variables to be forecast, sorted from the lowest relative RMSE to the highest. Thus 
the first variable in the horizontal axis is the target variable for which the EAL forecast 
provides the highest RMSE gains compared to the AVE method. 

At 0.25α =  and 0.35α = , percentage RMSE gains arising from employing the EAL are 
over 10 percent for about half of the cases, with the highest gains of over 20 percent. When 

0.45α = , there are less gains, which is not surprising; at high significance levels, less 
variables are eliminated from the combination and the resulting combined forecasts are closer 
to the simple average forecast. In contrast, at the low significance levels, very few variables 
remain in the combination and the forecast benefits less from the advantages of combining. 
The next section analyzes this tradeoff and presents results on the choice of the significance 
level. 

B.   Which Significance Level to Use? 

Further results for comparing the forecasting performance of the algorithm at different 
significance levels are provided in Table 2. I start by looking at simple rankings. First, for 
each target variable I rank the number of times for which the best results are obtained across 
the 10 significance levels examined. For example, if the forecast with the smallest RMSE is 
obtained using significance level 0.25, and the second smallest is 0.30, then using 0.25 and 
0.30 are ranked as 1 and 2, respectively. This is done for all 110 models, then the ranks are 
summed up with the smallest sum suggesting the best performing significance level. 

The results vary across the two training sample sizes. When a larger sample is used, the best 
results are obtained when the significance level is in the 0.25 – 0.40 range. Although the 
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differences are marginal, 0.35 gives the best average result. When the training window size is 
20, the best results are obtained at higher significance levels.   

The average number of remaining variables is also presented in Table 2. As expected, 
the number of nonencompassed variables increases with the significance level of the 
HLN test. At the low significance level of 0.001, usually only one variable remains, which 
is the one with the best historical RMSE performance. With 0.10α =  there are about 
seven nonencompassed variables on average and the mean relative RMSE is equal to one, 
suggesting that as few as seven variables can perform as well as the larger data set. The best 
performance is achieved when 0.35α =  and the number of variables is 25. It is also 
interesting to note that with a fixed window of m=20, the mean relative RMSE less than or 
equal to one is achieved when the significance level is greater than 0.25, corresponding to six 
or more variables in the forecast combination. 

VI.   COMPARISONS WITH OTHER METHODS 

This section compares the proposed method with other well-known forecast combination 
methods. The following models are used to generate alternative combined forecasts: 

RMSE-weighted combinations: 

Define the ith forecasting model’s RMSE at time t as ( )
1 2

2
, ,1

1 n
t i t j iRMSE n e −

⎡ ⎤= ⎣ ⎦∑  which is 

computed over a window of n observations. Then the RMSE weighted combined forecast is: 

 
( )
( )

,
, , ,

1 ,1

1
ˆ ˆˆ ˆ ,

1

M
t ic

t t i t i t i M
i t ii

RMSE
y y

RMSE
ω ω

=
=

= =∑
∑

 (4) 

Rank-weighted combinations: 

Define ,t iR  as the rank of the ith model based on its historical RMSE performance up to time 
t. As suggested in Aiolfi and Timmerman (2006), the weights of the combination can be 
calculated as: 

 ( )1 1
, ,1

ˆ M
t i t ii

R Rω − −
=

= ∑  (5) 

 
Combinations based on ranks have the advantage that ranks are not very sensitive to outliers 
so the estimated weights can be robust. 

The thick-modeling approach:  

Granger and Jeon (2004) advocate the thick modeling approach, where the top x percent of 
the best performers are kept in the forecast combination. There are no theory-based 
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guidelines on how to choose x. The authors state that thick modeling is more of a “pragmatic 
folk-view than anything based on clear theory.” Researchers usually exclude an arbitrary 
portion of the worst performing forecasts. Despite that, the method works very well in 
empirical applications. In this study I have experimented with the following numbers for x: 1, 
5, 10, 20, 30, ... , 90. The results not only allow for comparisons with the combination 
strategy proposed in this study, but also provide some empirical evidence on the choice of x. 

Combinations before and after the algorithm: 

The above mentioned combination techniques are used both before and after the algorithm is 
applied. Doing that can improve the performance as some of the problems associated with 
large data sets may be removed after EAL filtering. However, since comparisons with other 
models would be difficult to present for all significance levels, I will focus on the models that 
provide the best results in the previous section, that is 0.35α = . This will also ensure that 
enough observations are included in the thick modeling approach, which cannot be 
meaningfully applied with only a few observations. 

Factor models: 

In addition to various forecast combination techniques, factor models are also included in 
forecast comparisons. These models, advocated by Stock and Watson in a series of papers in 
recent years,4 are shown to be fairly successful models for forecasting with large data sets. 
An illustration of factor models is as follows. Assume at time t we have a large data set, 
denoted tX , and there is some common information in this data set which can be represented 
by a few unobserved factors tF . The dynamic factor representation is as follows: 

 t t t tX F e= Λ +  (6) 

 1 1t t t ty Fβ ε+ += +  (7) 

 
where tΛ  is the factor loading matrix, ty  is the stationary time series to be forecast, and tβ  
is a vector of parameters that defines the relationship between the factors and the variable to 
be forecast. 

Stock and Watson (2002) show that the factors can be conveniently constructed as the 
principal components tX . Once the factors are estimated, the forecasting exercise is similar 
to standard linear prediction. Coefficients tβ  are estimated by regressing ty  onto tF , and 

then the forecast is formed as ttt Fy β̂1 =+ . One practical problem is the determination of the 

                                                 
4 See Stock and Watson (2006) for a survey. 
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number of factors to use in the forecasting exercise. Stock and Watson (2002) propose using 
information criteria to choose the optimum number of factors. I will experiment with three 
different approaches: only using the first principal component, and choosing the number of 
factors using AIC and Bayesian Information Criterion, where the maximum number of 
factors considered is four. 

Results: 

First, I calculate combined forecasts for each of the 110 target variables using 35 alternative 
models. Altogether about 90 forecasts are produced with each model for each target variable, 
and the RMSE (mean absolute errors, MAD) is calculated relative to the benchmark model. 
As before, a ratio of less than one indicates that the alternative model provides forecast gains. 
Finally, I calculate the average relative RMSE (MAD) for each forecasting method. That is, I 
provide 110 different experiments with various models. In Table 3, the models are ranked 
from best to worst and the average relative RMSE and MAD are reported. As can be seen 
from the tables, in many cases the differences in RMSE and MAD between models are small, 
thus the comparisons are only suggestive. In some cases, however, the results are stronger, 
such as the poor performance of thick models with only a small percentage of the best 
performers, or the factor models. 

For all models except for the thick modeling approach, there is evidence suggesting that post-
algorithm forecasts are better then pre-algorithm forecasts. More specifically, this is true for 
the RMSE and rank weighted, mean, and median combinations. The evidence on the thick 
modeling approach is mixed. The best overall results are achieved by pre-algorithm thick 
models, where 20–40 percent of the best models are retained in the combinations. Best 
results for post-algorithm results are obtained with 80 to 100 percent of forecasts. 

Combinations with only a few forecasts, such as the top 1–10 percent, do not perform well on 
average. Moreover, such strategies deliver a high variance in performance. For example, the 
highest overall RMSE gains are obtained when the strategy is to choose the historically best 
model, giving us a reduction in RMSE close to 20 percent. At the same time, the worst 
performance is also obtained using the same model. These results once again warn against 
relying too much on best performances in the past, which are not necessarily repeated in the 
future. 

Forecast combinations generally outperform factor forecasts. Compared to simple averaging, 
the average RMSE loss from using factor models is about 4–6 percent, depending on the 
model selection mechanism used for factor models. A comparison of the performance of 
model choice strategies for factor models suggests that using a single factor with lags almost 
always outperforms models with more than one factor, but no lags. 
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VII.   CONCLUSIONS 

The algorithm proposed in this study is based on the link between forecast combinations and 
the encompassing principle. The aim is to reduce the dimension of the combination problem 
by testing before combining. The empirical analysis presented suggests that the algorithm 
provides forecast gains in a MSE sense, compared to the benchmark simple averaging 
method. The average gains arising from employing the algorithm amount to about a  
1–2 percent reduction in RMSEs. Although the gains are not substantial, they should still be 
considered noteworthy, given the well-known difficulty of outperforming the simple 
averaging method in practice. 

Perhaps more important than the marginal reductions in forecast errors is the ability of the 
algorithm to perform at least as well as the simple averaging method. In this way, the 
algorithm suggests a method to represent a larger data set with a smaller one. This could 
prove useful in some applications as it may be easier to monitor and understand the dynamics 
of a smaller number of variables. For example, the method could be used to identify leading 
indicators of a variable from a large data set.  
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Appendix I. Data 

The following Appendix Table lists the time series used in the empirical analysis. The series were 
either taken directly from the DRI-McGraw Hill Basic Economics database, in which case the 
original mnemonics are used, or they were produced by the author’s calculations based on data from 
that database, in which case the author’s calculations and original DRI/McGraw series mnemonics 
are summarized in the data description field. Following the series name is a transformation code, the 
sample period for the data series, and a short data description. The transformations are (Lev) level of 
the series; (D) first difference; (Ln) logarithm of the series; (DLn) first difference of the logarithm. 
The following abbreviations appear in data descriptions: SA: seasonally adjusted; NSA: not 
seasonally adjusted; SAAR: seasonally adjusted at an annual rate; AC: authors’ calculations. 

 

Table 1. Description of Data 

Series Trans. Sample Period Description 

(A) Income, output, sales, capacity utilization 

Msmq DLn  1967: 1–2001: 7  Sales, business—manufacturing (chained) 
ips11  DLn  1959: 1–2002: 12  Industrial production index—products, total 
ips299  DLn  1959: 1–2002: 12  Industrial production index—final products 
ips12  DLn  1959: 1–2002: 12  Industrial production index—consumer goods 
ips13  DLn  1959: 1–2002: 12  Industrial production index—durable consumer goods 
ips18  DLn  1959: 1–2002: 12  Industrial production index—nondurable consumer goods 
ips25  DLn  1959: 1–2002: 12  Industrial production index—business equipment 
ipi  DLn  1959: 1–2002: 10  Industrial production: intermediate products (1992=100, sa) 
ips32  DLn  1959: 1–2002: 12  Industrial production index—materials 
ips34  DLn  1959: 1–2002: 12  Industrial production index—durable goods materials 
ips38  DLn  1959: 1–2002: 12  Industrial production index—nondurable goods materials 
ips43  DLn  1959: 1–2002: 12  Industrial production index—manufacturing (sic) 
ipd  DLn  1959: 1–2002: 10  Industrial production: durable manufacturing (1992=100 sa) 
ipn  DLn  1959: 1–2002: 10  Industrial production: nondurable manufacturing (1992 = 100, sa) 
ipmin  DLn 1959: 1–2002: 10  Industrial production: mining (1992 = 100, sa) 
iput  DLn  1959: 1–2002: 10  Industrial production: utilities (1992 = 100, sa) 
utl10  Lev  1967: 1–2002: 12  Capacity utilization—total index 
utl11  Lev  1959: 1–2002: 12  Capacity utilization—manufacturing (sic) 
utl13  Lev  1967: 1–2002: 12  Capacity utilization—durable manufacturing (naics) 
utl25  Lev  1967: 1–2002: 12  Capacity utilization—nondurable manufacturing (naics) 
utl35  Lev  1967: 1–2002: 12  Capacity utilization—mining naics = 21  
utl36  Lev  1967: 1–2002: 12  Capacity utilization—electric and gas utilities 
gmpyq DLn  1959: 1–2002: 12  Personal income (chained, series #52, bil 92$, saar) 
gmyxpq DLn  1959: 1–2002: 12  Personal income less transfer payments (chained, series #51, bil 92$, saar) 
Gmcq DLn 1967: 1–2002: 12  Personal consumption expenditure (chained)—total (bil 92$, saar) 
gmcdq DLn 1967: 1–2002: 12  Personal consumption expenditure (chained)—total durables (bil 1996$, saar) 
gmcnq DLn 1967: 1–2002: 12  Personal consumption expenditure (chained)—nondurables (bil 96$,saar) 
gmcsq DLn 1967: 1–2002: 12  Personal consumption expenditure(chained)—services (bil 92$, saar) 
gmcanq DLn 1967: 1–2002: 12  Personal consumption expenditure (chained)—new cars (bil 1996$, saar) 
Wtq DLn 1959: 1–2001: 7  Merch wholesalers: total (mil of chained 1996 dollars, sa) 
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Table 1. Description of Data 

Series Trans. Sample Period Description 

Wtdq DLn 1959: 1–2001: 7  Merch wholesalers: durable goods total (mil of chained 1996 dollars, sa) 
Msdq DLn 1959: 1–2001: 7  Mfg. and trade: mfg.; durable goods (mil of chained 1996 dollars, sa) 
msmtq DLn 1959: 1–2001: 7  Mfg. and trade: total (mil of chained 1996 dollars, sa) 
msnq DLn 1959: 1–2001: 7  Mfg. and trade: mfg.;nondurable goods (mil of chained 1996 dollars, sa) 
wtnq DLn 1959: 1–2001: 7  Merch. wholesalers: nondurable goods (mil of chained 1996 dollars, sa) 
rtdrq DLn 1967: 1–2001: 4  Retail sales durables, real (rtdr/pucd, AC) 
rtnrq DLn 1967: 1–2001: 4  Retail sales nondurables, real (rtnr/pu882, AC) 
ips10 DLn 1959: 1–2002: 12  Industrial production index—total index 

(B) Employment and unemployment 

lpnag DLn 1959: 1–2002: 12  Employees on nonag. payrolls: total (thous., sa) 
lhu26 Lev 1959: 1–2002: 12  Unemployed by duration: persons unemployed 15–26 wks (thous., sa) 
lpgd DLn 1959: 1–2002: 12  Employees on nonag. payrolls: goodsproducing (thous., sa) 
lhu15 Lev 1959: 1–2002: 12  Unemployed by duration: persons unemployed 15 wks+(thous., sa) 
lp DLn 1959: 1–2002: 12  Employees on nonag payrolls: total, private (thous., sa) 
lpcc DLn 1959: 1–2002: 12  Employees on nonag. payrolls: contract construction (thous., sa) 
lhelx Ln 1959: 1–2002: 12  Employment: ratio; help-wanted ads: no. unemployed clf 
lhu5 Lev 1959: 1–2002: 12  Unemployed by duration: persons unemployed less than 5 wks (thous., sa) 
lhu14 Lev 1959: 1–2002: 12  Unemployed by duration: persons unemployed 5–14 wks (thous., sa) 
lpsp DLn 1959: 1–2002: 12  Employees on nonag. payrolls: serviceproducing (thous., sa) 
lptu DLn 1959: 1–2002: 12  Employees on nonag. payrolls: trans. and public utilities (thous., sa) 
lpt DLn 1959: 1–2002: 12  Employees on nonag. payrolls: wholesale and retail trade (thous., sa) 
lpfr DLn 1959: 1–2002: 12  Employees on nonag. payrolls: finance, insur. and real estate (thous., sa) 
lps DLn 1959: 1–2002: 12  Employees on nonag. payrolls: services (thous., sa) 
lpgov DLn 1959: 1–2002: 12  Employees on nonag. payrolls: government (thous., sa) 
lw Dif 1964: 1–2002: 12  Avg. weekly hrs. of prod. wkrs.: total private (sa) 
lphrm Lev 1959: 1–2002: 12  Avg. weekly hrs. of production wkrs.: manufacturing (sa) 
lpmosa Lev 1959: 1–2002: 12  Avg. weekly hrs. of prod. wkrs.: mfg., overtime hrs. (sa) 
lhu680 Lev 1959: 1–2002: 12  Unemployed by duration: average (mean) duration in weeks (sa) 
lhur Lev 1959: 1–2002: 12  Unemployment rate: all workers, 16 years and over (%, sa) 
lpen DLn 1959: 1–2002: 12  Employees on nonag. payrolls:nondurable goods (thous., sa) 
lpem DLn 1959: 1–2002: 12  Employees on nonag. payrolls: manufacturing (thous., sa) 
lhel DLn 1959: 1–2002: 12  Index of help-wanted advertising in newspapers (1967 = 100; sa) 
lped DLn 1959: 1–2002: 12  Employees on nonag. payrolls: durable goods (thous., sa) 
lhem DLn 1959: 1–2002: 12  Civilian labor force: employed, total (thous., sa) 
lhnag DLn 1959: 1–2002: 12  Civilian labor force: employed, nonagric. industries (thous., sa) 
lpmi DLn 1959: 1–2002: 12  Employees on nonag. payrolls: mining (thous., sa) 

(C) Construction, inventories and orders 

hssou Ln 1959: 1–2002: 12  Housing starts: south (thous.u., s.a.) 
contc DLn 1964: 1–2002: 12  Construct.put in place: total priv and public 1987 $ (mil$, saar) 
conpc DLn 1964: 1–2002: 12  Construct. put in place: total private 1987 $ (mil$, saar) 
conqc DLn 1964: 1–2002: 12  New construction put in place—public (c30) 
condo9 Ln 1963: 1–2002: 12  Construct.contracts: comm’l and indus.bldgs (mil.sq.ft.floor sp.;sa) 
hniv Ln 1963: 1–2002: 12  New 1-family houses for sale at end of month (thous, sa) 
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Table 1. Description of Data 

Series Trans. Sample Period Description 

hnr Ln 1963: 1–2002: 12  New 1-family houses, month’s supply @ current sales rate (ratio) 
hns Ln 1963: 1–2002: 12  New 1-family houses sold during month (thous, saar) 
hsbr Ln 1959: 1–2002: 12  Housing authorized: total new priv housing units (thous., saar) 
hswst Ln 1959: 1–2002: 12  Housing starts: west (thous.u.) s.a. 
hmob Ln 1959: 1–2002: 12  Mobile homes: manufacturers’ shipments (thous.of units, saar) 
hsmw Ln 1959: 1–2002: 12  Housing starts: midwest (thous.u.) s.a. 
hsne Ln 1959: 1–2002: 12  Housing starts: northeast (thous.u.) s.a. 
hsfr Ln 1959: 1–2002: 12  Housing starts: nonfarm (1947–58);total farm and nonfarm (1959-, thous., sa) 
ivmtq DLn 1959: 1–2001: 7  Mfg. and trade inventories: total (mil of chained 1996, sa) 
ivmfgq DLn 1959: 1–2001: 7  Inventories, business, mfg. (mil of chained 1996 dollars, sa) 
ivmfdq DLn 1959: 1–2001: 7  Inventories, business durables (mil of chained 1996 dollars, sa) 
ivmfnq DLn 1959: 1–2001: 7  Inventories, business, nondurables (mil of chained 1996 dollars, sa) 
ivwrq DLn 1959: 1–2001: 7  Mfg. and trade inv: merchant wholesalers (mil of chained 1996 dollars, sa) 
ivrrq DLn 1959: 1–2001: 7  Mfg. and trade inv: retail trade (mil of chained 1996 dollars, sa) 
ivsrq DLn 1959: 1–2001: 7  Ratio for mfg. and trade: inventory/sales (chained 1996 dollars, sa) 
ivsrmq DLn 1959: 1–2001: 7  Ratio for mfg. and trade: mfg.;inventory/ sales (1996 $ s.a.) 
ivsrwq DLn 1959: 1–2001: 7  Ratio for mfg. and trade: wholesaler; inventory/sales (1996 $ s.a.) 
ivsrrq DLn  1959: 1–2001: 7  Ratio for mfg. and trade: retail trade;inventory/sales(1996 $ s.a.) 
pmi Lev  1959: 1–2002: 12  Purchasing managers’ index (sa) 
pmp Lev  1959: 1–2002: 12  Napm production index (percent) 
pmno Lev  1959: 1–2002: 12  Napm new orders index (percent) 
pmdel Lev  1959: 1–2002: 12  Napm vendor deliveries index (percent) 
pmnv Lev  1959: 1–2002: 12  Napm inventories index (percent) 
pmemp Lev  1959: 1–2002: 12  Napm employment index (percent) 
pmcp Lev  1959: 1–2002: 12  Napm commodity prices index (percent) 
mocmq DLn 1959: 1–2002: 12  New orders (net)—consumer goods and materials, 1996 dollars (bci) 
msondq DLn 1959: 1–2002: 12  New orders, nondefense capital goods, in 1996 dollars (bci) 
moq DLn  1959: 1–2001: 5  Mfg. new orders: all manufacturing industries, total, real (mo/pwfsa, AC) 
mdoq DLn  1959: 1–2001: 5  Mfg. new orders: durable goods industries, total, real (mdo/pwfsa, AC) 
muq DLn  1959: 1–2001: 5  Mfg. unfilled orders: all manufacturing industries, total mu/pwfsa, AC) 
mduq DLn  1959: 1–2001: 5  Mfg. unfilled orders: durable goods industries, total (mdu/pwfsa, AC) 

(D) Interest rates and asset prices 

fygt10 D  1959: 1–2002: 12  Interest rate: U.S. treasury const maturities, 10-yr.(% per ann, nsa) 
fclnq DLn  1959: 1–2002: 12  Commercial and industrial loans oustanding in 1996 dollars (bci) 
fsncom DLn  1959: 1–2002: 12  Nyse common stock price index: composite (12/31/65 = 50) 
fsnin DLn  1966: 1–2002: 12  Nyse common stock price index: industrial (12/31/65 = 50) 
fsntr DLn  1966: 1–2002: 12  Nyse common stock price index: transportation (12/31/65 = 50) 
fsnut DLn  1966: 1–2002: 12  Nyse common stock price index: utility (12/31/65 = 50) 
fsnfi DLn  1966: 1–2002: 12  Nyse common stock price index: finance (12/31/65 = 50) 
fspcom DLn  1959: 1–2002: 12  S&p’s common stock price index: composite (1941-43 = 10) 
fspin DLn  1959: 1–2002: 12  S&p’s common stock price index: industrials (1941-43 = 10) 
fsdxp Lev  1959: 1–2002: 12  S&p’s composite common stock: dividend yield (% per annum) 
fspxe Lev  1959: 1–2002: 12  S&p’s composite common stock: priceearnings ratio (%, nsa) 
fyff D  1959: 1–2002: 12  Interest rate: federal funds (effective) (% per annum, nsa) 
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Table 1. Description of Data 

Series Trans. Sample Period Description 

fygm3 D  1959: 1–2002: 12  Interest rate: U.S. treasury bills, sec mkt, 3-mo. (% per ann, nsa) 
fygm6 D  1959: 1–2002: 12  Interest rate: U.S. treasury bills, sec mkt, 6-mo. (% per ann, nsa) 
fygt1 D  1959: 1–2002: 12  Interest rate: U.S. treasury const maturities, 1-yr. (% per ann, nsa) 
fygt5 D  1959: 1–2002: 12  Interest rate: U.S. treasury const maturities, 5-yr. (% per ann, nsa) 
fm2dq DLn  1959: 1–2002: 2  Money supply—m2 in 1996 dollars (bci)  
fyaaac D  1959: 1–2002: 12  Bond yield: moody’s aaa corporate (% per annum) 
fybaac D  1959: 1–2002: 12  Bond yield: moody’s baa corporate (% per annum) 
fymcle D  1963: 1–2002: 12  Effective interest rate: conventional home mtge loans closed (%) 
sfygm3 Lev  1959: 1–2002: 12  Fygm3-fyff (AC) 
sfygm6 Lev  1959: 1–2002: 12  Fygm6-fyff (AC) 
sfygt1 Lev  1959: 1–2002: 12  Fygt1-fyff (AC) 
sfygt5 Lev  1959: 1–2002: 12  Fygt5-fyff (AC) 
sfygt10 Lev  1959: 1–2002: 12  Fygt10-fyff (AC) 
sfyaaac Lev  1959: 1–2002: 12  Fyaaac-fyff (AC) 
sfybaac Lev  1959: 1–2002: 12  Fybaac-fyff (AC) 
sfymcle Lev  1963: 1–2002: 12  Fymcle-fyff (AC) 
exrus DLn  1959: 1–2002: 12  United states; effective exchange rate (merm, index no.) 
exrsw DLn  1959: 1–2002: 12  Foreign exchange rate: switzerland (swiss franc per U.S. $) 
exrjan DLn  1959: 1–2002: 12  Foreign exchange rate: japan (yen per U.S. $) 
exruk DLn  1959: 1–2002: 12  Foreign exchange rate: united kingdom (cents per pound) 
exrcan DLn  1959: 1–2002: 12  Foreign exchange rate: canada (canadian $ per U.S. $) 

(E) Nominal prices, wages, and money 

fm1 DLn  1959: 1–2002: 12  Money stock: m1(curr, trav. cks, dem dep, other ck’able dep, bil$, sa) 

fm2 DLn  1959: 1–2002: 12  
Money stock: m2 (m1+o’nite rps, euro$, g/p&b/d mmmfs & sav & sm time dep, 
bil$) 

fm3 DLn  1959: 1–2002: 12  Money stock: m3 (m2+lg time dep, term rp’s & inst only mmmfs, bil$, sa) 
fmfba DLn  1959: 1–2002: 12  Monetary base, adj for reserve requirement changes (mil$, sa) 
fmrra DLn  1959: 1–2002: 12  Depository inst reserves: total, adj for reserve req chgs (mil$, sa) 
leh DLn  1964: 1–2002: 12  Avg hr earnings of prod. wkrs.: total private nonagric ($, sa) 
lehcc DLn  1959: 1–2002: 12  Avg hr earnings of constr. wkrs.: construction ($, sa) 
lehm DLn  1959: 1–2002: 12  Avg hr earnings of prod. wkrs.: manufacturing ($, sa) 
lehtu DLn  1964: 1–2002: 12  Avg hr earnings of nonsupv. wkrs.: trans & public util($, sa) 
lehtt DLn  1964: 1–2002: 12  Avg hr earnings of prod. wkrs.: wholesale & retail trade (sa) 
lehfr DLn  1964: 1–2002: 12  Avg hr earnings of nonsupv. wkrs.: finance, insur, real est ($, sa) 
lehs DLn  1964: 1–2002: 12  Avg hr earnings of nonsupv. wkrs.: services ($, sa) 
pwfsa DLn  1959: 1–2002: 12  Producer price index: finished goods (82 = 100, sa) 
pwfcsa DLn  1959: 1–2002: 12  Producer price index: finished consumer goods (82 = 100, sa) 
pwimsa DLn  1959: 1–2002: 12  Producer price index: intermed mat.supplies and components (82 = 100, sa) 
Pwcmsa DLn  1959: 1–2002: 12  Producer price index: crude materials (82 = 100, sa) 
Pwfxsa DLn  1967: 1–2002: 12  Producer price index: finished goods,excl. foods (82 = 100, sa) 
psm99q DLn  1959: 1–2002: 12  Index of sensitive materials prices (1990 = 100, bci-99a) 
punew DLn  1959: 1–2002: 12  Cpi-u: all items (82–84 = 100, sa) 
pu81 DLn  1967: 1–2002: 12  Cpi-u: food and beverages (82–84 = 100, sa) 
puh DLn  1967: 1–2002: 12  Cpi-u: housing (82–84 = 100, sa) 
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Table 1. Description of Data 

Series Trans. Sample Period Description 

pu83 DLn  1959: 1–2002: 12  Cpi-u: apparel and upkeep (82–84 = 100, sa) 
pu84 DLn  1959: 1–2002: 12  Cpi-u: transportation (82–84 = 100, sa) 
pu85 DLn  1959: 1–2002: 12  Cpi-u: medical care (82–84 = 100, sa) 
pu882 DLn  1959: 1–2002: 12  Cpi-u: nondurables (1982–84 = 100, sa) 
puc DLn  1959: 1–2002: 12  Cpi-u: commodities (82–84 = 100, sa) 
pucd DLn  1959: 1–2002: 12  Cpi-u:durables (82–84 = 100, sa) 
pus DLn  1959: 1–2002: 12  Cpi-u: services (82–84 = 100, sa) 
puxf DLn  1959: 1–2002: 12  Cpi-u: all items less food (82–84 = 100, sa) 
puxhs DLn  1959: 1–2002: 12  Cpi-u: all items less shelter (82–84 = 100, sa) 
puxm DLn  1959: 1–2002: 12  Cpi-u: all items less midical care (82–84 = 100, sa) 
gmdc DLn  1959: 1–2002: 12  Pce, impl pr defl: pce (1987 = 100) 
gmdcd DLn  1959: 1–2002: 12  Pce, impl pr defl: pce; durables (1987 = 100) 
gmdcn DLn  1959: 1–2002: 12  Pce, impl pr defl: pce; nondurables (1996 = 100) 
gmdcs DLn  1959: 1–2002: 12  Pce, impl pr defl: pce; services (1987 = 100) 
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Table 2. Relative Performance of Algorithm Forecasts 1/ 
 

  Significance level: 
  0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 
           
Training sample size:           
All available           
   Relative RMSE 1.09 1.01 1.00 0.99 0.98 0.98 0.98 0.98 0.98 0.98
   Sum of ranks 976 770 673 582 518 498 498 448 497 590
   Number of unencompassed  1 4 7 10 13 17 21 25 31 39
           
Last 20            
   Relative RMSE 1.09 1.06 1.04 1.02 1.01 1.00 1.00 1.00 0.99 0.99
   Sum of ranks 1,013 925 812 692 571 472 438 414 366 347
   Number of unencompassed  1 2 3 4 5 6 8 11 15 24
                      
 
   1/ The relative RMSE indicates the ratio of MSE of algorithm forecasts to that of the simple averaging 
method. The table reports averages across 110 different experiments. The rankings compare the 
performance of different significance levels; the significance level that gives the best results is ranked one. 
The smallest sum of ranks across 110 models performs the best. The last rows in panels indicate the 
number of models that remain in the combination after the algorithm is applied. 

 
 



 19 

Table 3. A Comparison of Forecast Combination Methods 1/ 
 

Rank Mean of Relative MAD Rank Mean of Relative MSE
Top 30 PRE 0.981   Top 30 PRE 0.978 
Top 80 POST 0.982  Top 80 POST 0.979 
Top 90 POST 0.983  Top 90 POST 0.979 
Top 70 POST 0.983  Top 20 PRE 0.980 
Top 20 PRE 0.983  Top 70 POST 0.980 
RMSE weighted POST 0.983  Top 40 PRE 0.980 
Mean POST 0.984  RMSE weighted POST 0.981 
Top 40 PRE 0.984  Mean POST 0.981 
Top 60 POST 0.984  Top 60 POST 0.982 
Top 50 POST 0.985  Top 50 POST 0.984 
Top 50 PRE 0.988  Top 50 PRE 0.985 
Top 40 POST 0.988  Median POST 0.988 
Median POST 0.989  Top 40 POST 0.988 
Top 60 PRE 0.991  Top 60 PRE 0.989 
RANK weighted POST 0.993  RANK weighted POST 0.991 
Top 30 POST 0.994  RANK weighted PRE 0.992 
Top 70 PRE 0.994  Top 70 PRE 0.993 
RANK weighted PRE 0.995  Top 30 POST 0.996 
Top 80 PRE 0.997  Top 80 PRE 0.996 
Top 90 PRE 0.998  Top 90 PRE 0.998 
RMSE weighted PRE 0.999  top 10 PRE 0.998 
top 10 PRE 1.000  RMSE weighted PRE 0.999 
Top 20 POST 1.009  Top 20 POST 1.012 
Median PRE 1.014  Median PRE 1.015 
Top 5 PRE 1.029  Top 5 PRE 1.025 
FAC BIC LAGS 1.048  FAC AIC LAGS 1.043 
FAC AIC LAGS 1.050  FAC BIC LAGS 1.043 
top 10 POST 1.052  FAC FIXED LAGS 1.044 
FAC FIXED LAGS 1.054  FAC AIC FACTORS 1.049 
FAC AIC FACTORS 1.062  top 10 POST 1.051 
FAC BIC FACTORS 1.063  FAC BIC FACTORS 1.051 
FAC FIXED FACTORS 1.067  FAC FIXED FACTORS 1.055 
Top 5 POST 1.092  Top 5 POST 1.089 
Top 1 PRE 1.098  Top 1 PRE 1.094 
Best POST 1.104  Best PRE 1.100 
Top 1 POST 1.104  Best POST 1.100 
Best PRE 1.105   Top 1 POST 1.100 
 
   1/ The relative root mean absolute errors indicates the ratio of the MAD of a combination method 
to that of the simple averaging method. Same for the RMSE. Methods are ranked from the best 
performing to the worst. 
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Figure 1. Relative Performance of Algorithm Forecasts 
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