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Abstract 
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We analyze the performance of kernel density methods applied to grouped data to estimate 
poverty (as applied in Sala-i-Martin, 2006, QJE). Using Monte Carlo simulations and 
household surveys, we find that the technique gives rise to biases in poverty estimates, the 
sign and magnitude of which vary with the bandwidth, the kernel, the number of datapoints, 
and across poverty lines. Depending on the chosen bandwidth, the $1/day poverty rate in 
2000 varies by a factor of 1.8, while the $2/day headcount in 2000 varies by 287 million 
people. Our findings challenge the validity and robustness of poverty estimates derived 
through kernel density estimation on grouped data. 
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I.   MOTIVATION 

Several recent studies have employed nonparametric smoothing techniques, and in particular 
kernel density estimation (henceforth, ‘KDE’) on grouped data to obtain poverty estimates 
(Sala-i-Martin 2002a, 2002b, 2004, 2006; Ackland, Dowrick, and Freyens, forthcoming; 
Fuentes, 2005).1 World poverty and inequality assessments—especially over longer time-
horizons—require the use of grouped data (usually expressed as income averages for a small 
number of population quantiles) because representative household surveys are not available, 
or are difficult to obtain or analyze (Shorrocks and Wan, 2008). However, the accuracy of 
poverty estimates and visual representations of income distributions extrapolated from this 
informationally limited data structure crucially depends on the statistical method employed.   

The goals of this study are twofold. First, we assess the appropriateness of kernel density 
estimation methods on grouped data for poverty analysis. Biases in poverty estimates 
associated with the method are identified for a wide range of poverty indicators, poverty 
lines, parameters (e.g., bandwidths and kernels), and income distributions. Second, we 
analyze the robustness of KDE-based global poverty estimates to the choice of bandwidth, 
and provide a framework for the interpretation of these estimates. Our analysis is also 
relevant to researchers undertaking poverty and social impact analyses (PSIA), especially 
those aiming to cover multiple years or groups of countries. Full household surveys are often 
unavailable for low-income or post-conflict countries, but grouped data may have been 
published, making the use of smoothing techniques attractive. Assessing the distributional 
effects of PRGF program measures may, for instance, require the use of such data.2  

 
This study is a response to the influential work of Sala-i-Martin (2002a, 2002b, 2004, 2006) 
who uses KDE on grouped data to estimate national, regional, and global poverty. The author 
finds that there have been substantial reductions in world income poverty (according to all 
indicators and poverty lines considered) between 1970 and 2000. We demonstrate that Sala-i-
Martin’s figures lack robustness to the choice of underlying parameters. In particular, a 
number of optimal bandwidth values3 are consistent with an estimated share of ‘$1/day poor’ 
in 2000 which is higher than Sala-i-Martin’s estimate by a factor of 1.8. Similarly, alternative 

                                                 
1 Other studies (e.g., Berry et al (1983), Grosh and Nafziger (1986), Korzeniewick and Morran (1997), Bhalla 
(2002), Bourguignon and Morrison (2002), Milanovic (2002, 2005)) have also used grouped data representing 
average incomes of population quantiles to estimate national, regional, and world inequality. Grouped data has 
been used to illustrate of the shape of regional and world income distributions, too.  

2 Income distributions estimated from grouped data may be integrated into partial and general equilibrium 
models to assess the welfare impact of policies (see, e.g.,Essama-Nssah et al, 2002; Essama-Nssah, 2005a, 
2005b; Coady, 2005). 

3 Throughout the paper, the term ‘optimal’ is used to describe smoothing parameter values which maximize the 
approximate integrated mean square error. This optimality criterion refers to the ‘global’ goodness-of-fit of the 
estimated density function. It should be noted that alternative optimality criteria may be defined for the problem 
at hand, for example, a high goodness-of-fit of the estimated income density upto a given poverty line or simply 
a good estimate of the poverty headcount ratio or other poverty measure. Different bandwidth values may result 
from the application of alternative optimality criteria. 
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bandwidths gives rise $2/day poverty headcounts in 2000 higher than Sala-i-Martin’s 
estimate by 287 million people. This suggests that the authors may have underestimated the 
$2/day headcount by as much as 50 percent due to this methodological choice alone. The 
magnitude of the possible errors associated with KDE-based global poverty analysis, of 
which these are two examples, gives rise to serious concern about the validity and robustness 
of the technique in poverty analysis.  

 
The grouped data we consider consists of income averages for a small number of population 
quantiles (usually five). Since analytical derivations of the properties of the KDE estimator in 
small samples are prohibitively difficult or impossible, we undertake Monte Carlo 
simulations for a range of plausible income distributions. The following distributions are 
considered: Log-normal (two parameters), Dagum (three parameters), Generalized Beta II 
(four parameters), and a notional multimodal distribution. We also use three nationally 
representative household surveys (Nicaragua, Tanzania and Vietnam) to compare KDE-based 
poverty estimates obtained from grouped data with those obtained directly from unit data. 
Finally, we assess the performance of KDE in global poverty analysis, using grouped data for 
a large number of developing countries.  

 
There are reasons to believe that the application of KDE in this data environment to estimate 
poverty may give rise to biases. However, the size of the possible biases (for distinct poverty 
indicators and poverty lines, and for various income distributions) is unknown ex ante and 
requires a study of this kind. The data structure on which we focus—five income averages 
for five population quantiles—is informationally poorer than a large sample drawn from the 
underlying distribution, rendering nonparametric density estimation methods inappropriate. 
However, a small number of average incomes is a richer source of information about the 
underlying distribution than would be a small random sample from that distribution. We find 
that poverty is misestimated in a majority of cases, but occasionally the biases at different 
income levels cancel out so that good estimates are obtained. The order of magnitude of the 
biases in poverty headcount ratio estimates identified in this study reaches 6-7 percentage 
points (for the unimodal distributions considered) and 10-11 percentage points (for the 
multimodal distribution considered). Furthermore, the biases in estimates of the Foster-
Green-Thorbecke (FGT) poverty measures generally increase with the degree of 
distributional sensitivity.  

 
Why have researchers used KDE to estimate poverty from grouped data? First, the method 
draws its appeal from the fact that unlike parametric approaches, it does not require prior 
beliefs about the functional form of the underlying distribution. Second, it is convenient to 
use because it reproduces the entire income distribution from a manageable amount of data. 
It is thus particularly useful when the analysis is regional or global in scope: not only are 
household surveys not available for numerous country-years, but their analysis could be 
prohibitive in terms of time and manpower. Third, unit data from many nationally 
representative household surveys (including for China and India) are not readily publicly 
available.4  In this environment of data paucity marked by an increasing interest in estimates 
                                                 
4 The Chinese State Statistical Bureau only publishes grouped data from underlying rural and urban household 
surveys in its China Statistical Yearbook. Similarly, grouped data from Indian National Statistical Surveys are 

(continued…) 
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of long-term trends in global poverty, it is essential to determine whether the statistical 
techniques employed are indeed reliable.  

 
Kernel density estimation is one of two methods that have been used extensively in poverty 
analysis from grouped data. The alternative approach is parametric estimation of the Lorenz 
curve (applied in studies including Yotopoulos, 1989; Chen and Ravallion, 2002, 2004, 2007; 
Bhalla, 2002; Pritchett, 2006; and Kakwani and Son, 2006).5 Many Lorenz parametric forms 
have been proposed, of which two are easily implemented using the computational tools 
POVCAL and SimSIP developed by the World Bank. Although we do not explicitly compare 
KDE-based estimates with their parametric analogues, it is noteworthy that the Lorenz curve 
parameterizations embodied in POVCAL and SimSIP perform well on grouped data for 
unimodal distributions, but less so in the case of multimodal distributions (Minoiu and 
Reddy, forthcoming).   

 
In poverty analysis, KDE methods have been undertaken on datasets as small as five income 
averages corresponding to five population quantiles per country and per year. For example, 
Sala-i-Martin (2002a, 2002b, 2004, 2006) uses five such datapoints for each of 138 countries 
to fit income distributions and estimate the long-term trend in income poverty. The author 
concludes that substantial reductions in world poverty have been recorded over the past three 
decades. In particular, after applying KDE to grouped data, the author finds that the share of 
people with an income level below $1.50 per day in the world's population has fallen from 
20.2 percent to 7 percent between 1970 and 2000. The author proposes two methods for 
constructing a world income distribution from individual country distributions. The first 
method (described as the kernel of quintiles method) consists of constructing a dataset in 
which each person’s income level is the average income of the national population quintile to 
which that person belongs. Subsequently, kernel density estimation is applied to this the 
dataset. The second method (described as the kernel of kernels method) consists of first 
estimating each country’s income density from quintile means, and integrating the individual 
country densities into a population-weighted world income density. We conduct our analysis 
in a manner directly comparable to the kernel of kernels method proposed by Sala-i-Martin, 
but the two approaches yield similar results. 

 
Sala-i-Martin’s KDE-based poverty estimates have given rise to heated debates on the extent 
and trend of global poverty.6 Despite the uncertainties concerning the applicability of KDE 
                                                                                                                                                       
readily but India’s unit data can only be obtained from the National Sample Survey Organization (NSSO) 
provided that the research is deemed relevant to India’s national development and planning by its statistical 
authorities. Such unit data is moreover only available for recent years.  For this study, a formal request for unit 
data on consumption was submitted to the NSSO, but it was rejected on the grounds that the project was not 
relevant to national development and planning. 

5  Maximum entropy density estimation (for densities from the exponential family) has recently been proposed 
by Wu and Perloff (2007) as an alternative technique for poverty analysis on grouped data. An application to 
Chinese data demonstrated that the estimates are reliable (Wu and Perloff, 2005). However, the method has not 
been the subject of systematic assessment.  

6 See, for example, articles in The Economist (“More or less equal?”, March 11, 2004 and “Pessimistic on 
poverty?”, April 7, 2004), NBER Digest (“Economic growth is reducing global poverty”, October 2002), The 

(continued…) 
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methods to grouped data, a number of studies have subsequently used his methodology. For 
example, Ackland, Dowrick, and Freyens (2007) use kernel of kernels method on quintile 
means to investigate the sensitivity of global poverty estimates to alternative purchasing 
power parity (PPP) conversion factors. However, their analysis is subject to the biases 
inherent in the ‘KDE on grouped data’ approach, which render the level or trend estimates of 
poverty produced difficult to interpret. A similar application of KDE to grouped data is 
presented by Fuentes (2005), who uses an unspecified number of income averages to 
estimate inequality and poverty in several countries.7  

 
The remainder of this paper is organized as follows: in the next two sections, we discuss the 
nature of the data and the bias of the kernel density estimator on grouped data. Section III 
contains a description of our methods. Section IV discusses the results of the Monte Carlo 
analysis. Section V presents findings from a comparison of poverty estimates from household 
surveys with those from KDE on grouped data for three countries with different levels of 
poverty. In Section VI, we present a sensitivity analysis of KDE-based global poverty 
estimates to changes in the bandwidth. Conclusions are drawn in Section VII. 

 
II.   THE DATA STRUCTURE AND THE BIAS OF THE ESTIMATOR 

The situation facing a researcher who seeks to estimate poverty from grouped data can be 
described as follows. Information on a variable of interest (e.g., income, consumption, or 
total wealth) is collected through a nationally representative household survey. While the 
survey is not available in its entirety, the researcher possesses average incomes of several 
population quantiles.8 One way of representing the data is as a collection of linear functions 
of order statistics: the order statistics represent the income levels of individuals in the 
nationally representative household survey arranged in ascending order. The averages of 
incomes of population quantiles are linear functions of order statistics. These “systematic 
statistics” (a term coined by Mosteller in 1946) represent the sole source of information from 
which the researcher aims to recover features of the income distribution.  

 
The process of grouping the data can be described as follows: income information for a large 
number of individuals is transformed into summary income information for a small number 
of equally-sized groups of individuals after those individuals’ income levels have been 
arranged in ascending order. The unit data from the survey represents independently and 
                                                                                                                                                       
Financial Times (“Location, location, location”, September 24, 2002), The National Center for Policy Analysis 
Daily Policy Digest (“World poverty rate has fallen”, June 11, 2002), and The New York Times (“Good news 
about poverty”, November 27, 2004). 

7 Other studies that do not make use of distributional information within population groups, but still employ 
KDE to estimate or illustrate income distributions, include Dhonghe (2005), Aziz and Duenwald (2001), 
Milanovic (2002, 2005), Bourguignon and Morrison (2002), Bianchi (1997), Jones (2002), Quah (1996, 1997), 
Pittau (2005), and Pittau and Zelli (2006).  

8 Alternatively, income shares are available from the survey. An estimate of total income (drawn from the 
national accounts or surveys) is then used to scale them and obtain average incomes of several population 
quantiles. 
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identically distributed draws from the unknown income distribution. The process of ordering 
the independent and identically distributed draws from the underlying distribution, and of 
collecting them into groups, generates a complex correlation structure among the order 
statistics. The correlation structure would be inconsequential for the properties of the kernel 
density estimator if all the underlying observations were available to the researcher. 
However, this is not the case. The order statistics contain less information than the original 
sample. Nevertheless, the averages retain important information about the underlying 
distribution due to the ordering of the original observations.9   

 
Each quantile mean available for KDE is a trimmed mean obtained by discarding a number 
of order statistics. Four of the quintile means, for example, are asymmetrically trimmed 
means, whereas the central one (corresponding to the middle twenty percent of the 
population) is a symmetrically trimmed mean. Symmetrically trimmed sums are robust 
estimators of location (to heavy-tailed distributions and outliers). Furthermore, if the data are 
drawn from a symmetric distribution, they are unbiased estimators for the mean of that 
distribution.10 Stigler (1973, 1974) and Mason (1981) have shown that trimmed means are 
asymptotically normally distributed under mild conditions on the weighting function for the 
ordered observations and an arbitrary data generating process for the unordered 
observations.11 A small number of quantile means are therefore informationally richer than a 
small sample from the underlying distribution (in particular because they carry more precise 
information about the location of underlying order statistics along the support), but 
informationally poorer than a large sample from the underlying distribution.  

 
It should be noted that nonparametric approaches to estimating the density from small 
datasets (comprised of draws from the underlying density or, as is the case here, quantile 
means), are also inappropriate due to the very nature and purpose of nonparametric statistics. 
The statistical literature encourages the use nonparametric estimators in “exploratory data 
analysis, as a confirmatory tool, or as a supplement to the standard parametric fare” 
(Yatchew, 1998, p. 672). The purpose of nonparametric techniques is to provide means of 
uncovering patterns in the data using information from a wealth of (nearby) observations. 
Yatchew (1998, p. 715) argues that “interpolation is only deemed reliable among close 
neighbour[ing] observations, and extrapolation outside the observed domain is considered 
entirely speculative”.  

 
                                                 
9 As evidenced by the early literature following Mosteller (1946) which focused on robust estimation of location 
and scale parameters of the underlying distributions from order statistics. 

10 This is relevant in the context of income distributions, since Log-transformed incomes are distributed 
normally (hence, symmetrically) if incomes are distributed Log-normally.  

11 A necessary and sufficient condition for this result to hold is that the sample is trimmed at sample percentiles 
such that the corresponding population percentiles are uniquely defined (Stigler, 1973). Similarly, Moore (1968) 
and Siddiqui and Butler (1969) have shown that linear functions of order statistics are asymptotically normally 
distributed (under the condition that the weighting function which gives rise to the linear functions of order 
statistics is differentiable, its first derivative is continuous and of bounded variation except at finitely many 
jumps. This condition is trivially fulfilled by the weighting function giving rise to the quantile means). 
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With these considerations in mind, we derived the bias of the kernel density estimator of an 
the unknown density from grouped data data12, given below:  
 

 
2

21ˆ( ( )) ( ) ''( ) ( ) ... ( )
2j j j j j

j j

hBias f x g x g x t k t dt f x
J J

= + + −∑ ∑ ∫  (1) 

 
where j=1,…,J represents the number of grouped datapoints, h represents the bandwidth, k(.) 
is the weighting function (kernel), dttkt )(2∫  is therefore a constant depending on the 

weighting function, and )(⋅jg   is the density probability function of the thj  quantile mean. 
Higher order terms in h arising from a Taylor approximation have been omitted for 
simplicity. For purposes of comparison, the bias of the ‘standard’, survey-based kernel 
density estimator (Silverman, 1986) is given by: 
 

 
2

2ˆ( ( )) ''( ) ( ) ...
2S
hBias f x f x t k t dt= +∫  (2) 

 
where the higher order terms in h have also been suppressed. As expected, the grouped data-
based bias is itself a function of the unknown probability density functions associated with 
the quantile means. Letting   
 
 1 ( ) ( )j jJ g x v x=∑  (3) 
 
then the grouped data-based estimator will have the same bias as the survey-based estimator 
if v(x) = f(x). As the number of observations underlying each trimmed mean increases 
( ∞→J ), it is known that )(⋅jg becomes a normal distribution. However, an evaluation of 
v(x) requires an analytical expression for the density (and its derivatives) of a summation of J 
normally distributed trimmed means that possess a complex correlation structure. Since the 
analytical derivation is prohibitively difficult, and since it may be unreasonable to invoke 
asymptotic results in the context of grouped data computed from household surveys, we use 
Monte Carlo simulations to determine the ‘small-sample bias’ for the estimator. 

 
An issue related to the estimation of income distributions concerns the bounded nature of 
their support (at zero).13 If kernel density estimation is applied to the unit data or the quantile 
means, a downward boundary bias may arise at income levels close to or at the boundary. 
The boundary bias may, in turn, affect estimates of poverty and lead to distorted visual 
illustrations of income distributions. This is due to the fact that the mass close to and at zero 
(or, more generally, at the left boundary) is underestimated, in expectation, by as much as 50 
percent (Marron and Ruppert, 1994). The aforementioned studies undertake a log-

                                                 
12 Full derivations can be found in Minoiu (2007, section 3). 

13 Although in household surveys, negative income levels are not uncommon. 
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transformation of the income averages before estimating the density. Since the 
transformation increases the mass towards the left hand side of the distribution, the boundary 
bias problem is partially circumvented.   Boundary bias correction methods are available and 
should be applied for bounded support distributions.  In this case, the log-transformation 
enables the (standard) kernel density estimator to perform better by increasing the number of 
observations in the area in which the density would otherwise be underestimated.  We too 
apply a log transformation to the quantile means so as to demonstrate that even when the 
boundary bias is diminished by this transformation,  application of KDE to grouped data 
remains problematic.  

 
III.   THE BANDWIDTH AND KERNELS CONSIDERED 

We undertake kernel density analysis using software developed for this purpose, in the 
following sequence.14  First, quintile, decile, and ventile income (or consumption) averages 
are computed from large populations (drawn from theoretical distributions) and 
representative household surveys. Second, a variety of bandwidths and kernels (described 
below) are used to obtain kernel density estimates. Third, samples are drawn from the fitted 
densities. In the final step, we compare summary statistics and poverty measures of the 
simulated samples with the same quantities from the original data. 
 

In the Monte Carlo exercise, we use three first generation, rule-of-thumb bandwidths 
proposed by Silverman (1986, pp. 45-48). These are optimal in the sense that they seek to 
minimize the approximate mean integrated squared error. An important feature shared by 
Silverman’s bandwidths is that they assume a normal distribution for the data. Other 
properties are presented below in summary form:  

 
Bandwidth Formula15 Performance  
Silverman 1 (S1)  5

1

ˆ06.1 −×× Jσ , σ̂ = 
standard deviation, J = 
# obs.; C = 1.06 for 

- tends to oversmooth the density  
- performs poorly on heavily 
skewed distributions  

Silverman 2 (S2) 5
1

79.0 −×× JIQR , IQR  
is the inter-quartile 
range 

- leads to superior density 
estimates for long-tailed and 
heavily skewed distributions 
- does not do well on bimodal 
distributions  

Silverman 3 (S3) 5
1

9.0 −×× JA , 
).ˆ,34.1/min( σIQRA =

- achieves a more balanced 
amount of smoothing 
- works reasonably well on both 

                                                 
14 The software (“Kernel Density Estimation and Analysis Tool”) is available from the authors upon request.  

15 We use canonical bandwidths for all kernels so that all estimates are comparable across different kernels. The 
canonical bandwidths ensure that each bandwidth-kernel combination leads to the same amount of smoothing 
(or tradeoff between bias and variance) represented by the approximate value of the integrated mean squared 
error (Marron and Nolan, 1988).  The constants shown in the table correspond to the Gaussian kernel.  
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skewed and multimodal 
distributions (Silverman, 1986) 

 
We also consider (in Section V) a bandwidth proposed by Sheather and Jones (1991) (labeled 
S-J) which is entirely data-driven and has been shown to outperform other rule-of-thumb 
bandwidths both theoretically (by achieving a smaller value of mean integrated squared 
errors) and in simulations. It is considered to be the best second generation plug-in estimator 
and is recommended as a benchmark for good performance (Jones, Marron, and Sheather, 
1996).  

 
A number of additional rule-of-thumb bandwidths proposed in the literature are added to the 
analysis (in Section VI) in order to cover as broad a range as possible of bandwidths in 
assessing the sensitivity of global poverty estimates to this parameter. We consider a variant 
of the plug-in estimator (Wand and Jones, 1995), as well as a variant of the S3 bandwidth in 
which the scale parameter is σ̂  instead of ).ˆ,34.1/min( σIQR  Results are also presented for 
the “oversmoothed bandwidth” (representing the upper bound to the integrated mean square 
error minimizer). It is the largest bandwidth consistent with a ‘reasonable’ amount of 
smoothing and thus likely to result in more smoothing than Silverman’s S1 bandwidth. The 
oversmoothed bandwidth is thought of as a good starting point for subjective choice of 
bandwidth (Jann, 2005).  

 
We also employ a hybrid bandwidth (which is Silverman’s S3 bandwidth with scale 
parameter σ̂ instead of )ˆ,34.1/min( σIQR ) that is not data-driven in two major ways. First, 
the hybrid bandwidth takes the same value across kernels despite the fact that the amount of 
smoothing it achieves varies across kernels. This implies that the density estimates are not 
comparable across kernels given that each kernel-bandwidth pair corresponds to a different 
amount of smoothing. Second, the hybrid bandwidth is constant across datasets (e.g., 
countries) despite the fact that the standard deviation of each dataset (its scale parameter) will 
be different. Although the hybrid bandwidth does not possess theoretical underpinnings, we 
include it in the analysis to model the procedure of Sala-i-Martin (2006) who claims that 
when the fixed hybrid bandwidth is employed, different kernels give rise to the same national 
and global poverty estimates (Sala-i-Martin, 2006). Additionally, we wish to determine 
whether such a bandwidth (which is clearly not optimal in the sense defined in the literature) 
may outperform bandwidths that would conventionally be deemed optimal, when applied in 
poverty analysis. Following Sala-i-Martin (2002a, 2002b, 2004, 2006), the hybrid bandwidth 
is computed assuming a standard deviation of 0.6 (regardless of the country or dataset on 
which it is employed). The value of the hybrid bandwidth is therefore set at 0.39 for quintile 
data, 0.34 for decile data, and 0.296 for ventile data. These values exogenous to the data lead 
the hybrid bandwidth to generally be smaller than the optimal bandwidths for the datasets 
considered (and will thus lead to ‘undersmoothing’).  

 
A wide range of weighting functions is considered (Gaussian, Epanechnikov, Quartic, 
Triweight, Triangular, and Uniform). It has been shown that the mean integrated squared 
error is minimized for the Epanechnikov kernel, but that asymptotically, the choice of kernel 
is inconsequential for achieving the minimum mean integrated squared error (Silverman, 
1986). Since this analysis, however, is based on a small number of quantile means, there is 
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no a priori reason to discard any kernels. Each density is estimated at 100 equidistant points. 
Large samples (of 5000 observations) are simulated from the fitted density such that the 
share of observations with a specific income level is equal to the corresponding density 
estimate (upto rounding).16 

 
IV.   MONTE CARLO STUDY17 

A.   Theoretical Distributions 

The Monte Carlo exercises uses data from four distributions: Log-normal, Dagum, 
Generalized Beta II, and a notional multimodal distribution (Figure 1).18 We use parameter 
values for the Log-normal distribution that have been fit to Russian 1995 income data. The 
parameter values for the Dagum and Generalized Beta II distributions have been fit to 
Mexican 1996 income data. The multimodal distribution is the population-weighted 2004 
world distribution of income, in which individuals of each country are assigned the per capita 
GDP of that country. Two modes of this distribution correspond to the mean incomes of 
India and China, and a third, lower mode corresponds to the mean income of the richest 
nations.   
 

B.   Summary Statistics, Density Estimates and Diagrams 

The first question we seek to answer is how the grouped data-based kernel density estimator 
performs in describing the underlying distribution through summary statistics (e.g., means, 
medians, standard deviation, and quintile means). The findings are reported in Table 1.19   
 
                                                 
16 Samples can be drawn from the kernel density estimate in several ways. One is to construct the sample so that 
the share of observations with a certain income level is equal to the estimated density at that point (up to 
rounding). A second approach goes one step further, by also linearly interpolating the incomes so that clumping 
of incomes (for example, at points of high density) does not take place. A third approach involves drawing 
observations from the density by constructing a random variable whose p.d.f. (or alternatively, C.D.F.) is 
exactly the kernel density estimate from grouped data. The third is that described in the text. The various 
approaches lead essentially to the same results, and we report here results based on the second. 
  
17 Sections IV-VI are based on Minoiu (2007). 

18 From each distribution, 200 samples with 1000 observations each are simulated. The parameters chosen for 
the first three distributions are those resulting from a parametric density estimation exercise undertaken by 
Bandourian, McDonald and Turley (2003) on 82 household surveys from 23 countries. The authors show, for 
example, that the Dagum distribution provides the best fit to unit income data in the class of three parameter 
distributions, and the Generalized Beta II distribution is the best performing distribution in the class of four 
parameter distributions. In the family of two-parameter distributions, the Log-normal distribution is chosen due 
to its wide usage in the literature on income distributions (see, for example, the estimation of country income 
distributions by Babones, 2003). In Bandourian, McDonald and Turley (2003), the best-fitting two parameter 
distribution to income datasets is the Weibull distribution. A Monte Carlo exercise has also been undertaken 
using data from the Weibull distribution, but the results were largely similar to those for the other three 
distributions (log-normal, Dagum and Generalized Beta II) and are therefore not reported. 

19  All tables in the paper show results based on KDE from five datapoints, unless otherwise specified. 
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Across the four distributions, we find that the mean is systematically overestimated (by at 
most one fifth), while the median is estimated fairly well for all distributions, the latter 
finding being consistent with the well-known fact that trimmed means are good estimators of 
location. In contrast, the standard deviation is substantially underestimated for the three 
unimodal distributions and is overestimated for the multimodal distribution. Some 
regularities can be observed in relation to the estimation of quantile means themselves. For 
every distribution considered, the ratios between the estimated quintile means and the true 
ones are always sub-unity for the poorest two population groups, and always higher than 1 
for the richest two population groups. The average income of the poorest 40 percent of the 
population is systematically and substantially underestimated whereas that of the richest 40 
percent of the population is systematically and substantially overestimated. It is only the 
average income of the middle 20 income quantile that is precisely estimated for all 
distributions other than the multimodal distribution (for which it is understated due to an 
inability of the density estimate to properly capture the first mode of the distribution).20  

 
These findings (especially those for the middle of the distribution) are not surprising given 
the robust nature of trimmed means for estimating the location of underlying densities. It is 
observed, however, that using kernel density methods on grouped data generates important 
distortions precisely in the tails of the distributions. The systematic misestimation of the 
(average) incomes of the poorer and of the richer in a country will have an important effect 
on the values of poverty indicators, and will depend on the location of the poverty line along 
the density support. Although the density estimator assigns densities to income levels in the 
tails around the observed quantile means, it does so by drawing information primarily from 
the extreme quantile means. It thus faces a real difficulty in estimating the density at income 
levels far to the left (or right) of the extreme quantile means, and therefore the bandwidth 
plays a crucial role in allowing the weighting functions to “stretch” so as to produce nonzero 
densities at these far-off income levels. 

 
Actual versus fitted densities and the size of the density bias along the support (for Log-
normal data) are plotted two kernel-bandwidth pairs in Figure 2.21 The first panel overlays the 
estimated densities fitted from grouped data on the true density, while the second panel plots 
the bias in the density estimate (expressed as difference between the average density estimate 
and its true counterpart). The most important conclusion based on these diagrams is that 
                                                 
20 Histograms of the estimated quantile means for different kernel-bandwidth pairs are reported in Minoiu 
(2007, Graphs 1 and 2), demonstrating that a smaller bandwidth (in our setting, the lowest bandwidth 
considered happened to be the hybrid bandwidth) leads to a better fit of the observed quantile means. More 
specifically, an under-smoothed estimated density (resulting from a ‘too-low’ bandwidth) centers the mass on 
the observed datapoints, which are the quantile means themselves. The results concerning this comparison 
between optimal and the hybrid bandwidth are not reported here for brevity, but will be discussed again in the 
next two sections. 

21 We choose to do so rather than describe the performance of the estimator with statistics such as the Sum of 
Squared Errors or the Sum of Estimated Errors as these might miss important variation in the biases along the 
support. Furthermore, the points of estimation are kept fixed across draws to enable computation of the bias at 
each income level on the support. At every point of estimation, the densities are averaged across the draws 
(Figure 2). 
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KDE on grouped data gives rise to distortions in the estimated density at every point along 
the income support (with the exception of two crossing points where the bias is zero). 
Notably, the estimated density is biased upwards in the tails of the distribution. This is 
consistent with the previous finding that the average income of the poorest is underestimated, 
since too much mass is assigned to lower income levels.  Similarly, the positive bias in the 
density at the right end of the distribution is consistent with the previous finding that too 
much mass is assigned to the higher income levels, inflating the average income of the 
richest.  Furthermore, the diagrams demonstrate that the grouped data-based density is biased 
downwards in the middle of the distribution, which is also consistent with the finding that the 
average income of the middle 20 percent of the population is roughly well by the procedure, 
since the positive bias from the far left tail and the negative bias from the center of the 
distribution tend to cancel out.  The second conclusion arising from these diagrams is that the 
choice of kernel is not consequential for the visual impression created by the density 
estimate. However, it should be noted that this is simply an artifact of our using canonical 
bandwidths to ensure that each kernel-bandwidth combination achieves the same amount of 
smoothing. As will be shown subsequently, dropping the canonical bandwidths (in favor of, 
say, the hybrid bandwidth), yields strikingly different density estimates depending on the 
kernel.  

 
How do these biases affect poverty estimates? It is easiest to see the consequences of the 
density biases when poverty is measured with the headcount ratio. Consider a thought 
experiment in which the poverty line is first assumed to be below or at the first crossing 
point, and is then assumed to take increasing values, moving rightwards on the income 
support. In the first instance, the poverty headcount ratio is overestimated as long as the 
density is biased upwards. As the poverty line moves rightward on the support, the extent of 
overestimation will decrease until it becomes zero at the point at which the overestimation of 
the density in the tail cancels out the under-estimation of the density in the middle of the 
support. As the poverty line continues to be shifted rightward, the headcount ratio will 
remain underestimated (although to a decreasing degree) until it reaches 100 percent.  

 
The poverty biases associated with KDE on grouped data for the multimodal distribution 
(Figure 3) demonstrate that the extent to which salient features of the underlying density are 
replicated by the estimator critically depends on the choice of parameters. The Gaussian-S3 
pair produces a largely over-smoothed density which conceals the multiple modes of the 
distribution. In contrast, the (smaller) hybrid bandwidth is better able to reveal the modes of 
the data, although these modes are located at the quintile means instead of their true location. 
It can be concluded that visual illustrations of multimodal distributions obtained through 
density smoothing can be misleading in such a sparse data environment. As with unimodal 
distributions, distortions need be expected in the resulting density estimates in both directions 
(over- and under-estimation) and along the entire support.   

 
Figure 4 reveals the pitfalls of the (constant) hybrid bandwidth relative to data-driven, 
optimal alternatives. In some datasets, the hybrid bandwidth is close to an optimal bandwidth 
by chance. The first panel shows how this could be the case. The two curves, corresponding 
to the S1 and hybrid bandwidths for Dagum data, although different, show that the hybrid 
bandwidth tends to under-smooth simply because it is smaller in value than S1. More 
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importantly, the bandwidth greatly influences the lowest income level at which the estimator 
can estimate nonzero density. Should a poverty line fall between the minimum income levels 
at which each of the two curves has nonzero density, then the hybrid bandwidth will yield 
zero poverty level (by any indicator), whereas S1 would yield positive values for poverty 
indicators. The first and second panels, taken together, show the effect of changing the kernel 
and keeping the bandwidth fixed (at the hybrid value). It is straightforward to see that the 
changing the amount of smoothing will be very consequential for the quality of the resulting 
diagram. For the Epanechnikov-hybrid bandwidth pair, density is concentrated at the quintile 
means, and is zero between the extreme modes and the central mode. These areas of zero 
density arise since the hybrid bandwidth is too small and the kernel has finite support, so 
there is no information from adjacent points to use. This is because no observations are 
available for estimation in the window where the estimator looks for ‘neighbors’.  

 
We may conclude that (a) first, the hybrid bandwidth can lead to the same level of smoothing 
as an optimal bandwidth, but it will do so only by chance; (b) in all other cases, the hybrid 
bandwidth leads to nontrivial bias in the estimated curve. This renders KDE-based diagrams 
difficult to interpret. This also renders the non data-driven hybrid bandwidth inappropriate 
for poverty analysis from grouped data.  
 

C.   Poverty Estimates  

Poverty estimates are reported for a low and high poverty line (representing the population 
median multiplied by factors of 0.25 and 1.75, respectively) in Table 2. Given the results 
from the previous sections, we anticipate that the share of poor will be fairly well estimated 
for poverty lines located close to the center of the distribution, and less well estimated for 
poverty lines elsewhere. We consider, however, a range of poverty indicators, some of which 
take account of the depth of poverty (measured as the distance between the income of the 
poor and the poverty line) and report results for the poverty headcount ratio, the poverty gap, 
the squared poverty gap, and the more distributionally-sensitive FGT (3) and FGT (4) 
indices. 
 
Table 2 demonstrates that the poverty headcount ratio is systematically overestimated for the 
low poverty line, and underestimated for the high poverty line. For datasets of quintile 
means, the share of poor is overestimated by a factor of 1.17 of its true counterpart (Log-
normal distribution) or 2 percentage points. The biases rise up to a factor of 1.28 or 3.4 
percentage points for datasets of decile means. The biases are slightly lower for ventile 
means.22 The FGT indicators of the depth of poverty are more substantially underestimated 
by quintile data than they are for decile and ventile data. The biases also appear to rise with 
the distributional sensitivity of the FGT indicator. The situation is reversed for the high 
                                                 
22 Based on the Monte Carlo simulations we undertook, we concluded that the lack of monotonicity in the size 
of the biases associated with poverty estimates with the numbers of observations is only apparent in small 
datasets, and monotonicity is restored after approximately 25-30 quantile means. However, it is worth 
mentioning that 25 to 30 quantile means are rarely, if ever, available to researchers in lieu of unit data. 
Reassuringly, the ‘global’ performance of the estimator – assessed using the Sum of Squared Errors and the 
Sum of Absolute Errors monotonically improves with the number of available datapoints (results not reported). 
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poverty line. In particular, the poverty headcount ratio is now underestimated by almost 9 
percent (or 7 percentage points) in the case of multimodal data. It is underestimated by 
between 5 and 7 percent (or approximately 5 percentage points) with data from the other 
distributions.  
 
Figure 5 illustrates the bias in the headcount ratio – the poverty indicator with the widest 
application - for a wider range of poverty lines and all the distributions considered. As 
before, it is observed that the extent of poverty is broadly overestimated for lower poverty 
lines, is estimated relatively accurately for poverty lines near the population median (that is, 
in regions where the density biases cancel out), and is underestimated for higher poverty 
lines. When data are drawn from the multimodal distribution, a pronounced underestimation 
of poverty is observed for poverty lines around or higher than the median (upto 11 
percentage points at the median since the density estimate “misses” the first mode of the 
distribution). For lower poverty lines, the positive bias is of at most 9 percentage points (at 
0.5 x the median). The size of the bias and the way in which it varies with the data generating 
process and the location of the poverty line, is often large enough to give rise to concern 
about the appropriateness of the method in poverty analysis.  

 
How the biases vary with the KDE parameter (bandwidth, kernel) is shown in Tables 3-4. 
The bandwidth has a substantial effect on the estimated poverty headcount ratio in the case of 
the multimodal distribution: while S1 leads to an upward bias of 70 percent, the hybrid 
bandwidth leads to a downward bias of 50 percent. Furthermore, the degree of distortion 
which arises when using a hybrid bandwidth on data from a multimodal distribution 
apparent: there are substantial downward biases associated with this bandwidth for all of the 
poverty indicators considered (Table 3). The Silverman bandwidths only occasionally do 
better, however the magnitude of the biases is large. The biases arising from different 
bandwidth-kernel pairs which do not attain the same amount of smoothing are in some cases, 
substantial (Table 4). For example, for the Dagum distribution, the estimates of the poverty 
headcount ratio are either biased upwards by 11 percent (Gaussian kernel) or biased 
downwards by 9 percent (Triweight kernel).  
 
To conclude, we find it difficult to describe the magnitude and sign of biases in poverty 
indicators through statements applicable across many distributions and parameters. The 
Monte Carlo simulations demonstrate that the biases are often substantial, and that they vary 
with the nature of the data generating process (which is in the very nature of the non-
parametric estimator), as well as with the bandwidth, weighting function and number of 
quantile means available for analysis. For the unimodal distributions considered, the poverty 
headcount ratio is overestimated for lower poverty lines, accurately estimated at poverty lines 
close to the population median, and underestimated for higher poverty lines. It may be much 
more difficult to determine the pattern of biases for distributions suspect of multiple models, 
since the positioning of the poverty line relative to the modes, and the extent of smoothing, is 
likely to determine the sign and size of the error.   
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V.   COUNTRY STUDIES 

In this section, grouped-data KDE-based and survey-based poverty estimates are presented 
using nationally representative household data for three countries with varying levels of 
poverty: Tanzania, Nicaragua, and Vietnam.23 The $1/day and $2/day international poverty 
lines are considered24, along with a capability, nutritionally anchored poverty line developed 
by Reddy, Visaria and Asali (forthcoming).     
 
For the $1/day poverty line, the headcount ratio is overstated by a factor of at most 1.6 and 
understated by a factor of at most 0.94 regardless of the number of quantile means used 
(Table 5). For the $2/day poverty line, the headcount ratio is, in contrast, understated by at 
most 8 percent (e.g., the Nicaraguan $2/day poverty headcount ratio of 79.03 percent is 
understated by approximately 6 percentage points when the input data are quintile means). 
The degree of over- or underestimation of the poverty headcount ratio is lower for the higher 
poverty line. Similarly, the poverty gap ratio is overestimated (by a factor of maximum 1.75) 
for the least poor country (Vietnam), is less misestimated for Nicaragua, and is occasionally 
underestimated for the poorest country (Tanzania). It is noteworthy that, as in the case of 
Monte Carlo simulations, the bias of poverty estimates does not vary monotonically with the 
number of quantile means analyzed.  
 
Table 6 contains poverty estimates for different bandwidths (using the capability poverty 
line, which falls closer to the median of the surveys than do the $1/day and $2/day poverty 
lines, hence the higher relative accuracy of the estimator). The choice of the bandwidth, 
however, has a substantial impact on estimated poverty. In particular, the poverty headcount 
ratio is overestimated by 12 percent (S1 bandwidth, Nicaragua) or by 5 percent (S3 and 
hybrid bandwidth, Nicaragua). The distributionally-sensitive FGT (3) is overestimated by a 
factor of 2 using S1 and by one fifth using S3 (Vietnam). Holding the bandwidth the same, 
the biases vary both across countries and across poverty indicators. In each case considered, 
we have highlighted in bold face the best performing optimal bandwidth, which appears to be 
S3 in the majority of cases.25 All the figures in Table 6 indicate positive biases associated 
with the technique on quintile means. This can be explained, in light of the Monte Carlo 
evidence, by the relative position of the capability poverty line vis-à-vis the survey median.  
 
                                                 
23 The datasources are as follows. For Vietnam: The 1998 Vietnam Living Standards Survey (VLSS) contains 
information on per capita expenditure of households at current prices for 22,510 individuals. Source: World 
Bank Living Standards Measurement Study (LSMS), Development Economics Research Group (DECRG). For 
Nicaragua: The 1997-98 Living Standards and Measurement Survey contains information on per capita 
consumption for 18,383 individuals. Source: World Bank Living Standards Measurement Study (LSMS), 
Development Economics Research Group (DECRG). For Tanzania: The 2000-01 Household Budget Survey 
contains information on per capita consumption for 22,176 households. Source: National Bureau of Statistics, 
Tanzania, 2002. The data for all three household surveys are weighted to take account of survey design. 
 
24 We do not here discuss the conceptualization of the poverty lines, as we only use them for expository 
purposes. However, an assessment of the money-metric approach to setting poverty lines can be found in Reddy 
and Pogge (2006). 
25 Biases vary less across kernels (when we use canonical bandwidths) and we do not report the results here. 
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Diagrams of kernel density estimates from grouped data are presented for varying numbers 
of quantile means, bandwidths, and weighting functions in order to determine whether KDE-
based visual representations of the underlying log-consumption distributions can accurately 
replicate features of that distribution (Figure 6). The first panel super-imposes kernel density 
estimates from grouped data for different bandwidths (for a fixed kernel and quintile means). 
It is apparent, in this example, that the S1 bandwidth gives rise to some oversmoothing of the 
density. The density biases in the left tail of the distribution are also evident. The S3 
bandwidth reveals the beginning of a mode in the right tail. However, this is entirely the 
artifact of using quintile means as input data. There is no such mode in the underlying survey 
data, as shown by its survey-based histogram. Panels (2) and (3) for Nicaragua show the 
effect of changing the kernel in two environments: the first uses canonical bandwidths 
(ensuring that the amount of smoothing is kept constant across density estimates) and the 
second utilizes the hybrid bandwidth (implying that the amount of smoothing changes across 
density estimates). Panel 2 demonstrates that keeping the bandwidth fixed across kernels can 
lead to extremely distorted visual representations of the underlying density. This is naturally 
not the case in Panel 3, where the effect of the kernel is smaller on the estimated density. 
Finally, the last panel proves yet again that the density estimator (Quartic kernel - S1 
bandwidth) leads to positive density biases in the left and right tails of the distribution, and 
negative biases in the center of the distribution. These distortions take place at every point 
along the density support and have important consequences for poverty estimation. 
Furthermore, the kernel density estimate on decile means is more biased locally in the left tail 
of the density than the estimate on quintile means. However, the estimate on decile means is 
less biased globally than the estimate on quintile means.  

 
VI.   GLOBAL POVERTY  

In this section, we assess the sensitivity of world poverty estimates to parameters of the 
kernel density estimation procedure. The focus is on the effect of changing the bandwidth on 
the estimated share and number of poor in the developing world. Income shares for 94 
developing countries covering 94 percent of the world’s population in 1990 were obtained 
from the UNU/WIDER World Inequality database V. 2.0a (2005) for the years 1990 and 
2000 (or closest available year). These were scaled using the per capita GDP (at PPP) from 
the WDI (2006) to obtain quintile income averages, and kernel density estimation was 
undertaken for each country. We then aggregated the fitted country distributions to obtain the 
world distribution of income. 
 
To compare the results to Sala-i-Martin’s studies, we also undertook the same analysis for 
the year 2000 in a larger sample comprising 134 developed and developing countries. Similar 
poverty rates to those reported by the author were obtained. For example, the world poverty 
headcount ratio computed in this study for the $1.5/day poverty line in the year 2000 (using 
the Gaussian kernel and a similar value for the bandwidth) is 405 million, while the author’s 
is 398.4 million (Sala-i-Martin, 2006). Consequently, the range of global poverty estimates 
associated with various bandwidths presented in this section are directly comparable to those 
reported by Sala-i-Martin (2002a, 2002b, 2004, 2006). To preview our results, the analysis 
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leads us to conclude that Sala-i-Martin’s choice of bandwidth is likely to have led in the 
direction of underestimating global poverty.26 
 
We consider the following data-dependent bandwidths (described in Section 3): Silverman’s 
rule-of-thumb bandwidth (S3) and a variant, the “oversmoothed bandwidth”, the Sheather-
Jones plug-in estimator, and the direct plug-in estimator. To enable a direct comparison of 
our global poverty estimate with those proposed by Sala-i-Martin (2006), we also report the 
results for the hybrid bandwidth. We focus on the Gaussian kernel, although the results are 
similar with the Epanechnikov kernel and canonical bandwidth. Poverty is estimated using 
the headcount ratio and the aggregate headcount using five international poverty lines, 
ranging between $1/day and $4/day. It is important to stress that the global rates and 
headcounts presented here should not be interpreted as authoritative due to numerous 
uncertainties concerning crucial elements of the analysis (Reddy and Pogge, forthcoming). 

 
The results (Tables 7 and 8) demonstrate the remarkable lack of robustness of global poverty 
rates to changes in the value of the bandwidth even when optimal data-driven bandwidths are 
considered. In both 1990 and 2000, the poverty rates for the $1/day poverty line are the most 
sensitive to the bandwidth; this is because the $1/day poverty line is likely to fall in the left 
tail of the income distributions, where poverty is typically overestimated, and small changes 
in the bandwidth have a large impact. Furthermore, the extent of poverty shows the highest 
variation across bandwidths for the lowest poverty lines considered. In particular, for the 
$1/day poverty line, the poverty headcount ratio varies by a factor of 1.8 when the 
oversmoothed bandwidth is considered and by a factor of 1.6 when it is excluded. The 
headcount ratios vary to a lesser degree for higher poverty lines and they are almost equal 
across bandwidths for the $3/day and $4/day poverty lines in 1990. However, the poverty 
rates are even more sensitive to the choice of optimal bandwidth in the year 2000. For the 
$1/day, $1.5/day and $2/day poverty lines, they vary by a factor between 1.4 and 1.8.  

 
This variation in headcount ratios translates into a variation in the number of poor people 
between 162 and 278 million. To put these numbers in perspective, under- or overestimating 
the ‘$2/day poor’ by 278 million individuals (in 2000) would represent an error of 50 percent 
(based on the $2/day global headcount for 2000 by Sala-i-Martin, 2006). Similarly, under- or 
overestimating the number of ‘1.5/day poor’ by 180 million individuals (in 1990) would 
represent an error of 36 percent (based on the $1.5/day global headcount in the same year of 
Sala-i-Martin, 2006). Since Sala-i-Martin’s analysis exclusively focuses on the hybrid 

                                                 
26 It is noteworthy that our analysis only concerns one assumption underlying Sala-i-Martin’s estimates of 
global poverty. There may be other reasons still why the true extent and trend of world poverty may be 
misestimated by the author, such as the choice of per capita income estimates (Deaton, 2005), or that of poverty 
lines (Reddy and Pogge, forthcoming, and Nye, Reddy and Pogge, 2002). More generally, the analysis 
presented in this section (and in the paper) does not enable us to make unambiguous statements concerning the 
bias associated with the application (in a manner appropriate for unit data) of KDE methods to grouped data on 
the estimated level and trend of world poverty. Based on the results presented in this study, such statements 
could only be made under stringent assumptions, such as that the true income distributions of various countries 
are unimodal and do not change shape over time, and that the poverty lines considered stand in a certain relation 
to the median of the true income distributions. 
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bandwidth, it is apparent that the global poverty estimates he reports may substantially 
underestimate the true level of poverty in the world as a result of this methodological choice. 

 
How does this range of variation inform us on the trend in world poverty between 1990 and 
2000? In results not reported (see Minoiu, 2007, Table 11), the fall in the $1.5/day and 
$2/day poverty rates ranges between 7 percent and 18 percent across the bandwidths 
considered. The number of people who were lifted from $1/day poverty between 1990 and 
2000 ranges between 19 million and 38 million, whereas the reduction in $1.5/day poverty 
ranges between 45 and 92 million. It should be noted that a reduction in the number of 
‘$1.5/day poor’ by 45 million is only one half of that documented by Sala-i-Martin (2006). 
Similarly, a reduction in the number of ‘$1 /day poor’ of 25 million is only one fifth of Chen 
and Ravallion’s (2004) documented fall of 129.5 million (between 1990 and 2001). It can 
thus be concluded that the range of variation associated with kernel density estimates based 
on different bandwidths may lead us to reach more pessimistic conclusions about the trend in 
world poverty since 1990. Nonetheless, it must be pointed out that all estimates are consistent 
with a reduction in world poverty. The underlying cause of this finding may be the use of 
kernel density estimation as such, the composition of the sample, or other methodological 
choices. This finding it is at odds with Chen and Ravallion’s (2004) reported increase in the 
number of ‘$2/day poor’ of 81 million over the same period.  

 
VII.   CONCLUSIONS 

Recent influential poverty studies employ kernel density estimation methods on grouped data 
to analyze poverty and to describe features of the income distributions (e.g., Sala-i-Martin, 
2002a, 2002b, 2004, 2006). This method is often used because of the lack of availability or 
the difficulty in obtaining access to unit data from representative household surveys for 
countries and years of interest (including from large countries such as China and India). In 
this paper, we analyze the performance of the kernel density estimator in poverty analysis 
from grouped data. We use both Monte Carlo simulations and nationally representative 
household surveys to compare KDE-based poverty estimates with their counterparts from the 
original data.   

 
We find that the biases resulting from the application of this technique depend on the 
bandwidth, the kernel, the number of data-points analyzed and the data generating process. 
The average income of the poorer population groups is overstated by the technique, while the 
average income of the richer groups is understated for the range of unimodal distributions 
considered here. This often leads to overestimation of the poverty headcount ratio for lower 
poverty lines, and underestimation of the poverty headcount ratio for higher poverty lines. 
The ambiguity of these results illustrates the point that, whereas the existence of biases in 
poverty estimates derived from the application of KDE to grouped data is not in itself 
surprising, the direction and magnitude of the biases could not easily have been predicted in 
the absence of an exercise of the kind we have undertaken. The biases associated with 
poverty indicators are substantial: for the poverty rate, they can reach 6-7 percentage points 
in unimodal distributions and 10-11 percentage points in the multimodal distribution 
considered. Kernel density estimation on grouped data can also give rise to misleading visual 
representations of the income distributions as these too are sensitive to the choice of 
parameters.   
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A sensitivity analysis for global poverty estimates reveals that KDE-based headcount ratios 
vary by a factor of 1.8 for a range of bandwidths that have been recommended and used in 
the literature. Similarly, the number of ‘$2/day poor’ varies by 136 million in 1990 and by 
278 million in 2000 depending on this parameter. This analysis demonstrates that the global 
poverty estimates recently presented by Sala-i-Martin (2002a, 2002b, 2004, 2006) are highly 
sensitive to the bandwidth and that the author’s choices of how to implement kernel density 
estimation is likely to have led in the direction of underestimating global poverty. 

 
The findings of this study give rise to serious concern about the validity and robustness of 
poverty analysis based on kernel density estimation from grouped data. They also raise 
questions about recently published national, regional, and global poverty estimates. The 
applied researcher should exercise caution in employing standard kernel density estimation 
methods on grouped data. Alternative estimation methods such as parametric Lorenz curve 
interpolation should be applied whenever possible.  
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APPENDIX 

 

Figure 1. Distributions used in Monte Carlo analysis 

 
Panel 1. Dagum distribution 

 
Panel 2. Log-normal distribution 
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Table 1. Summary statistics from KDE-based sample 

 
 Summary statistics  Quintile means 
         
Distribution↓ Mean Median St. Dev. Bottom Second Third Fourth Top  
         
Log-normal  1.12 1.03 0.89 0.93 0.94 1.03 1.20 1.25 
Dagum  1.11 0.98 0.59 0.98 0.92 1.01 1.17 1.14 
GB 2  1.13 1.02 0.45 0.99 0.92 1.01 1.19 1.12 
Multimodal  1.17 0.91 1.24 0.68 0.87 0.92 1.11 1.04 
Note: All figures represent the ratio between the estimated quantity and its true value. 
Parameters: Quartic kernel, S3 bandwidth. Input data: Quintile means (The results are broadly similar for the 
other Silverman bandwidths and the other five kernels.) 
 
 
 

Figure 2. Bias of KDE-based density (log-normal distribution) 
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Figure 3. Bias of estimated density (multimodal distribution) 
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Figure 4. Bias of estimated density (Dagum distribution) 
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Table 2. Bias of poverty measures (low and high poverty lines; multiple poverty indicators) 
 
   Input data:  
Poverty 
indicator: 

Distribution True 
quantity 

 
Quintiles 

 
Deciles 

 
Ventiles 

   
Poverty line    LOW  

Log-normal 12.10 1.17 1.28 1.23 
Dagum  9.43 1.09 1.26 1.21 
Gen. Beta II 9.45 1.07 1.24 1.18 

Poverty 
headcount 
ratio (%) 

Multimodal  8.14 1.00 1.18 1.15 
Log-normal 4.57 1.14 1.40 1.34 
Dagum  3.93 0.77 1.13 1.19 
Gen. Beta II 4.02 0.73 1.10 1.15 

Poverty gap 
ratio 

Multimodal  2.93 0.63 1.04 1.08 
Log-normal 2.49 1.02 1.40 1.35 
Dagum  2.30 0.52 0.98 1.12 
Gen. Beta II 2.40 0.48 0.93 1.07 

Squared 
poverty gap 

Multimodal  1.22 0.48 1.09 1.18 
Log-normal 1.54 0.92 1.42 1.37 
Dagum  1.56 0.35 0.83 1.03 
Gen. Beta II 1.65 0.31 0.78 0.98 

FGT(3) 

Multimodal  0.56 0.38 1.17 1.34 
Log-normal 1.03 0.82 1.41 1.37 
Dagum  1.15 0.23 0.69 0.94 
Gen. Beta II 1.23 0.20 0.64 0.89 

FGT(4) 

Multimodal  0.27 0.30 1.29 1.54 
Poverty line   HIGH 

Log-normal 68.02 0.95 0.96 0.97 
Dagum  73.63 0.93 0.95 0.97 
Gen. Beta II 73.97 0.93 0.95 0.96 

Poverty 
headcount 
ratio (%) 

Multimodal  81.83 0.91 0.91 0.94 
Log-normal 40.77 0.99 1.01 1.01 
Dagum  40.71 0.99 1.01 1.01 
Gen. Beta II 40.75 0.99 1.01 1.04 

Poverty gap 
ratio 

Multimodal  45.79 0.96 0.97 0.98 
Log-normal 28.95 1.02 1.05 1.04 
Dagum  27.40 1.02 1.05 1.04 
Gen. Beta II 27.35 1.02 1.05 1.04 

Squared 
poverty gap 

Multimodal  30.18 1.00 1.01 1.01 
Log-normal 22.16 1.04 1.08 1.07 
Dagum  20.17 1.04 1.08 1.07 
Gen. Beta II 20.11 1.04 1.08 1.06 

FGT(3) 

Multimodal  21.54 1.02 1.05 1.04 
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Log-normal 17.71 1.06 1.11 1.09 
Dagum  15.68 1.05 1.11 1.09 
Gen. Beta II 15.63 1.04 1.10 1.08 

FGT(4) 

Multimodal  16.19 1.04 1.07 1.07 
Note: Figures in the last three panels represent the ratio between the estimated quantity and its true counterpart. 
Parameters: S3 bandwidth, Epanechnikov kernel 
 
 

Figure 5. Bias in the poverty headcount ratio versus location of poverty line 
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Table 3. Bias of poverty measures (Triweight kernel, Poverty line: 0.25 x median) 

   Bandwidth:  
Poverty 
indicator: 

Distribution True 
quantity 

 
S1 

 
S2 

 
S3 

 
Hybrid 
(Sala-i-
Martin) 

Log-normal 12.10 1.45 1.24 1.17 1.40 
Dagum  9.43 1.48 1.17 1.10 1.04 
Gen. Beta II 9.45 1.48 1.14 1.08 1.00 

Poverty 
headcount 
ratio (%) 

Multimodal  8.14 1.70 1.10 1.00 0.50 
Log-normal 4.57 1.71 1.28 1.12 0.63 
Dagum  3.93 1.37 0.88 0.75 0.26 
Gen. Beta II 4.02 1.34 0.84 0.71 0.24 

Poverty gap 
ratio 

Multimodal  2.93 1.67 0.76 0.62 0.10 
Log-normal 2.49 1.82 1.21 1.00 0.25 
Dagum  2.30 1.22 0.65 0.50 0.07 
Gen. Beta II 2.40 1.18 0.60 0.46 0.06 

Squared 
poverty gap 

Multimodal  1.22 1.95 0.65 0.47 0.03 
Note: Figures in the last four panels represent the ratio between the estimated quantity and its true counterpart. 
 
 
Table 4. Bias of poverty measures (Hybrid bandwidth, Poverty line: 0.5 x median) 

 
   Kernel:  
Poverty 
indicator: 

Distribution True 
quantity 

Gaussian Uniform Epan. Quartic Tri-
weight 

Tri-
angular 

         
Log-normal 27.91 0.98 1.01 0.97 0.95 0.93 0.95 
Dagum  23.57 1.04 1.05 0.98 0.93 0.91 0.95 
Gen. Beta II 23.30 1.11 1.05 0.98 0.94 0.91 0.95 

Poverty 
headcount 
ratio (%) 

Multimodal  19.19 1.39 1.43 1.40 1.36 1.33 1.36 
Log-normal 12.37 0.91 1.00 0.97 0.96 0.95 0.97 
Dagum  10.15 0.89 1.00 0.98 0.98 0.98 0.98 
Gen. Beta II 10.12 1.04 0.98 0.98 0.97 0.97 0.98 

Poverty 
gap ratio 

Multimodal  8.71 0.99 1.05 1.05 1.04 1.03 1.04 
Log-normal 7.39 0.78 0.91 0.89 0.89 0.88 0.89 
Dagum  6.04 0.70 0.83 0.82 0.82 0.82 0.82 
Gen. Beta II 6.09 0.89 0.80 0.81 0.81 0.80 0.81 

Squared 
poverty 

gap 
Multimodal  4.89 0.74 0.79 0.80 0.79 0.78 0.80 

Note: Figures in the last six panels represent the ratio between the estimated quantity and its true counterpart. 
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Table 5. Bias of poverty measures (Epanechnikov kernel, S3 bandwidth) 

 
  Poverty line:  

$1/day 
Poverty line:  

$2/day 
Indicator   Country Survey 

estimate 
 

Quintiles 
 

Deciles
 

Ventiles
Survey 

estimate 
 

Quintiles 
 

Deciles 
 

Ventiles 
          

Vietnam 5.20 1.34 1.59 1.47 35.69 1.04 1.04 1.03 
Nicaragua  44.62 1.02 1.02 1.02 79.03 0.92 0.95 0.96 

Poverty 
headcount 
ratio (%) Tanzania  75.39 0.94 0.96 0.96 94.75 0.97 0.97 0.98 

Vietnam 0.89 1.18 1.75 1.64 9.07 1.16 1.23 1.18 
Nicaragua  16.59 1.08 1.12 1.10 40.93 0.98 0.99 1.00 

Poverty 
gap ratio 

Tanzania  34.67 0.99 1.00 1.01 61.40 0.96 0.97 0.98 
Vietnam 0.26 0.87 1.65 1.61 3.35 1.21 1.37 1.30 
Nicaragua  8.24 1.11 1.20 1.17 25.27 1.01 1.04 1.03 

Squared 
poverty 

gap Tanzania  19.39 1.03 1.06 1.05 43.47 0.97 0.99 0.99 
Vietnam 0.10 0.57 1.43 1.46 1.49 1.22 1.47 1.39 
Nicaragua  4.66 1.13 1.28 1.24 16.96 1.04 1.08 1.07 

 
FGT(3) 

Tanzania  11.94 1.06 1.11 1.09 32.18 0.99 1.01 1.01 
Vietnam 0.04 0.36 1.18 1.28 2.49 1.18 1.53 1.45 
Nicaragua  2.85 1.13 1.34 1.30 11.98 1.07 1.12 1.10 

 
FGT(4) 

Tanzania  7.82 1.09 1.16 1.13 24.55 1.00 1.03 1.02 
Note: Figures in the relevant panels represent the ratio between the estimated quantity and its survey 
counterpart. 
 
Table 6. Bias of poverty measures (Gaussian kernel, Poverty line: Capability) 

 
   Bandwidth: 
Indicator   Country Survey 

estimate 
S1 S2 S3 S-J  Hybrid 

        
Vietnam 41.98 1.00 1.00 1.00 1.00 1.00 
Nicaragua  30.61 1.12 1.06 1.05 1.07 1.05 

Poverty 
headcount 
ratio (%) Tanzania  40.13 1.04 1.03 1.02 1.03 1.03 

Vietnam 11.39 1.33 1.17 1.12 1.19 1.22 
Nicaragua  9.69 1.42 1.19 1.13 1.23 1.15 

Poverty 
gap ratio 

Tanzania  12.62 1.29 1.15 1.11 1.18 1.16 
Vietnam 4.38 1.65 1.29 1.19 1.34 1.41 
Nicaragua  4.33 1.71 1.26 1.16 1.33 1.18 

Squared 
poverty 

gap Tanzania  5.61 1.50 1.22 1.14 1.26 1.24 
Vietnam 2.00 1.98 1.37 1.22 1.45 1.56 
Nicaragua  2.26 1.98 1.30 1.15 1.40 1.18 

 
FGT(3) 

Tanzania  2.91 1.69 1.25 1.14 1.32 1.29 
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Vietnam 1.02 2.31 1.41 1.21 1.54 1.69 
Nicaragua  1.30 2.25 1.32 1.12 1.46 1.17 

 
FGT(4) 

Tanzania  1.65 1.87 1.26 1.11 1.36 1.31 
Note: Figures in the last five panels represent the ratio between the estimated quantity and its survey 
counterpart. 
 
 
 
Figure 6. Survey-based and grouped data KDE-based density estimates 
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Table 7. Global poverty rates (% poor)  

 
Bandwidth   S3 Overs-

smoothed 
Variant of 

S3 
Sheather-

Jones 
Direct 
plug-in 

Hybrid 
(Sala-i-
Martin) 

       
       

Ratio 
b/w  
highest 
and 
lowest 
estimate 

Percentage 
point diff.  
b/w highest 
and lowest 
estimate 

Year: 1990   
$1/day  7.2 9.5 6.4 7.5 8.4 5.3 1.8 4.2 
$1.5/day 13.4 16.2 12.8 13.9 14.9 11.7 1.4 4.5 
$2/day  24.5 26.8 24.2 25.2 25.8 23.4 1.1 3.4 
$3/day  38.1 38.7 37.8 38.0 38.3 37.1 1.0 1.6 
$4/day  49.8 49.4 50.3 49.9 49.6 49.6 1.0 0.9 
         

Year: 2000   
$1/day  5.3 7.5 4.8 5.6 6.2 4.2 1.8 3.3 
$1.5/day 9.4 12.6 8.9 10.0 10.7 6.9 1.8 5.7 
$2/day  17.2 20.7 16.5 17.7 18.7 15.0 1.4 5.7 
$3/day  27.7 30.0 27.4 27.9 28.8 25.7 1.2 4.3 
$4/day  38.1 39.4 38.3 38.8 38.9 37.1 1.1 2.3 

 
 

Table 8. Global poverty counts (millions)  

Bandwidth   S3 Overs-
smoothed 

Variant of 
S3 

Sheather-
Jones 

Direct 
plug-in 

Hybrid 
(Sala-i-
Martin) 

       

Difference b/w 
highest and lowest 
estimate  

Year 1990 (millions) 
$1/day  289 381 257 303 338 213 168 
$1.5/day 540 651 518 559 599 471 180 
$2/day  987 1079 975 1016 1040 943 136 
$3/day  1536 1560 1524 1533 1544 1496 64 
$4/day  2008 1989 2026 2012 1998 2001 37 
        

Year 2000  
$1/day  256 362 232 269 300 200 162 
$1.5/day 452 606 426 481 517 333 273 
$2/day  830 998 796 850 899 720 278 
$3/day  1331 1445 1319 1341 1384 1235 210 
$4/day  1833 1893 1843 1866 1870 1784 109 

 




