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Abstract 

International organizations collect data from national authorities to create multivariate 
cross-sectional time series for their analyses. As data from countries with not yet well-
established statistical systems may be incomplete, the bridging of data gaps is a crucial 
challenge. This paper investigates data structures and missing data patterns in the cross-
sectional time series framework, reviews missing value imputation techniques used for 
micro data in official statistics, and discusses their applicability to cross-sectional time 
series. It presents statistical methods and quality indicators that enable the (comparative) 
evaluation of imputation processes and completed datasets. 
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I.   INTRODUCTION  

Well-founded decisions and policy-making in international organizations is subject to the 
availability of high quality cross-country time series data as a basis for economic analysis. 
Without such data providing substantial evidence, there is ample room for speculation or 
merely theoretical solutions to political, societal, and economic questions. International 
organizations collect and aggregate relevant data from national authorities such as statistical 
offices, national banks, and governmental departments. However, data on particular topics, 
for example employment or government finance, are not collected regularly or in sufficient 
frequency in many developing countries due to the lack of a well-established statistical 
system with adequate resources and institutional capacity to set up and maintain costly data 
collection processes. Other developing countries collect data, but do not publish them in a 
timely manner because of under-staffed and -equipped data processing units. The recent 
financial crisis drew attention to the problem of allocating development assistance when 
relevant data are available only insufficiently or even not at all. Bridging data gaps is a 
crucial challenge in this regard, emphasizing the importance of (further) supporting 
developing countries in strengthening their institutional and methodological capabilities, the 
necessity of additional data collection initiatives, as well as the relevance of and need for 
sound statistical methods for data imputation in time series.  
 
An ongoing project of the Social Protection and Labor Unit of the World Bank's Human 
Development Network deals with the imputation of labor market indicators in cross-country 
time series (Margolis, Newhouse, Weber, 2010ab). The aim of the project is to enable the 
assessment of the labor market situation during the recent financial crisis and in future 
projects. Missing (or low frequency) labor market indicators are imputed based on typically 
less fragmentary (and higher frequency) macro-economic indicators and models estimated 
for data-rich countries. This project gave reason to investigate existing statistical imputation 
methods and imputation quality measures as applied in official statistics. The present paper 
provides an overview of the findings of this methodological review with a focus on quality 
measures and evaluation routines for model comparison. It aims at introducing and 
promoting imputation techniques to data producers as well as analysts in international 
financial institutions.  
 
The remainder of the paper is structured as follows. Section 2 investigates data structures and 
missing data patterns in the cross-sectional time series framework as compared to the 
traditional survey framework. Section 3 reviews missing data techniques used in official 
statistics that were originally developed for filling gaps in survey data. Section 4 discusses 
the relevance and applicability of these techniques in the context of cross-sectional time 
series. Statistical methods and quality indicators for the evaluation of the imputation process 
and the completed data as well as the comparison of different techniques are discussed in 
section 5. Section 6 summarizes the main ideas of the paper. 
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II.   DATA STRUCTURES AND MISSING DATA PATTERNS 

Missing data techniques commonly used in official statistics focus on filling gaps in survey 
data. Survey data are micro data and, thus, consist of multiple variables observed or 
measured for a sample of observation units from a population at one point in time. The gaps 
in the data can be classified as item non-response, unit non-response, or variables not 
included in the survey as illustrated in Figure 1 below. Item non-response refers to the 
situation of one or multiple variables missing for one or multiple observations. The variables 
(= items) missing may vary between observations. Item non-response can be dealt with by 
traditional or multiple imputation and statistical matching (see Section 3). Unit non-response 
means that all variables are missing for one or multiple observations. That is, no data are 
available at all for the respective observation units. Unit non-response is often accounted for 
by weighting algorithms (not discussed here, see e.g. Little, 1982; Holt, Smith, 1979; 
Cochran, 1977). Variables not included in the survey are missing for all observations. If 
available from other data sources, these variables can be added by statistical matching (see 
section 3) or record linkage (not discussed here, see e.g. Fellegi, Sunter, 1969; Winkler, 
1995; Denk, 2008).  

 

Figure 1. Missing data patterns for standard micro (=observation by variable) data 

 
Time series data differ from micro survey data in the origination of the data, the data 
structure, the (interpretation of) missing data patterns, and the applicability of standard 
(survey) missing data techniques. The observation by variable data structure as used for 
survey data holds data for one time period. In contrast, time series contain data for multiple 
time periods for one or multiple aggregate observation units and for one or multiple observed 
variables (or aggregate statistical indicators). Time series in official statistics are usually 
macro data. This means that they often do not contain data for individual observation units, 
but rather for aggregate (or macro) units which are also called sections. In international 
statistics, these aggregate observation units or sections are countries most frequently. 
Variables are usually statistical indicators such as unemployment rate, current account 
balance, or GDP. 
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Overall, the following four different types of time series data structures exist. 
 
1.      single univariate time series: one variable/indicator observed for one observation 

unit/section over time 

2.      single multivariate time series: multiple variables/indicators observed for one 
observation unit/section over time 

3.      cross-sectional univariate time series: one variable/indicator observed for multiple 
sections over time 

4.      cross-sectional multivariate time series: multiple variables/indicators observed for 
multiple sections over time 

Figure 2 shows the interpretation of different missing data patterns for single multivariate 
time series and univariate cross-sectional time series. There may be missing items, periods, 
and, depending on the type of time series data, missing variables or sections. 
 

Figure 2. Missing data patterns for multivariate time series and univariate cross-sectional 
time series 

 

For multivariate cross-sectional time series, the data structure gets more complex as none of 
the three dimensions (section, variable, time) is held constant. Consequently, all four missing 
data patterns described as well as their combinations may occur as depicted in Figure 3.  
 
A special case of missing periods emerges in datasets containing data collected in different 
frequencies. For example, a time series dataset may contain some variables on a quarterly 
basis, but other variables only on an annual basis, or some sections may comprise annual data 
while other sections provide the same variables for every other year only. While the former 
situation results from some statistics being prepared at a higher frequency than other 
statistics, the latter is frequently observed in cross-country datasets that contain data from 
countries with well- and less-developed statistical systems. 
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Figure 3. Missing data patterns for multivariate cross-sectional time series 

 
 
III.   MISSING DATA TECHNIQUES  

 
Imputation is a statistical technique to estimate missing or implausible values in a dataset 
based on collected values from the dataset or comparable data sources. The focus of this 
methodology lies on partially missing data due to item non-response. In cases with 
completely missing variables (e.g. for one or more sections/countries), statistical matching is 
more appropriate. In common practice, list-wise deletion (also termed “complete case 
analysis”), a procedure that simply excludes all observation units with missing values from 
further analysis, or similar approaches are used instead of proper imputation techniques. With 
these procedures, a large share of information gets lost and biased estimates are a frequent 
consequence. Researchers have recurrently demonstrated that estimates based on imputed 
datasets outperform estimates based on reduced datasets that ignore observation units and/or 
variables with missing values irrespective of the underlying imputation method (e.g. 
Colledge et al., 1978; Little, Rubin, 2002). Therefore, list-wise deletion cannot be considered 
a viable alternative to imputation unless data are missing completely at random. From the 
perspective of a producer of official statistics the removal of incomplete sections, variables, 
or time series from a dataset destined for dissemination is usually not acceptable. However, 
some statistical organizations may also refrain from publishing imputed statistics, adhering to 
a strict interpretation of their role as provider of “facts” that can only originate from reported 
data and should not be blended with mere estimates. This strategy transfers the challenge of 
imputation to users of the published data.  
 
An important aspect to be considered when choosing a missing data technique is the 
underlying missing data mechanism (Rubin, 1987; Schafer, 1997; Little, Rubin, 2002). 
Random (ignorable) and non-random (systematic, informative) missing values can be 
distinguished. In case of data missing completely at random (MCAR), the missing data 
process is ignorable in imputation. MCAR means that the missingness of a variable neither 
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depends on the true (but missing) value of that variable nor on other (observed or non-
observed) characteristics. A weaker assumption that many imputation techniques rely on is 
data being missing at random (MAR). In that case the missingness of a variable is 
independent of the true (but missing) value of that variable after controlling for other 
variables. In other words, the missingness only depends on other variables which can be 
taken into account in the imputation procedure. Exogenous shocks such as war or natural 
disasters are examples of factors that affect the missingness of (economic) time series. An 
imputation method not taking into account this additional information will typically be biased 
and over- or under-estimate the variable for the missing time period. 
 
If values are missing in a non-random, systematic way (MNAR), the distributions of the 
variable among complete and missing observations cannot be expected to be the same. This 
effect is also known as selection bias. For MNAR data the missing data mechanism may not 
be ignored. It can be included in model-based imputation by simultaneously modeling the 
variable that “contains” missing values and the probability of that variable being missing. 
Another approach to dealing with MNAR data is the analysis of the effects of different 
missing data mechanisms on the imputation result. Multiple imputation (see below) is 
applied under different missing data scenarios and the results are compared and combined 
(e.g. Carpenter, Kenward, White, 2007).  
 
In the following, traditional single imputation techniques, statistical matching, and multiple 
imputation are briefly outlined. A more detailed introduction to imputation and other types of 
missing data analysis is given in Little and Rubin (2002) or de Waal, Pannekoek, and 
Scholtus (2011).  

 

A.   Traditional approaches 

Simple imputation approaches such as deterministic or mean imputation are common in data 
analytical practice due to their common availability and straightforward applicability in 
statistical software packages despite their unfavorable statistical characteristics. In official 
statistics, donor-based imputation is frequently used. The class of model-based approaches is 
very versatile, as special types of statistical models can be chosen for specific data 
constellations, though with the drawback that a particular method may not be applicable to 
other imputation problems. In practice, complex imputation problems are frequently dealt 
with by hybrid approaches that combine several different methods, e.g. model-based and 
donor-based imputation. A recent example of the possible implications of the imputation 
method chosen on the quality of the results is provided by Kaplan and Schulhofer-Wohl 
(2010). 
 
Deterministic imputation is the simplest imputation approach (apart from deletion). It 
replaces missing values by values that are specified ad-hoc (Sande 1982). Each missing value 
may be treated differently in a manual procedure, or a few rules of thumb may be formulated 
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based on experience and/or by subject-matter experts. This approach does not correspond to 
any principle of statistical methodology and usually distorts the (marginal as well as joint) 
distributions of the imputed variables, but is applicable for any type of variable. An 
evaluation is hardly possible due to its ad-hoc character. Nevertheless, if only a few values 
are missing, the distortion may be negligible. For some types of data, for instance transaction 
data that can be viewed from two directions, such as external trade or international 
investment statistics, replacing missing values by their available mirror values seems 
reasonable. For example, country A's exports to country B (missing) may be substituted by 
country B's imports from country A. Still, estimating a model that uses mirror characteristics 
as explanatory variables to predict missing values would be a methodologically more sound 
choice from a statistical point of view. 
 

Location-based imputation replaces missing values with a location parameter of the 
distribution, typically the mean (for metric variables), median (metric or ordinal variables) or 
mode (categorical variables). The distribution parameter is either based on all observed 
values for a variable or on all values within a subgroup (= stratum) defined by other 
variables. It can also be calculated from a comparable dataset. Using overall mean imputation 
on large parts of a dataset causes serious distortions in the distributions with high peaks at the 
imputed values and considerably reduced variability of the imputed variables. Imputation of 
different mean values for different subgroups of the data can reduce the distortion, if the 
variables defining the groups are correlated with the variables with missing values. This 
approach is also known as post-stratification (Holt, Smith, 1979). Further drawbacks of this 
method are (i) that mean or median, and thus the imputed data point, might take 
unobservable values and (ii) that, with respect to time series, exogenous shocks are not dealt 
with satisfactorily, as the missing values for a time period in which a shock occurred would 
be replaced by the average of time periods without a shock. As regards method classification, 
mean imputation can also be seen as particular kind of deterministic imputation. 
 
Distribution-based imputation uses the entire empirical distribution of a variable for 
imputation instead of restricting it to one parameter of the distribution. The probabilities for 
the occurrence of observed values of a variable are estimated by means of the empirical 
distribution function (non-parametric) or a parametric distribution based on a distribution 
assumption and the parameters estimated from the observed values. The imputation value is 
drawn randomly from this probability distribution. As location-based imputation, 
distribution-based imputation can also be applied to more homogeneous subgroups of the 
dataset. One advantage as compared to mean imputation is that only observable values are 
imputed. Most often, only univariate distributions are taken into account, although a 
multivariate approach may better reflect reality in terms of reasonable value combinations 
per observation unit/section. More sophisticated distribution-based imputation techniques are 
iterative procedures that make use of the EM (expectation maximization) principle 
(Dempster, Laird, Rubin, 1977) (see section C. on multiple imputation below). 
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Model-based imputation uses correlations between available variables and variables with 
missing values to estimate a (linear) model which is then applied to predict the missing 
values. It is applicable to nominal, ordinal, and metric variables; the type of variable has to 
be accounted for in the choice of the model type. For example, (multinomial) logit or probit 
models may be used for categorical variables. In case of time series, auto-regression models 
are common. As the imputation model is predictive and not causal, all available variables that 
may improve the prediction should be used; especially variables involved in the survey 
design are of relevance. The danger is more in leaving out useful predictors than in including 
too many unimportant variables. The latter may lead to a loss in precision, but can be 
overcome by the usage of stepwise variable selection procedures. Still, the necessity of 
identifying the “best” model makes the application of model-based imputation comparably 
complex. Even though modeling tends to produce smoothed data, it better preserves the 
individual and joint distributions of imputed variables than other methods and usually 
reduces bias in the estimation of aggregates such as means and totals based on the completed 
dataset. Model-based imputation also allows taking into account external shocks. 
 
Donor-based imputation takes imputation values from a so-called donor that is a complete 
observation with similar characteristics as the incomplete observation (the recipient). The 
similitude between donor and recipient is determined via matching variables to be selected 
based on their correlation with the variable to be imputed. Donor-based imputation is often 
used for imputation of categorical variables. 
 
Hot-/cold-deck methods group the complete observations of a dataset into subsets that share 
the same values in the (usually categorical) matching variables. Hot-deck procedures select 
donors from the same dataset (the one with missing values); cold-deck procedures use other 
comparable data sources. To each observation with missing values, one of the donors of the 
matching subset is assigned. The selection of the donor can be carried out (i) sequentially, (ii) 
by means of a random process, (iii) based on distances with respect to other common 
variables, or (iv) based on ranks with respect to a common ordinal variable. Random 
selection procedures are the most common.  
 
Nearest neighbor methods measure the distance between complete observations and 
observations with missing values usually based on metric matching variables. Tarsitano and 
Falcone (2010) show how to deal with mixed-type matching variables. Either the nearest 
neighbor or one of the k nearest neighbors that is selected randomly is used as a donor. A 
multi-donor approach can be pursued instead of choosing one particular donor from the set of 
potential donors. In this case, a set of donors is combined by calculating the imputed value as 
a (weighted) average or median of the donors’ values, forfeiting the advantage of creating 
observable values at any rate. Various weighting schemes are conceivable, for example 
proportional to the similarity between donor and recipient, to the frequency of a donor 
already being used for other recipients, or to the frequency of the pattern of the matching 
variables of the donor occurring in the dataset. 
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If the number of matching variables is large, the number of potential donors may be very 
small. On the other hand, the usage of very few matching variables may result in a poor 
match. Attempts to impute for all missing variables in a single processing step usually lead to 
an excessive usage of the same complete observations as donors. In contrast to model-based 
and mean imputation, donor-based methods generally produce imputed datasets that appear 
more realistic, since they impute observed values (except for multi-donor approaches) and 
better reflect the distributional properties. However, donor-based imputation techniques 
involve a number of subjective decisions that critically affect the quality of the completed 
dataset, such as the selection of matching variables and the choice of distance measures, and 
may be criticized for their heuristic nature. Although donor-based methods can deal with 
recipient variables of any type, model-based approaches are often preferred in case of metric 
recipient variables, whereas the opposite holds true for categorical recipient variables.  
 

B.   Statistical Matching 

Statistical matching can be regarded as a particular type of donor-based imputation. It 
enriches a recipient dataset with variables only available in a donor dataset by combining 
observations from the two datasets based on the similarity of matching variables that are 
available in both datasets. The matching process gives rise to completed observations with 
variables that were completely missing in the recipient set imputed from the donor set. In 
constrained matching, every recipient as well as every donor observation is included in the 
final dataset with a sample weight identical to its sample weight before matching in order to 
preserve the distributions of the two datasets. A precondition for constrained matching is the 
identity of the weighted population totals in both datasets. Unconstrained matching does not 
place such a restriction on the matches. A drawback of constraint matching is that, on 
average, the distances between matched observations may be larger than in unconstrained 
matching (e.g. Hollenbeck, Doyle, 1979).  
 

Equivalence class matching subdivides the datasets into comparable subsets (= equivalence 
classes) of observations by means of agreement or similarity of matching variables or cluster 
analysis. To each recipient in a subset one or more donors from the same subset are assigned. 
Donors may be selected based on distance measures or randomly (cf. Okner, 1972). Multiple 
donors can be combined by some aggregation function, e.g. mean, median, or mode, 
depending on the type of variable (Van der Putten, 2000). Equivalence class matching 
corresponds to cold-deck donor-based imputation of completely missing variables. 
 

Regression-based matching matches recipients and donors based on the agreement or 
similarity of additional variables estimated in both datasets (cf. Kadane, 1978; Moriarity, 
Scheuren, 2001; Raessler, 2002). Typically, these additional variables are estimated by 
means of regression models with the common matching variables as regressors and the (dis-) 
similarity quantified in terms of Mahalanobis distance. Regression-based matching is 
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comparable to model-based imputation with two datasets, but instead of the estimated value, 
the value of the nearest potential donor with respect to the estimated variables is used.  
 
Propensity score matching (Rosenbaum, Rubin, 1983) has originally been designed in a 
different context but can be used for identifying donors in standard imputation or statistical 
matching situations. To this end, the propensity score is defined as the conditional probability 
of an observation being contained in the dataset of donors or the dataset of recipients given a 
set of variables available in both datasets. This propensity score is usually estimated via 
logistic regression on these common (matching) variables. The matching is carried out by 
assigning to each recipient the nearest donor in terms of the propensity score. Propensity 
score matching can be regarded as a special case of regression-based matching. 
 

C.   Multiple imputation 

Multiple imputation (Rubin, 1987, 1996) is a simulation-based approach to the statistical 
analysis of incomplete data. The idea of multiple imputation is to extract relevant information 
from the observed portions of a dataset via a statistical model to impute multiple (usually 
about five) values for each missing cell and use these values to construct multiple completed 
datasets. The Bayesian interpretation of this approach is that multiple imputed values are 
drawn from an estimate of the posterior distribution (instead of using the expected value of 
this distribution as a single imputed value). These are then analyzed by standard complete 
data methods, and the results combined to produce inferential statements (e.g. interval 
estimates or p-values) that incorporate missing data uncertainty. In general, the benefit of 
such a procedure is that the imputation analysts can apply whatever statistical method they 
would have applied if there had been no missing values to each completed dataset and then 
use a simple procedure to combine the results. Standard single imputation procedures can be 
misleading by causing statistical analysis software to assume that the data has more 
observations than actually observed and to magnify the confidence by biasing standard errors 
and confidence intervals. Multiple imputation algorithms avoid this and provide an 
assessment of the uncertainty caused by the imputation process. The goal of multiple 
imputation is to provide a completed dataset that allows statistically valid inference, but not 
to recreate individual missing values by optimal point prediction. Despite some criticism of 
multiple imputation based on its reliance on simulation, there is evidence that multiple 
imputation (even with a very simplistic model) is preferable to standard (or even 
sophisticated) approaches with single imputation in terms of inferences from the completed 
dataset (e.g. Heitjan and Rubin, 1990). Some ideas on how many imputations are required in 
multiple imputation can be found in Graham, Olchowski, Gilreath (2007). The paper by 
Steele, Wang, and Raftery (2010) is an example of further methodological developments of 
multiple imputation. Rubin (1986) provides insight in using multiple imputation for statistical 
matching. Gelman et al. (2005) demonstrates how completed datasets obtained by multiple 
imputation can be used to improve model diagnostics. 
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A related approach consists in the generation of K jackknife or bootstrap samples (e.g. Burns, 
1990; Efron, 1994) of the dataset with missing values, imputing the missing values in the 
samples, and aggregating the imputed values over the samples to obtain one imputed value 
for each missing value. A jackknife sample is a subset of the original dataset that is generated 
by omitting one observation. Usually, K is equal to the number of observations in the original 
dataset when jackknife samples are used. Bootstrap samples result from sampling with 
replacement from the original dataset. Multiple imputation is superior to this resampling 
approach, at least according to the inventor of multiple imputation (Rubin, 1996). 
 
Iterative imputation procedures based on the EM (expectation maximization) algorithm 
(Dempster, Laird, Rubin, 1977) are also closely related to multiple imputation. The EM 
algorithm consists of (i) an expectation (E) step that replaces missing value by expected 
values of the distribution based on estimated distribution parameters and (ii) a maximization 
(M) step that estimates the parameters of the distribution by maximizing the data log-
likelihood function. This means that first missing values are replaced by some initial 
estimates (may be taken from any other imputation method) and then distribution parameters 
are estimated based on the completed dataset. These parameter estimates are used to calculate 
expected values for the missing values and replace them again, creating a new completed 
dataset for parameter estimation. These steps are repeated until convergence. Data 
augmentation (Tanner, Wong, 1987) combines the ideas of multiple imputation and EM 
estimation. Gibbs' sampling (Metropolis et al., 1953; Hastings, 1970; Casella, George, 1992) 
is another Bayesian simulation method related to multiple imputation and the EM principle. 
 
 

IV.   APPLICABILITY OF MISSING DATA TECHNIQUES TO TIME SERIES DATA 

The relevance and applicability of the discussed missing data techniques to time series data 
largely depends on the missing data pattern. In this context, relevant patterns are (i) missing 
items, (ii) missing periods, (iii) missing variables, and (iv) missing sections.  
 
In case of missing items, all missing data techniques are applicable. Looking at variables, 
these techniques can be applied both, per variable (variable-wise) and per period (inter-
variable). With respect to sections, the techniques can be used either per section (section-
wise) or across sections. Variable-wise treatment of missing items means that the temporal 
pattern of the variable is taken into account. Inter-variable approaches focus on relationships 
between variables. Section-wise application of missing data techniques corresponds to 
dealing with missing values in one section at a time, whereas cross-sectional missing data 
treatment can make use of comparable sections to complete missing items. In any case, the 
specific time series characteristics of the data should be accounted for as discussed below.  
 
Missing periods in single (uni- or multivariate) time series data can be dealt with variable-
wise or in a combined variable-wise and inter-variable approach. Analogously, missing 
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periods in univariate cross-sectional time series can be filled by section-wise or combined 
section-wise and cross-sectional procedures. In multivariate cross-sectional time series, 
missing periods can be completed by variable-wise, section-wise, or combinations of 
variable-wise, section-wise, inter-variable, and cross-sectional approaches.  
 
For imputing missing variables and/or sections in time series data, additional data sources 
have to be used irrespective of the type of time series. This is necessary since time is the only 
common dimension in these missing data patterns. 
 
Missing Data Techniques with Time Series Data 

 
Listwise deletion of time series data is only acceptable in special circumstances (i.e. if 
MCAR holds). For instance, if lower and higher frequency data are contained in a dataset, 
one may decide to use all data at the lower frequency only. This may result in a loss of 
seasonal effects, but the analysis of longer-term trends is still valid.  
 

Deterministic imputation is applicable to time series data. For example, the “Carry Last 
Value Forward” strategy that replaces missing values by the most recent available value is 
easy to use. However, the before mentioned concerns related to methodological soundness, 
introduced bias, and quality measurability apply as for imputing survey data (cf. section 2). 
 

Location-based imputation should be treated with caution in time series. Replacing a 
missing value with the mean of the same variable in the same section over all available 
periods will yield unfeasible results in most cases. This also applies to substituting a missing 
value with the mean of the same variable over all sections. Moving averages of the same 
variable in the same section over time may be considered instead. This may be regarded as a 
kind of location-based imputation, but also as model-based imputation. If the number of 
neighboring periods used in the calculation of the moving average is two, this kind of 
imputation corresponds to linear interpolation. Moving averages tend to produce rather 
smooth curves and are not able to predict exceptional peaks, which is especially critical in 
case of gaps larger than one period. Other types of interpolation, such as splines 
(Schoenberg, 1946), can also be used for imputing a single variable over time. 
 

Distribution-based imputation for time series missing data requires the usage of special 
conditional distribution functions that account for lagged variables. Imputing with these more 
complex distribution functions that include temporal dependencies directly leads to model-
based methods.  
 

Model-based methods are most frequently adopted for incomplete time series. Models may 
either be cross-sectional and/or cross-variable or time series models or combinations of the 
two and seek to find relationships between sections and/or variables or time periods. Time 
series techniques applicable to imputation are auto regressive and/or moving average models 
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(e.g. Ferreio, 1987; Parzen, 1984), state space models (e.g. Durbin, Koopman, 2004), curve 
fitting or smoothing algorithms (e.g. de Jong, 1995; He, Yucel, Raghunathan, 2011), Kalman 
filters (Kalman, 1960; Harvey, 1989; Harvey, Pierse, 1984) or other types of dynamic 
Bayesian networks (e.g. Pearl, 1988, 2009). Apart from time series models, researchers in a 
broad range of application domains presented different classification algorithms that produce 
good results in the imputation of time series. Examples are neural networks (Alexiadis et al., 
1998; Kihoro et al., 2007), k-means clustering (Hathaway, Bezdek, 2001), seasonal pattern 
recognition (Chiewchanwattana, Lursinsap, Chu, 2007), or genetic algorithms (Figueroa 
García, Kalenatic, Lopez Bello, 2008). 
 
Neural networks are non-parametric models that imitate biological neural networks as in 
human brains to "learn" from data, for example to classify data or to estimate complex 
relations between input and output variables. One of the most important features of neural 
networks is their adaptivity. This means that starting from a (random) initial state of the 
network the interconnected artificial neurons adapt the network to obtain an optimum with 
respect to some optimization function. For an introduction see for instance Silipo (2003). 
 
Cluster analysis aims at the creation of heterogeneous groups of homogeneous items 
(clusters). The similarity of items grouped into one cluster as well as the distance between 
clusters is maximized. K-means clustering is a cluster analysis algorithm that measures the 
heterogeneity of clusters by means of the distance between cluster centers and the similarity 
of items within a cluster by means of the distance between the items and the cluster center. 
An item is assigned to the closest cluster. For an introduction see for example Everitt et al. 
(2011).  
 
Pattern recognition deals with the identification of certain structures (patterns) in the data by 
analyzing similarities of observations, observation groups, or observation sequences, for 
example to classify data. Important applications include image analysis, speech analysis, and 
person identification. Cluster analysis can be regarded as one class of methods used in 
pattern recognition. Seasonal pattern recognition refers to finding recurring structures in time 
series. For an introduction to pattern recognition see for instance Bishop (2006). 
 
Genetic algorithms are heuristics that imitate the process of natural evolution to create useful 
solutions for optimization and search problems. The evolution starts from a randomly 
generated population of solutions to the problem and uses techniques such as inheritance, 
mutation, selection, and crossover to produce a new generation. Typical applications are 
scheduling problems, gene expression profiling, and linguistic analysis. For an introduction 
see for example Goldberg (1989). 
 
Donor-based approaches and statistical matching help to identify comparable sections 
with respect to the same variable at all available time periods or with respect to other 
variables (at the same or at all available time periods). The former is also referred to as 
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variable-wise imputation, the latter as inter-variable imputation. In variable-wise donor 
imputation, the donor section is selected based on the similarity of the trajectories of donor 
and recipient. This donor is also called “time series donor”. In inter-variable imputation, 
donor selection is based on the similarity of additional characteristics of donor and recipient. 
This donor is also called “cross-sectional donor”. A combination of time series and cross-
sectional perspective is feasible as well. Since most variables in time series are metric, 
nearest neighbor methods are most common. In case of non-metric variables, cold-/hot-deck 
procedures are feasible methodological options.  
 

Multiple imputation can be used for the completion of time series irrespective of the 
missing data pattern. In recent years reports on the application of multiple imputation to 
patchy time series data became more frequent. Honaker and King (2009) describe a multiple 
imputation approach they developed specifically for cross-sectional time series that allows 
for smooth time trends, shifts across sections, and spatio-temporal correlations. Landrum and 
Becker (2001) propose a multiple imputation approach that pools information across 
geographic units (sections) as well as across different statistical models. He, Yucel, and 
Raghunathan (2011) present a multiple imputation approach for time series that makes use of 
non-parametric curve fitting. Palmer (2005) or Cano and Andreu (2010) are further examples 
for the application of multiple imputation to time series data. 
 

Hybrid procedures are the common practice when imputing time series data. The 
underlying methods of hybrid procedures need to be carefully selected and combined, taking 
into account the applicability of the methods to the missing data pattern at hand.  
 

V.   EVALUATION WITH STATISTICAL QUALITY MEASURES 

Thorough monitoring and evaluation of the imputation process is of high importance and 
vitally contributes to the quality of the resulting data. Imputation quality indicators typically 
measure 
 
1.      the extent to which imputation was required in a dataset,  

2.      the performance of the applied method,  

3.      the accuracy of the imputation results,  

4.      the variability of statistics based on the imputed dataset, and 

5.      the plausibility of imputed values.  

These quality indicators should be reported in publications of statistical analyses that are 
based on imputed data and are also relevant when disseminating imputed data themselves. 
Overall indicators for the imputed dataset, variable-specific indicators, and indicators for 
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each imputed value are discerned. For time series, section- and period-specific indicators can 
be defined as well.  
 
In order to quantify the plausibility of imputed values, editing procedures (Fellegi, Holt, 
1976; de Waal, Pannekoek, Scholtus, 2011) may be applied to the completed dataset (i.e. 
after imputation). Editing aims at the identification of implausible or infeasible values, 
usually prior to imputation and any other type of (statistical) processing. Multiple rounds of 
imputation and plausibility checks may be required. A plausibility checking mechanism may 
also be integrated in the imputation process in order to avoid the imputation of implausible 
values. In that case, plausibility of imputed values does not need to be evaluated ex post. For 
most of the quality indicators, no generally valid thresholds discerning high- and low-quality 
imputation are available. A comparative usage is recommended to enable decisions between 
different approaches or different models, parameterizations, or scenarios within one 
approach. To this end, the relative advantage of one imputation procedure (or the completed 
dataset) over another procedure (or dataset) with respect to particular quality indicators is 
calculated. A simple example of this would be an evaluation of the statistical significance of 
the difference between performance indicators for compared methods which may be tested 
by means of a repeated measures analysis of (co-) variance with the imputation procedure as 
a factor. In case of a significant overall difference, pairwise comparisons of the quality 
measures for the imputation procedures can be carried out via t-tests (Student, 1908) to create 
a quality ranking of the imputation procedures.  
 
The discussed imputation quality criteria are also applicable to imputation in time series. 
Adaptations or a different interpretation of the measures based on time series specific data 
structures are required in many cases, though, as described in the following subsections. In 
addition, the smoothness of an imputed variable (per section) over time may be analyzed to 
identify implausible peaks introduced to the trajectory by imputation, especially if imputation 
was carried out across sections or across variables instead of over time. This can be done by 
using confidence bands of moving averages or kernel estimates.  

 

A.   Degree of missingness  

Measures of the degree of missingness in a dataset indicate the quality of the dataset in terms 
of completeness prior to the imputation process. Comparing these measures prior to and after 
imputation quantifies the reduction of the degree of missingness that was achieved and can 
be compared across different procedures. Moreover, several experimental studies, e.g. Kaiser 
(1986), show the impact of the degree of missingness on other imputation quality measures. 
An increase in missing values per observation, in the proportion of incomplete observations 
in the dataset, or in both severely affects (i) the quality of missing value estimates, (ii) the 
magnitude of the discrepancy in means, and (iii) the preservation of the covariance structure. 
An increase in sample size can reduce these adverse effects. 
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Indicators measuring the degree of missingness are mainly ratios of missing values, 
variables, observations, sections, or time periods with respect to corresponding totals. 
Examples are 
 
6.      the number of observations with one or multiple missing values as a ratio of the total 

number of observations. For cross-sectional time series, instead of observations 
sections with missing values are counted. 

7.      the frequency distribution of the number of variables to be imputed per observation 
(section) and appropriate distribution measures (e.g. min, max, median). 

8.      the frequency distribution of the number of periods to be imputed per variable (and/or 
section) and appropriate distribution measures. This measure only applies to time 
series.  

9.      the proportion of observations (or sections or periods) missing for specific variables 
(or sections or periods). 

10.      the total number of missing values as a ratio of the total number of cells (i.e. missing 
or non-missing data points) of the dataset. 

For cross-sectional time series, weighted missingness rates can be of interest. Consider the 
case of sections being countries. Then, each section has a weight, for example in terms of 
population size, GDP, or purchasing power parity. These weights can be used to calculate 
weighted proportions of missing data which increases the comparability of missingness rates 
across countries. The cross-country comparability is relevant in data quality reports for cross-
country datasets. In addition, contingency or correlation matrices of the missingness patterns 
of variables (or observations, sections, periods) may be used to assess the interdependency 
between the respective missingness patterns. This means that, instead of the variables 
themselves, their missingness patterns are statistically analyzed to identify relations between 
variables (or sections or periods) with respect to missingness patterns.  

 

B.   Performance of imputation method 

Apart from the reduction of the degree of missingness as discussed above, performance 
criteria for imputation methods are typically method-specific. For some imputation 
approaches, no method-specific performance evaluation is possible, e.g. for deterministic, 
location-, or distribution-based imputation.  
 
Overall method-specific performance indicators for model-based methods are standard 
quality criteria of the regression models involved, such as the coefficient of determination 
(R²), various information criteria (e.g. Akaike or Bayes; e.g. Burnham, Anderson, 2002), or 
the p-values of the regression coefficients. In case of separate models for different 
variables/sections with missing values, these quality indicators are variable-/section-specific 
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but can be combined to overall performance measures by some aggregation function. This 
aggregation may be done by simple (weighted) averaging or by more sophisticated methods 
of deriving composite indicators from individual indicators (see for example the OECD's 
handbook on composite indicators (2008)). However, comparability of such composite 
performance indicators is limited to very specific situations, questioning its value added. An 
example for such a situation is the application of one and the same imputation method to 
different vintages of a dataset over time. For hybrid approaches, "one and the same" means 
that all individual methods used in that approach must stay the same.  
 
For donor-based methods and equivalence class matching, distribution parameters of the 
usage frequency of individual donors or the values of the distance function between donor 
and recipient (if applicable) are computed. The less often donors are reused and the closer 
recipients and their donors are, the higher is the quality of the imputation. Typically, median 
and maximum are used as aggregation functions. The calculation of these measures is 
feasible at the overall dataset level as well as at the variable, section, or period level.  
 
For regression-based and propensity score statistical matching, relevant performance 
indicators are standard regression quality measures (as used for model-based methods) as 
well as the distance between donor and recipient with respect to the estimated matching 
variables. As for donor-based methods, usually location and variability measures of the 
distance are used. 
 
In multiple imputation, performance indicators of the model estimated for the posterior 
distribution from which the imputation values are drawn are of relevance. Again, standard 
quality measures for regression models such as R² or information criteria can be used. In 
addition, measures of the variability of the multiple imputed values are considered as 
imputation performance measures. 
 
At the level of the individual imputed values, an imputation quality report should 
encompass the standard error or confidence interval for the estimated (=imputed) value in 
case of model-based imputation, multiple imputation, or regression-based statistical 
matching, and a reference to the donor used in case of donor-based methods. If distance-
based hot-/cold-deck imputation, a nearest-neighbor approach, or equivalence class statistical 
matching is used, the quality report should additionally provide the value of the distance 
function between donor and recipient and the number of times the same donor was used in 
the whole dataset.  
 
For hybrid approaches, performance measures of the component methods should be 
provided. The idea of aggregating these component performance measures to one “hybrid” 
performance indicator seems appealing; yet the results are usually hard to interpret. 
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C.   Accuracy of imputation results 

Commonly, the following four types of imputation accuracy are discerned (Chambers, 2000): 
 
11.      predictive accuracy or effectiveness: maximal preservation of true values, 

12.      ranking accuracy: maximal preservation of true ordering relationship in imputed 
values, 

13.      distributional accuracy: maximal preservation of (marginal and higher order) 
distributions of true values, and 

14.      estimation accuracy: maximal preservation of analytic results and conclusions. 

This typology constitutes a hierarchy: fulfillment of predictive accuracy, which is the 
strongest type of accuracy, implies the other three types of accuracy. The relevance of 
predictive and ranking accuracy depends on the intended usage of the completed dataset. If 
the dataset is to be publicly released or used for the development of prediction models, these 
two criteria are crucial. If the objective is to produce and publish aggregated estimates, they 
are less important. Rubin (e.g. 1996) even claims that the aim of (multiple) imputation should 
rather be statistically valid inference based on the completed dataset (i.e. estimation 
accuracy) than the recreation of true values by optimal point prediction (i.e. predictive 
accuracy). However, it is not feasible to identify all possible analyses that could be carried 
out for the completed dataset. Therefore, a modified definition of estimation accuracy is 
usually considered measuring merely the reproduction of lower order moments (at least mean 
and variance) of the distributions of true values. According to this definition, distributional 
and estimation accuracy are equivalent for nominal and ordinal variables. 
 
Since the true values of the missing data are unknown, the imputed values cannot be 
compared to their true counterparts. Hence, accuracy indicators are estimated by treating 
available values as missing, imputing these fictitiously missing values, and comparing the 
imputed values to the ignored true values. This technique of leaving out observations in an 
estimation procedure to validate estimation results is known as cross-validation. Repeated 
random sub-sampling validation, k-fold cross-validation, and leaving-one-out cross-
validation are the most common types of cross-validation. For the validation of imputation 
results the leaving-one-out approach is typically used. One value is set to missing at a time, 
and, theoretically, the procedure is repeated for each value. In practice, the repetition is only 
carried out over a sample of the available values. Cross-validation is usually separately 
conducted for each variable with missing values. Overall measures can be derived from these 
variable-specific accuracy measures by aggregation. All accuracy measures depend on the 
variable type. 
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For nominal variables, a measure of how closely the imputed values estimate the true values 
is the proportion of off-diagonal entries for the square table obtained by cross-classifying 
imputed and true values. If the imputation method preserves individual values, this indicator 
is equal or close to zero. In case of dichotomous variables, a related measure is calculated as 
area under the receiver-operating characteristic (ROC) curve (Fawcett, 2006). This curve 
plots sensitivity vs. 1 - specificity. Sensitivity is the proportion of correctly imputed “1”s (also 
called true positive rate). 1 - specificity is the proportion of correctly imputed “0”s (also 
called true negative rate). The closer the value of the area under the ROC curve is to 1, the 
more accurate are the imputed values. Nominal variables with p  2 categories can be 
transformed to a set of p - 1 dichotomous variables. Sensitivity, specificity, and area under 
the ROC curve can be calculated separately for each of these dummy variables and then 
aggregated to a measure for the original variable. The extent to which an imputation 
procedure preserves the marginal distribution of a nominal variable can be assessed by 
calculating the value of a Wald-type test statistic that compares imputed and true 
distributions of the variable across its categories (for details see Chambers, 2000).  
 
For ordinal variables, imputation should satisfy ranking accuracy in addition to predictive 
and distributional accuracy. Distributional accuracy can be measured in the same way as for 
nominal variables. Predictive and ranking accuracy can be measured simultaneously. To this 
end, the magnitude of imputation errors is taken into account by means of the ordinal 
distance between imputed and true values in the assessment of predictive accuracy (for 
details see Chambers, 2000).  
 

For metric variables, a measure of the closeness of imputed and true values is the weighted 
Bravais-Pearson correlation between imputed and true values. For data that are highly 
skewed or deviating from normality in some other way, this measure is not recommended 
due to its sensitivity to outliers and influential data values. Instead, it is preferable to focus on 
estimates of a (robust) regression model without intercept of true values on imputed values. 
The predictive accuracy assessment corresponds to testing whether the estimated regression 
parameter is equal to 1. The coefficient of determination of the model is a related regression-
based measure for predictive accuracy, whereas the regression mean square error can be 
regarded as an inverse measure of predictive accuracy. To assess the preservation of the 
ordering relationship for continuous variables, imputed and true values are replaced by their 
ranks and the measures of predictive accuracy are calculated. A Kolmogorov-Smirnov test 
(Massey, 1951) of equality of probability distributions comparing the distributions of 
imputed and true values evaluates distributional accuracy of an imputation procedure. 
Another valid choice for assessing distributional accuracy is the Wilcoxon rank-sum or 
Mann-Whitney-U test (Wilcoxon, 1945; Mann, 1947). An appropriate test for estimation 
accuracy concerning the mean of the true distribution is a dependent t-test for paired samples 
(Student, 1908). 
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D.   Variability of statistics based on the imputed dataset 

In the evaluation of imputation results, the statistically most relevant measures are bias and 
variance of the estimates based on the completed data. The complexity of deriving closed-
form solutions for variance and bias increases rapidly with the complexity of the missing data 
patterns and the imputation method. In general, the scope of theoretical work on the direct 
calculation of variance and bias is limited to rather simple constellations of missing data. 
This may be one reason for the neglect of the effect of imputation on the variance and bias by 
many analysts. Thereby, variances are underestimated and the validity of confidence 
statements is jeopardized (Cox, Folsom, 1978). To resolve this issue, simulation is 
recommended for the evaluation of imputation results of more complex imputation 
procedures. For this purpose, Rubin (1987) advocates the routine production of several sets 
of imputed values under different models or sets of assumptions as part of regular data 
processing. This leads to estimates of the imputation error and the effects of different models 
can be investigated as already discussed in the section on multiple imputation above.  
 
Shao and Sitter (1996) propose a related methodology for measuring the imputation variance 
(for an exemplary application cf. Kaufman, Scheuren, 1997). Bootstrap samples (see, for 
instance, Efron, 1979; Efron, Gong, 1983) of complete and incomplete observations are 
generated, and the imputation procedure is applied to each bootstrap sample. The distribution 
of bootstrap estimates is then used for inference. This approach can also be regarded as a 
kind of cross-validation. While multiple imputation samples the imputed values from the 
posterior distribution of the incomplete variable (without replacement), the bootstrap 
approach draws samples from the original dataset (with replacement) and imputes the 
missing values for each sample.  
 
 

VI.   CONCLUSION  

Starting from the need to fill data gaps in cross-country time series in order to analyze the 
effects of the recent financial crisis, this paper provides various methodological choices for 
imputation of missing data. It investigates data structures and missingness patterns of time 
series and offers evaluation procedures based on statistical quality criteria for assessing 
imputation outcomes. The methodological overview aims at raising awareness of data 
producers and analysts in international financial institutions regarding the challenges posed 
by missing data as well as techniques for handling them. In addition to promoting the usage 
of sound imputation procedures, the paper stresses the importance of accompanying any 
imputation process with reasonable quality indicators. A description of the applied missing 
data technique and quality assessment results should be published together with the data. 
This helps reducing ambiguity of incomplete data and facilitates data analysis and 
interpretation for advising policy makers. 
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