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Abstract 

We present a simple macroeconomic model with a continuum of primary commodities used in the 

production of the final good, such that the real prices of commodities have a factor structure. One factor 

captures the combined contribution of all aggregate shocks which have no direct effects on commodity 

markets other than through general equilibrium effects on output, while other factors represent direct 

commodity shocks. Thus, the factor structure provides a decomposition of underlying structural shocks. The 

theory also provides guidance on how empirical factors can be rotated to identify the structural factors. We 

apply factor analysis and the identification conditions implied by the model to a cross-section of real non-

energy commodity prices. The theoretical restrictions implied by the model are consistent with the data and 

thus yield a structural interpretation of the common factors in commodity prices. The analysis suggests that 

commodity-related shocks have generally played a limited role in global business cycle fluctuations.   
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1 Introduction 

Macroeconomists have long struggled to identify exogenous sources of business cycle fluctuations.  

Thirty years after Kydland and Prescott (1982), the notion that negative technology shocks can explain 

recessions remains difficult for many to accept.  Other potential sources of business cycle fluctuations 

also generate raised eyebrows: negative shocks to the discount factor, shocks to households’ willingness 

to supply labor, markup shocks, and so on. But one possible source of exogenous economic volatility that 

raises fewer questions than the rest is commodity-price shocks.  From droughts in the American Midwest 

to labor strikes in the mines of South America to geopolitical instability in the Middle East, large 

commodity-price fluctuations seem easier to accept as exogenous changes because they frequently can be 

reconciled with visible news events.  Furthermore, large commodity-price movements have often 

coincided with periods of macroeconomic volatility, lending support to arguments that attribute causality 

from commodity-price shocks to aggregate macroeconomic fluctuations.  The stagflation of the 1970s, for 

example, is frequently attributed to oil and food price shocks of that era (Blinder and Rudd 2012).  

Hamilton (1983) noted that almost all U.S. recessions had been preceded by oil price increases, a feature 

which continued with the recent oil- and commodity-price boom immediately preceding the Great 

Recession. 

 Despite this, the direction of causality is difficult to ascertain.  Bosworth and Lawrence’s (1982) 

efforts to separate supply and demand forces across many commodities in the 1970s did not point to clear 

evidence of supply-side factors driving commodity-price movements, Barsky and Kilian (2002) argued 

that monetary forces caused both the Great Inflation and the commodity price booms of the 1970s, and 

Kilian (2009) found that much of the oil price run-up in the 2000s could be attributed to rising global 

demand.  Indeed, a growing body of work focusing specifically on oil markets increasingly emphasizes 

the role of demand forces in accounting for historical oil-price fluctuations and calls into question the role 

of commodity-price shocks as a central driver of global business cycles.  But comparatively little effort 

has been devoted to explaining common price movements among commodities, which were a defining 

feature of both the 1970s and the 2000s commodity booms.   

 We build on this literature in several ways.  First, we develop a simple general equilibrium 

macroeconomic model with commodities that yields a tractable factor structure for real commodity prices.  

This factor structure decomposes each commodity’s price into three distinct components. The first 

component captures idiosyncratic price movements. The second component captures shocks (such as 

aggregate productivity shocks and shocks to labor supply) that are not directly related to commodity 

demand and supply. We refer to this factor as the indirect aggregate common (IAC) factor. The third 

component, which we label the direct aggregate common (DAC) factor(s), represents the shocks that 

directly affect commodity supply and demand, holding aggregate output constant.  

The IAC factor is of particular interest. First, this factor reflects the combined contribution of all 

“indirect” aggregate shocks, i.e. shocks for which the effects on commodity prices reflect only general 

equilibrium changes in aggregate output.  Thus, this factor can be thought of as capturing the effects of 

“non-commodity shocks”.  Second, the IAC factor implied by the theory is the level of aggregate output 

that would have occurred in the absence of “direct” commodity shocks, i.e. it represents the 
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counterfactual history of global activity driven only by non-commodity shocks. Hence, the factor 

structure of commodity prices from the model provides a mechanism for decomposing the endogenous 

responses of both commodity prices and global activity into components reflecting commodity-related (or 

“direct”) shocks from other (“indirect”) shocks. 

 The intuition behind this structural decomposition is straightforward.  Most aggregate shocks 

should affect individual commodity prices only by changing the total demand for commodities or through 

supply-side effects stemming from income effects on common inputs, i.e. their effects on commodity 

prices are summarized by their effects on aggregate output. As a result, conditional on the effects of 

aggregate shocks on aggregate production, their implications for commodity prices are identical across 

shocks.  Thus, these “indirect” shocks will all generate a single pattern of comovement among 

commodities which can be aggregated into a single factor within a factor decomposition of historical 

commodity price movements.  In contrast, commodity-related shocks directly affect the supply and 

demand for commodities above and beyond their general equilibrium effects on aggregate output.  The 

additional shifts in supply and/or demand curves associated with direct commodity shocks generate a 

different pattern of commodity comovement than indirect shocks and this heterogeneity in comovement 

will be captured by the factor structure. Thus, the fact that all indirect shocks induce a common 

comovement in commodity prices whereas direct shocks generate different comovement patterns 

underlies the decomposition of shocks into direct and indirect factors within the factor structure. 

 Applying factor methods to commodity prices is common because these methods are well-suited 

to characterizing comovement across many variables (e.g., Byrne, Fazio and Fiess 2011, Gospodinov and 

Ng 2013, West and Wong 2012).  But a key challenge in this literature is the inability to interpret the 

factors in a structural manner because they are only identified up to a rotation.  Our second contribution is 

to show how one can use the theoretical predictions of the model to identify the rotation matrix that maps 

empirically estimated factors into the structural factors implied by the model, including the indirect 

aggregate common factor. Specifically, the theory provides two potential identification strategies.  The 

first is to impose orthogonality conditions on structural factors with respect to a set of instruments.  For 

example, the IAC factor should be orthogonal to commodity-related shocks such as exogenous oil price 

shocks (since energy is a common input in the production and distribution of commodities). The 

parameters of the rotation matrix can then be estimated by GMM based on these orthogonality conditions. 

A second strategy is to impose sign restrictions predicted by the theory, as in Uhlig (2005).  Each 

commodity should have a positive loading on the IAC factor because higher global activity both increases 

the demand for all commodities and potentially lowers their supply if income effects on inputs into the 

production process of commodities are present.  Both of these forces induce commodity prices to rise 

with global activity, so commodity loadings on the IAC factor should all be positive. Thus, one can 

recover a structural interpretation from the empirical factor analysis, guided by the theory. 

 Our third contribution is to apply this methodology to a cross-section of historical commodity 

prices.  We select commodities that conform to the structure and assumptions of the model.  We thus 

exclude commodities that are vertically integrated. For example, we include sorghums in the data set but 

because they are used as feed, we exclude poultry and eggs.  By the same logic, we exclude all energy 
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commodities because they are used as inputs into the production and distribution of commodities. Second, 

we exclude commodities that are commonly used for financial speculation, such as precious metals.  

Third, we exclude commodities whose production is a derivative of the production of another commodity 

(e.g., many minerals).  This leaves a cross-section of forty commodities, ranging from food and 

agricultural products (e.g., wheat and coffee), oils (e.g., coconut oil), and industrials (e.g., copper and 

rubber).  We document the geographic variation in the production of these commodities as well as the 

diversity (and sometimes lack thereof) in their uses.  

We extract the underlying factors from this cross-section of commodities and implement our 

identification procedure to recover the structural factors.  The baseline identification strategy is to 

estimate the rotation parameter by GMM, using as moment conditions the orthogonality of the IAC factor 

with respect to the OPEC oil production shocks from Kilian (2008). The overidentication conditions 

cannot be rejected and the implied rotation matrix satisfies the sign restrictions of factor loadings implied 

by the theory. A notable result is that we cannot reject the null that the rotation matrix is equal to the 

identity matrix, such that one could directly interpret the unrotated factors in a structural manner.  This 

result is insensitive to several robustness checks, including the subset of commodities used, econometric 

issues associated with the identification of the rotation matrix, the initial factor decomposition, and the 

treatment of trends.  We also show that the set of rotations selected using the alternative sign restriction 

approach lie within the 99% confidence interval of the GMM estimate of the rotation matrix.  Hence, the 

two identification strategies yield remarkably consistent results and suggest that our baseline results are 

robust to the identification procedure and the choice of instruments.  

The IAC factor accounts for approximately 60-70% of the variance in real commodity prices 

overall and much of the historical changes in commodity prices since the early 1970s. However, direct 

commodity shocks have also played a nontrivial role in accounting for some commodity price 

movements, including during 1979-1980, in the late 1980s, as well as during the run-up in commodity 

prices in the 2000s and their subsequent decline in 2008-2009.  Nonetheless, the IAC accounts for much 

more of the historical variation in commodity prices.  Similar results obtain when decomposing historical 

changes in global economic activity.  While there have been periods in which direct commodity price 

shocks contributed to changes in global activity (such as in 1974-1975 or during the Great Recession), we 

again find that the IAC has contributed much more to historical global activity, even in those periods 

when commodity price shocks are often cited as a prominent source of economic volatility.  

A potential caveat to our results is that the aggregation result underlying our suggested factor 

structure can be broken in the presence of storage.  Specifically, if indirect shocks have different 

implications from one another for the path of expected prices, as would be the case if their persistence is 

very different, then speculators would pursue different inventory management strategies for each indirect 

shock.  In this case, the effect of an aggregate shock on output would no longer be a sufficient statistic for 

its effect on commodity prices and the aggregation of all indirect shocks into a single factor would no 

longer follow.  There are at least three reasons to be skeptical of this argument.  First, the fact that 

commodity prices are well-characterized empirically by very few factors strongly suggests that some 

form of aggregation does indeed hold.  Second, for most commodities in our sample, we cannot reject the 
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null that storage motives have only second-order effects on prices, based on the average net purchases of 

the storage sector implied by global consumption and production data for commodities. Third, in the 

presence of storage, interest rates would have a direct effect on commodity markets and therefore, by the 

logic of the factor structure, should not be incorporated into the IAC.  Using a measure of monetary 

policy shocks constructed from a time-varying coefficients Taylor rule estimated with real-time forecasts 

of the Federal Reserve, we incorporate our IAC factor into a monetary VAR and find that we can reject 

the hypothesis that monetary shocks have no effect on the IAC factor.  In fact, we document that 

monetary policy shocks can account for much of the variation in the IAC factor during the 1970s, 

consistent with the monetary interpretation of the Great Inflation suggested by Barsky and Kilian (2002).  

By contrast, exogenous monetary policy shocks have contributed little to global economic volatility since 

the early 1980s, including during the run-up in commodity prices of the mid- to late-2000s.  Thus, all 

three results suggest that our factor structure is an adequate and succinct representation of the historical 

determinants of commodity prices.  

Finally, we assess whether the IAC factor can be used to forecast commodities in real-time. Using 

pseudo out-of-sample forecasts, we find that a bivariate VAR that includes each commodity’s price and 

the common factor extracted from the cross-section of commodities generates improvements in forecast 

accuracy relative to the no-change forecast, particularly at short (1, 3, and 6 month) horizons.  This result 

extends to broader commodity price indices, such as the CRB spot index, the World Bank non-energy 

index, and the IMF index of non-energy commodity prices.  We also find that the IAC factor extracted 

from the cross-section of commodity prices helps to predict real oil prices, again with the largest gains 

being at short horizons (e.g., 20% reductions in the MSPE at the 1-month horizon). These improvements 

in oil forecasting accuracy are similar to in size those obtained using oil-market VARs in Baumeister and 

Kilian (2012) and Alquist et al. (forthcoming).  But unlike the oil-market VARs that use production and 

inventory data that are usually unavailable for most non-oil commodities, our approach relies only on a 

cross-section of commodity prices that can readily be tracked and updated at high frequencies.  Thus, the 

factor structure of commodity prices can be used not only to provide a structural interpretation of 

commodity-price movements but also to improve the quality of forecasts for policy-makers and 

practitioners.   

The structure of the paper is as follows.  Section 2 presents our macroeconomic model with 

commodity prices and shows how the latter will have a factor structure.  The section also shows how the 

structure of the model permits the econometrician to recover the structural factors from typical factor 

decompositions of a cross-section of commodity prices. Section 3 applies these results to a historical 

cross-section of commodity prices.  Section 4 considers the implications of commodity storage while 

section 5 uses the indirect aggregate common factor in a pseudo out-of-sample forecasting exercise.  

Section 6 concludes.  
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2 The Sources of Commodity Price Comovement: Theory 

In this section, we present a simple model that characterizes the sources of commodity-price 

comovement.  In particular, we show that the model yields a convenient and tractable factor structure for 

a cross-section of commodity prices in that the factors have a structural interpretation. 

 

2.1 Model of commodity prices 

Our baseline model consists of households, a continuum of heterogeneous “primary” commodities, a 

sector that aggregates these commodities into a single “intermediate” commodity input, and a final goods 

sector that combines commodities, labor and technology into a final good. 

 

The Household 

A representative consumer maximizes expected discounted utility over consumption ( ), labor supply 

(  ), and the amount of “land” supplied to each commodity sector (     ) as follows 

         
    
   

   
       

 
  

    
   

 
 

  
 
 

    
   

      
      

 
   

 

 

  
 
 

  

 

   

 

where   is the discount factor.  With      and     , welfare is decreasing in hours worked and the 

amount of land supplied to commodity sectors.  The    
 
 term is an exogenous shock to the disutility of 

hours worked while    
 
 is an exogenous shock to the disutility of supplying land. 

The household pays a price    for the consumption good, receives wage    for each unit of labor 

supplied, and is paid a rental rate of land   
     for each unit of land supplied to the primary commodity 

sector j.  The household also can purchase risk-free bonds    that pay a gross nominal interest rate of   .  

The budget constraint is therefore  

                     
     

      
      

 

 

    

where    represent payments from the ownership of firms. 

 Assuming that the household takes all prices as given, its first-order conditions are 

    
   

  
  

    
 
                  (1) 

    
   

     
  
    

 
  
                   (2) 

   
           

    
  

    
              (3) 

 This setup is standard, with the exception of the “land” provided by the household.  This variable 

is an input into the production process for primary commodities and can be interpreted in several ways.  

Referring to this input as “land”, for example, follows from the notion that the use of land yields direct 

benefits to the household (and hence is included in the utility function) but that it can be provided to 

commodity producers in exchange for a rental payment.  This conveniently yields a traditional supply 

curve for this input.  One could equivalently interpret it as a form of labor that cannot be reallocated 

across sectors. In this case one could think of N
s
 as the supply of labor to manufacturing or service 
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sectors, whereas L
s
 could be thought of as the supply of labor to mining and agricultural sectors.  The 

assumption that this input enters the utility function, along with the introduction of the preference shifter 

  
 , is a reduced form way of generating an upward-sloping supply curve for the input into the commodity 

production process, but the specific mechanism utilized does not play an important role in the analysis.  

The same qualitative results would apply if this input did not enter into the utility function so that the 

household supplied its total endowment each period. 

 

The Primary Commodity-Production Sector 

Each primary commodity j is produced by a representative price-taking firm who uses land (  
    ) to 

produce a quantity       of good j given a production function 

                        
                  (4) 

where       is the exogenously determined level of productivity for commodity j and        is the 

commodity-specific degree of diminishing returns to land.  Given      , the price of commodity j, and the 

rental rate of land   
     specific to commodity j, the firm chooses the amount of land input to maximize 

profits 

                
      

      

This yields the following demand curve for land for each commodity j: 

     
           

     

  
        

                                 (5) 

We assume WLOG that the steady-state level of productivity            is such that the steady-state level of 

production in each sector is equal.  Equilibrium in the market for land requires 

           
       

                 (6) 

for each sector j.   

 

The Intermediate Commodity 

A perfectly competitive sector purchases       of each primary commodity j and aggregates them into an 

intermediate commodity   
  per a Dixit-Stiglitz aggregator 

     
      

 
    

    
 

 
 

  
    

            (7) 

which yields a demand for each commodity j of 

         
           

                   (8) 

where    is the elasticity of substitution across commodities and the price of the intermediate commodity 

aggregate is given by   
         

      
 

 
 

 

    .  Market-clearing for each commodity sector j requires 

           .             (9) 

Note that this setup implicitly assumes that no storage of commodities takes place since all commodities 

produced must be used contemporaneously.  We discuss the motivation for this assumption, as well as its 

implications, in more detail in section 4. 
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The Final Goods Sector 

A perfectly competitive sector combines purchases of the intermediate commodity good   
  and labor   

  

according to the Cobb-Douglas production function 

             
     

               (10) 

to maximize profits 

                         
    

   
  

taking as given all prices and where    is an exogenously determined aggregate productivity process.  

This yields the following demand for each input 

               
        

                (11) 

                     
                (12) 

Since all of the final good is purchased by the household, equilibrium in the final goods market requires 

     .  The fact that    is potentially time-varying allows for exogenous variation in the relative 

demand for commodities and labor in the production of the final good. 

 

The Linearized Model 

We assume that exogenous processes are stationary around their steady-state levels, so that all real 

variables are constant in the steady-state.  Letting lower-case letters denote log-deviations from steady-

state (e.g.,               ) and normalizing all nominal variables by the final goods price level (e.g., 

                                     ), the first-order conditions from the household’s problem are 

         
 

 
        

           (13) 

        
 

 
        

       
           (14) 

                   
 

 
             (15) 

where we’ve imposed the market-clearing conditions       and   
    

     and defined    as the 

log-deviation of the gross real interest rate from its steady-state value. 

 Each primary commodity-producing sector is summarized by the following equations 

                    
                                                 (16) 

                                   (17) 

where we’ve imposed the market clearing conditions   
       

           and            .  The 

intermediate commodity sector is given by 

                       
 

 
           (18) 

           
 

  
            .          (19) 

Finally, letting α be the steady-state value of αt, the final goods sector follows 

                                         (20) 

                                   (21)  

                 
 

   
                 (22) 
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where          
             . 

 

Equilibrium Dynamics 

Labor market equilibrium for primary commodity j requires 

       
 

 
      

  

                   
   

so production of commodity j is given by 

                   
      

           
       

    
         (23) 

where     
 

 
         .  Substituting in the relative demand for commodity j yields 

                   
 

    
 
  

   
        

 

  
         

       
    

            (24) 

where               
 

    
 
  

     
    is a rescaled version of each commodity’s productivity.

1
  

Then the aggregate supply of commodities follows from aggregating (24) across all j 

                 
 

  
 
 

 
            

 

   
     

          (25) 

where            
  
  

 

 
 s.t.         and            

 

 
 is the aggregate over the rescaled 

productivity shocks in all commodity sectors.  The aggregate output level on the RHS corresponds to 

income effects to the supply of land on the part of the household, which lower the aggregate supply of 

commodities when income is high.  The supply of commodities also shifts with the aggregated 

commodity productivity level and shocks to the household’s willingness to supply land. 

 With the demand for the commodity bundle given by                 , equilibrium 

production of the intermediate commodity bundle is given by 

                 
        

         
   

 

         
   

   

         
  
  

   

         
            (26) 

Whether equilibrium total commodity production rises or falls with income (holding v and ε
L
 constant) 

depends on the strength of the income effect, which here is captured by σ.  If σ < 1, then commodity 

production will comove positively with total production. 

 Equilibrium in the labor market is given by 

          
   

     
   

 

     
  
  

 

     
            (27) 

Therefore, the aggregate level of production of final goods follows from the production function 

                               
      

                      (28) 

where         
        

         
        

   

     
  

  
,    

    

         
,    

   

     
,    

 

         
, and 

      
    

         
 

 

     
.  Output is rising with aggregate productivity, positive shocks to the 

                                                           
1
 The rescaling of the commodity-specific productivity shock ensures that a 1% increase in TFP in each commodity 

sector raises the equilibrium level of production of that commodity by equal amounts for each commodity.  This 

would not be the case without the rescaling because each primary commodity sector’s supply curve has a different 

slope.  The rescaling simplifies the aggregation across commodity sectors. 



 10 
 

 
 

household’s willingness to supply land and labor, a positive average over commodity-specific 

productivity shocks.  Whether output rises when the relative demand for commodities increases (   ) 

depends on specific parameter values. 

 

2.2 Comovement in Commodity Prices 

For simplicity, we assume that productivity shocks to each commodity sector have an idiosyncratic 

component and a common component such that         
    

    , which implies that the average 

across commodities is simply      
 .  Idiosyncratic components are orthogonal across commodity 

sectors, such that                      such that     .   

We then consider the determinants of individual commodity prices.  First, the supply of 

commodity j follows from equations (14), (16) and (17) and is given by 

                                
        

 
   

    
            

         (29) 

where εj is the elasticity of commodity supply with respect to its price. First, changes in aggregate output 

shift the supply curve when income effects on the input are present (σ > 0).  This implies that all 

macroeconomic shocks that affect aggregate production in the model will cause an equal upward or 

downward shift in the supply of every commodity in general equilibrium.  Hence, all shocks in the model 

are, in a sense, supply shocks to commodities.  Second, the supply of commodity j will increase whenever 

its productivity level rises, which can reflect common productivity shocks (  
 ) or idiosyncratic shocks 

(  
    ).  Finally, shocks to the household’s willingness to supply land to the commodity sector will 

directly affect the supply curve.  Thus, we can write the supply curve of commodity j more succinctly as 

                               
    

        
      

    
    

            (30) 

which captures the fact that some shocks affect the supply of commodity j “indirectly” through general 

equilibrium effects captured by aggregate output, some shocks affect supply “directly” by shifting the 

curve holding aggregate output fixed, and some shocks do both. 

 The demand for commodity j comes from combining equation (19) with (21) and (25) yielding 

                      
 

  
       

          

         
    

       

         
  
  

      

         
 
 

  
   

  
 

         
         (31) 

Demand for commodity j is increasing with aggregate output, which reflects the role of commodities as 

an input into the production of final goods.  This term therefore captures general equilibrium demand 

effects, and all macroeconomic shocks that affect aggregate production in the model will result in an 

equal upward or downward shift in the demand for every commodity.  Thus, all shocks in the model other 

than idiosyncratic shocks are demand shocks as well as supply shocks.  But in addition to these general 

equilibrium shifts in commodity demand, the demand for commodity j will rise with changes in the 

relative demand for commodities (   ), holding aggregate output constant.  It will also shift, holding 

aggregate output constant, with exogenous changes in the household’s willingness to supply land and 

with exogenous common commodity productivity shocks.  While the latter two would more commonly be 

thought of as supply shocks, the fact that they affect all commodities implies that they affect equilibrium 

prices and quantities of the intermediate commodity bundle, and therefore affect the demand for each 
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commodity through the CES structure.  We can again write the demand curve of commodity j more 

succinctly as 

                                     
    

        
      

    
              (32) 

to highlight the fact that some shocks affect the supply of commodity j indirectly through general 

equilibrium effects on output, some shocks can shift the demand for each commodity j directly holding 

aggregate output constant, and some do both. 

 In this setting, there are no well-defined supply and demand shocks to a given commodity, so 

identification procedures that rely on supply and demand characterizations may be ill-defined.  However, 

the comovement across commodities can help break this impasse.  Consider for example the effect of an 

aggregate productivity shock (  ) on commodity prices.  Such a shock affects both supply and demand 

for every commodity, but does so only through its equilibrium effects on aggregate output.  A positive 

productivity shock in this setting would increase output and thereby increase the demand for each 

commodity j and decrease its supply through income effects.  Both effects will tend to raise prices of all 

commodities.  While the magnitude of the effect will differ across commodities depending on the slopes 

of their respective supply curves (which depend on αj’s), there will necessarily be positive comovement 

implied by such shocks.  This is illustrated visually in Panel A of Figure 1, which shows the price 

implications of an increase in aggregate productivity for a commodity with elastic supply          and 

one with inelastic supply           .  The red lines with arrows (      and        ) then show the set 

of possible prices for each commodity for different values of  , and therefore the implied comovement, 

which can result from productivity shocks. 

 Importantly, any shock that only affects commodity prices through its effects on aggregate output 

will induce the same relative comovement of commodity prices as productivity shocks.  In our model, 

shocks to the household’s willingness to supply labor also affect commodity prices only through    and 

therefore will deliver the exact same pattern of comovement among commodities as an aggregate 

productivity shock.  By contrast, any shock that directly (i.e., holding aggregate output constant) affects 

the supply and/or demand of a commodity will induce a different comovement across commodities.  This 

is illustrated in Panel B of Figure for the case of an increase in the relative demand for commodities     

that is then assumed to lower aggregate output.  The rise in     directly shifts up the demand for each 

commodity, holding output constant, then shifts both the supply and demand curves through the effect of 

aggregate output on each.  As a result of these shifts, the price of the inelastically supplied commodity 

rises while that of the elastically supplied commodity falls.  The red lines with arrows (        and 

         ) again trace out all possible price paths for each commodity conditional on changes in    .  The 

fact that this change in relative demand leads to negative comovement is meant only for illustrative 

purposes, since whether the price of the elastically supplied good rises or falls will depend on parameter 

values.  The important point is that shocks that have both direct and indirect effects on commodity 

markets will lead to different comovement among commodities than those shocks that have only indirect 

effects. 
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2.3 The Factor Structure in Commodity Prices 

To solve for commodity prices, we combine equations (29) and (31) yielding 

                         
                

         
     

           

         
     

  

 
 

  
        

          

         
   

  
    

         
    

 

  
          

                  (33) 

Because aggregate output    is itself a function of all aggregate shocks in the model, we can decompose it 

as follows 

     
       

          
      

         

where   
            

  .  Given this decomposition, we can rewrite the equilibrium price of 

commodity j as  

                    
 
  
        

           
               

    
   

    
   

    
                 

             

  
 

  
  
    

     
             

                    (34) 

 

where   
 
        

  
   

              

        
 ,   

        
 
  

 

      
 

    

      
       ,   

  

      
 
  

 

  
 

    

      
 
       

  
  , and   

        
 
 

    

      
 

 

         
 .   

Equation (34) provides a factor structure for real commodity prices with three distinct and 

orthogonal components.  The last term on the RHS reflects idiosyncratic shocks to commodity j that have 

no aggregate real effects.  The second term on the RHS consists of a factor for each shock that has direct 

effects on commodity markets, e.g., that shifts the supply and/or demand for commodities holding 

aggregate output constant.  We therefore refer to these factors as “direct aggregate commodity” (DAC) 

factors.  In this specific setup, there are three such factors: common shocks to the input used in the 

production of commodities, a common productivity shock, and a shock to the relative demand for 

commodities in the production of final goods.  Each enters separately as a factor because each shifts 

supply and demand curves in different ways and therefore has distinct implications for the price of a 

single commodity.  Because these shocks have both direct and indirect effects on the market for 

commodity j, there is in general no guarantee that their respective loadings will have the same signs. For 

example, a common shock can raise the price of one commodity and lower the price of another, as 

illustrated in Panel 2 of Figure 1. 

The most interesting component of the factor structure however is the first term on the RHS, 

which reflects the combined contribution on the price of commodity j from all shocks whose effects on 

commodity prices operate only indirectly through aggregate output.  This common factor is the “indirect 

aggregate commodity” (IAC) factor.  It captures the fact that, because some shocks will affect commodity 

markets only through changes in aggregate output, they will all have identical implications for commodity 

prices conditional on the size of their effect on aggregate output.  As a result, they will be integrated into a 

single factor.  Furthermore, this factor has a well-defined interpretation: it is the level of global output that 

would have occurred in the absence of any direct commodity shocks.  Thus, this common factor represents 

a way to reconstruct the counterfactual history of aggregate output without direct commodity shocks, as 
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well as to decompose historical commodity price changes into those components reflecting direct 

commodity shocks versus all other aggregate economic forces captured by the IAC factor.  Another 

notable characteristic of the IAC is that, unlike for DAC factors, the loadings on this factor must all be 

positive (  
 
     ).  This reflects the fact that any of the shocks incorporated in the IAC factor raise 

commodity demand when the shock is expansionary and simultaneously restrict the commodity supply 

through income effects, with both effects unambiguously pushing commodity prices up.  Finally, in the 

absence of income effects on the common input into the production of commodities, the IAC could be 

interpreted as capturing exogenously-driven global demand for commodities.  In short, this factor 

decomposition can provide a novel way to separate causality in the presence of simultaneously 

determined prices and production levels.   

 

2.4 Recovering the Structural Factors 

A key limitation of factor structures is that, empirically, factors are identified only up to a rotation.  For 

example, if one estimated a factor structure on commodity prices determined by (34), one could not 

directly associate the extracted factors with the structural interpretation suggested by (34).  However, the 

theory developed in this section has implications that can be used to identify the unique rotation 

consistent with those predictions, and therefore allows us to recover the structural factors driving 

commodity prices. 

 To see this, suppose that as in the theory above, the N variables in vector    (N by 1) have a 

factor structure  

            

where μ is vector of means,    is a K by 1 vector of unobserved variables, and   is an N by K matrix of 

factor loadings.  Let the variance of    be given by    and the covariance matrix of    be        

           such that the    are uncorrelated with one another.  We make the typical assumptions 

underlying factor analysis: a)       , b)        , c)         , and d)          so that the 

factors are orthogonal to one another and have variance normalized to one.  Then, letting          be 

the covariance matrix of X, it follows that        .  The identification problem is that for any K by 

K orthogonal matrix   such that      , we can define       and          such that  

               

As a result, an empirical estimate of the factors underlying    will in general not recover the structural 

factors    but rather some rotation    . 

 However, the theory above provides additional restrictions on the factor structure that can be used 

to identify the underlying structural factors.  For simplicity (as well as the fact that empirically this will be 

the most relevant case), consider the factor structure of equation (34) in section 2.3 in which real 

commodity prices reflect two factors: a common commodity-related shock (  
 ) and the level of aggregate 

production that would have occurred in the absence of this shock (  
 ), so       

    
       

    
   .  A 

factor decomposition of commodity prices would yield some rotation of these factors     such that  

          
      
      

      
     

     
        
         

     
     

           (35) 
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where the second equality reflects the properties of rotation matrices.  Finding the rotation matrix that 

recovers the structural factors therefore corresponds to identifying the parameter θ.   

 The theory imposes three types of conditions that can potentially be used to identify θ.  The first 

is that   
   (the IAC factor) is orthogonal to commodity-related shocks (DAC factors).  Hence, if one had 

a 1 by S vector of instruments    that are correlated with the commodity-related shocks   
 , the 

orthogonality of   
   would deliver S moment conditions     

       .  These conditions can be 

rewritten as 

    
           

         
                     (36) 

If S = 1, then θ would be uniquely identified.  If S > 1, then θ is overidentified, and one could estimate it 

using standard GMM methods by writing the moment conditions as 

          
          

     
                       (37) 

where   is a weighting matrix such that               .  Letting   be the inverse of the variance-

covariance matrix associated with the moment conditions, standard GMM asymptotic results would apply 

including standard errors for θ and tests of the over-identifying conditions assuming that N and T are large 

enough for the factors to be considered as observed variables rather than generated (e.g., Stock and 

Watson 2002; and Bai and Ng 2002). 

 A second approach would be to make use of the theoretical prediction that   
   is a linear 

combination of exogenous variables unrelated to the commodity sector such as the productivity shocks or 

labor supply shocks considered in our model.  If one had a vector of S by 1 instruments    for each period 

correlated with one or more of these exogenous drivers, then another set of orthogonality conditions 

imposed by the theory would be     
      .  As in the previous case, one could estimate θ using GMM 

given these orthogonality conditions and test over-identifying restrictions if S > 1. 

 Note that in both of these cases, the econometrician must take a stand as to whether the chosen 

instruments should be correlated with “commodity-related” shocks or with   
  .  While economic theory 

may provide clear guidance in some cases (as we suggest in section 3), this choice may be problematic in 

other cases, such as when one is interested in whether an exogenous variable affects commodities only 

through aggregate production and income levels or more directly through other channels, i.e., whether this 

exogenous variable should be considered part of   
   or one of the “commodity-related” shocks.  For 

example, in the case of commodity prices, monetary policy shocks could potentially have direct effects on 

commodity markets in the presence of storage motives but would otherwise not be expected to have direct 

effects on commodity markets if the speculative channel is absent or sufficiently small.  We return to this 

particular point in section 4. 

 A third approach would be to make use of the sign restrictions on the loadings.  The theory 

predicts that the loadings on   
   must all be positive.  Letting    be the N by 2 matrix of unrotated factor 

loadings, the rotated loadings are                   so that the loadings on the first rotated factor 

(corresponding to   
  ) are                   .  Imposing that all of the elements of    be positive 

would therefore correspond to identifying the range of values of θ such that                      

 .  In general, this will lead only to a set of admissible values of θ and not uniquely identify the rotation 
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matrix.  Thus, this approach would be akin to the weak identification of VAR’s by sign restrictions (as in 

Uhlig 2005) in which one may identify a wide range of models for which the restrictions hold. 

 In short, the theoretical model of commodity prices yields not only a factor structure for 

commodity prices but also a set of conditions that can be used to identify (or, in the case of sign 

restrictions, limit the set of) the rotation matrix necessary to recover the underlying structural factors.  

Furthermore, these factors will have clear interpretations: one will correspond to the level of production 

and income net of commodity-related shocks (i.e., the IAC factor), while other factors would correspond 

to one or more of these commodity-related shocks.  The identification of the rotation matrix, and therefore 

the structural factors, follows from orthogonality conditions implied by the model, as well as sign 

restrictions on the loadings predicted by the theory.  The implied factor structure of the model combined 

with the ability to recover the structural factors empirically therefore provide a novel identification 

method for separating fluctuations in aggregate output into those driven by commodity-related shocks 

versus non-commodity-related shocks. 

 

3 The Sources of Commodity Price Comovement: Empirical Evidence 

In this section, we implement the factor decomposition of real commodity prices suggested by the theory.  

We first construct a historical cross-section of real commodity prices for those commodities that conform 

along a number of dimensions to the theoretical structure of the model.  We then implement a factor 

decomposition and apply identification conditions to recover the underlying structural factors as 

suggested by the theory.  After considering a wide range of robustness checks, we argue that exogenous 

commodity-related shocks have contributed relatively little to global economic volatility. 

 

3.1 Data  

The choice of commodities in the empirical analysis is guided by the theoretical model.  In particular, 

there are four guidelines that we follow.  First, commodities must not be vertically integrated.  Second, 

the primary use of commodities must be directly related to the aggregate consumption bundle, and not for 

financial speculation motives.  Third, commodities must not be jointly produced.  Finally, the pricing of 

commodities must be determined freely in spot markets and must not display “stickiness” in prices 

reflecting long-term contractual agreements or menu costs. 

The first condition, that commodities must not be vertically integrated, conforms to the structure 

of the model in which the only direct interaction between commodities is through their use in the 

production of the aggregate consumption good.  Vertically integrated commodities would introduce the 

possibility of price comovement due to idiosyncratic shocks to one commodity thereby affecting prices in 

other commodities through the supply chain.  For example, an exogenous shock to the production of 

sorghums would, because sorghums is primarily used as feed, then affect the price of non-grass-fed beef, 

and subsequently the price of milk and hides.  To satisfy this condition, we deliberately exclude from our 

cross-section a number of commodities that are frequently incorporated in commodity price indices.  For 

example, we exclude prices of non-grass-fed cattle, poultry (broilers), milk, hogs, lard, pork bellies, eggs, 

tallow, and hides.  In the same spirit, we deliberately do not include any energy commodity or any 
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fertilizer products.
2
  In addition, when commodities are available in closely related forms (e.g., soybeans, 

soybean meal and soybean oil), we use at most one of the available price series. 

The second condition is to ensure that the primary forces driving prices of the included 

commodities are the production conditions of each commodity as well as the demand for these 

commodities reflecting the level of economic activity.  Some commodities, in particular precious metals, 

have long been recognized as behaving more like financial assets than normal commodities (Chinn and 

Coibion 2013).  Thus, we exclude gold, silver, platinum and palladium from our cross-section of 

commodities as well. 

The third condition reflects the fact that some commodities are derivative products of the 

production of other commodities.  This is particularly the case for minerals, which are commonly 

recovered during the mining for metal commodities.  For example, antimony and molybdenum are 

derivatives of copper mining while cadmium is recovered during mining for zinc. For this type of 

commodities, the assumption of orthogonal productivity shocks would clearly not be applicable. 

The fourth condition is that the prices of commodities be primarily determined in spot markets 

rather than through contractual agreements or government regulations.  While many commodities have 

long been traded on liquid international spot markets, this is not the case for many of the commodities for 

which one can find data.  For example, the price measure of tung oil (primarily used for wood-finishing) 

tracked by the Commodity Research Bureau Statistical Yearbooks varies little over time and is often fixed 

for periods lasting as long as one year.  Because we want to focus on commodities whose prices reflect 

contemporaneous economic conditions, we exclude commodities such as tung oil who systematically 

display long periods of price invariance.  For some commodities in our sample, prices were not 

determined in flexible markets until much later than others; for these commodities we treat early price 

data as missing values (e.g., aluminum prior to 1973).  For mercury, the reverse is true as its use declined 

over time and its price begins to display long periods with no price changes starting in 1995.  We treat its 

prices after March 1995 as missing.  Appendix 1 provides more details on these adjustments.   

These criteria for exclusion leave us with forty commodities in our sample.  These include 

twenty-two commodities that we will refer to as agricultural or food commodities: apples, bananas, 

barley, cocoa, coffee, corn, fishmeal, grass-fed beef, hay, oats, onion, orange juice concentrate, pepper, 

potatoes, rice, shrimp, sorghums, soybeans, sugar, tea, tobacco, and wheat.  Our data set also includes five 

oils: coconut, groundnuts (peanut), palm, rapeseed (canola), and sunflower (safflower).  Finally, we have 

13 industrial commodities: aluminum, burlap, cement, cotton, copper, lead, mercury, nickel, rubber, tin, 

wool and zinc.  We compiled this data monthly from January 1957 to January 2013 (as available) from a 

number of sources including the CRB Statistical Yearbooks, the CRB InfoTech CD, the World Bank 

(WB) GEM Commodity Price Data, the International Monetary Fund’s (IMF) Commodity Price data, and 

the Bureau of Labor Statistics.  While most data are consistently available from 1968:1 until 2013:1, there 

are nonetheless a number of missing observations in the underlying data, as well as periods when we treat 

                                                           
2
 Another reason to exclude energy prices is that, in the model, it is assumed that each commodity is too small for its 

idiosyncratic shocks to have aggregate implications.  This condition would almost certainly not apply to energy 

commodities. 
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the available data as missing when spot trading was limited.  Appendix 1 provides details on the 

construction of each series, and their availability, and any periods over which we treat the data as missing 

because of infrequent price changes.  Furthermore, while we can construct price data going back to at 

least 1957 for many commodities, we restrict the subsequent empirical analysis to the period since 1968, 

in light of the numerous price regulations and government price support mechanisms in place during this 

earlier period. 

Table 1 presents information on the primary producing countries for each commodity in 1990, the 

middle of our sample, as well as information on the common uses of each type of commodity.  The data 

on production come first from the CRB Statistical Yearbook, when available, and otherwise from other 

sources such as the United Nation’s Food and Agricultural Organization (FAO).  The table documents the 

wide regional variation in production patterns across commodities.  While some countries are consistently 

and not surprisingly among the major producers of many commodities due to their size (e.g., USSR, 

China and India), the geographic variation is nonetheless quite substantial and reflects the 

disproportionate influence of some smaller countries on the production of individual commodities.  For 

example, while the former USSR was the primary producer of potatoes in 1990, Poland was second, 

accounting for thirteen percent of global production.  Similarly, while the former USSR was also the 

largest producer of sunflower oil in 1990 with 29% of global production, Argentina was the second 

largest, accounting for 17% of global production.  Among industrial commodities, Chile is well-known to 

be one of the world’s largest producers or copper.  But production of other commodities is also quite 

geographically differentiated.  For example, Uzbekistan was the third largest producer of cotton (14% of 

global production), Canada was the second largest producer of nickel (22%), Bangladesh accounted for 

30% of global production of jute/burlap, while Australia and New Zealand were the largest producers of 

wool, jointly accounting for nearly 50% of world production.  This geographic variation in the production 

of commodities has also been used in other contexts (e.g., Chen, Rogoff and Rossi 2010). 

The table also describes some of the uses of each commodity, again primarily as reported by the 

CRB statistical yearbooks and the UN FAO.  It should be emphasized that while we group commodities 

into three categories (“agriculture”, “oils”, and “industrial”) in the same way as the IMF, the World Bank, 

and the CRB, these groupings are somewhat arbitrary.  While they are based on end-use (e.g., cotton is 

used primarily in textiles, hence is considered industrial), most commodities are in fact used in a variety 

of ways that makes such a classification problematic.  For example, many of the “agricultural/food” 

commodities also have industrial uses or serve as inputs into the production of refined products that 

require significant additional value-added: potatoes and grains are used in significant quantities for 

distillation, pepper and soybeans can be made into oils that have medical, cosmetic, or industrial uses, 

corn and sugar are increasingly used as fuel, and so on.  Similarly, the oils in our sample are well-known 

for their use in cooking but some (like palm and coconut oil) also have a number of important industrial 

uses.  
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3.2 Reduced Form Common Factors in Commodity Prices 

Prior to the factor analysis, we normalize each price series by the US CPI, so that the analysis is in terms 

of real commodity prices.  Second, we take logs of all series.  Third, we normalize each series by its 

standard deviation.  Because there are missing observations in the data, we use the expectation-

maximization (EM) algorithm of Stock and Watson (2002).
3
 

 We consider several metrics to characterize the contribution of the first five factors to accounting 

for commodity-price movements, summarized in Table 2.
4
  The first row presents the sum of eigenvalues 

associated with each number of factors normalized by the sum across all eigenvalues, a simple measure of 

variance explained by common factors.  In addition, we present additional metrics based on R
2
s that 

explicitly take into account missing values associated with some commodities.  For example, the second 

row presents the average across the individual R
2
s computed for each commodity (excluding commodity-

specific imputed values) for the numbers of factors ranging from one to five.  The next row presents the 

median across these same commodity-specific R
2
s, while the following row presents the R

2
 constructed 

across all commodities (again omitting imputed values).  Note that because different commodities have 

different time samples, the R
2
s are not directly comparable across commodities, but this nonetheless 

provides a useful metric for evaluating the importance of common factors to the comovement of 

commodity prices.   

The key result from this table is that the first common factor explains a large share of the price 

variation across commodities, ranging from 60-70% depending on the specific measure used.  By 

contrast, all additional factors explain much smaller fractions of the variance of commodity prices.  The 

second factor, for example, accounts for between 6% and 10%, while the third factor contributes another 

5% of the variance.  Thus, the first two factors jointly account for approximately 70-75% of the variance 

in commodity prices.  The next three factors jointly bring the combined variance up to 85%.  Given these 

contributions to variance, statistical tests of the number of factors point toward sparse factor 

specifications.  For example, the PC2 and IC2 criteria of Bai and Ng (2002), each select one factor.  The 

same result obtains using the test suggested by Onatski (2010) or the two criteria proposed in Ahn and 

Horenstein (2013).
5
   

The ability of the first two factors, and the first common factor in particular, to account for so 

much of the variance holds across commodity groups. Table 2 includes the contribution of different 

factors to explaining the variance across the three subsets of commodities in our sample: 

agricultural/food, oils and industrials.  Differences across subsets of commodities are quite small: the 

                                                           
3
 Specifically, we first demean each series and replace missing values with zeroes before recovering the first K 

factors.  We use these K factors to impute the value of missing observations, then re-do the factor analysis, iterating 

on this procedure until convergence.  We use K=5 factors for the imputation, but the results are not sensitive to the 

specific number of factors used. 
4
 Following Connor and Korajczyk (1993) and Bai and Ng (2002), we use principal components on the variance-

covariance matrix of commodity prices to estimate the approximate factors.  Classical likelihood methods for 

estimating factors yield indistinguishable results. 
5
 These information criteria for the optimal number of factors, however, can be sensitive to the sample period.  For 

example, the Onatski (2010) test picks three factors instead of one when we start the sample period just one year 

earlier, in January 1967 instead of 1968.  
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contribution of the first factor ranges from 55% (pooled R
2
 across all commodities in this subset) for 

industrial commodities to 64% for agricultural commodities and 72% for oils.  The differences are largely 

driven by a few commodities within each grouping for which the first factor accounts for a much smaller 

share of the historical real price variation than others.
6
  Among agricultural commodities, apples, bananas, 

onions, pepper and shrimp have much smaller R
2
s than most other commodities, likely reflecting the fact 

that these are the agricultural commodities for which non-industrial uses are least important.  Among 

industrial commodities, nickel and cement are the two commodities for which the first common factor 

accounts for the smallest share of the variance.  But with the exception of these few commodities, the 

decomposition does not suggest that one needs different factors for different types of commodities.  This 

is worth emphasizing because a common concern with factor analysis is that different factors are needed 

to explain different subsets of the data.  For example, Blanchard (2009) notes that the macroeconomics 

factor literature has yielded a puzzling need for separate factors to explain real, nominal, and financial 

variables.  In our context, one might be concerned that a factor decomposition of real commodity prices 

across a wide set of commodities may lead to separate factors being needed for industrial and agricultural 

commodities.  As illustrated in Table 2, this is not the case.  

 

3.3 Identification of the Rotation Matrix and Structural Factors 

To implement a structural interpretation of the factors as suggested by the model, we interpret the results 

of Table 2 as indicating that a two-factor representation is a reasonable one.  First, additional factors 

beyond the first two add relatively little in explanatory power and therefore can safely be omitted.  

Second, it is, under the null of the model, a priori unlikely for there to be less than two structural factors.  

Indeed, such a finding if taken literally would imply that there are no shocks which directly affect 

commodity prices and therefore that all commodity-price movements reflect either the level of aggregate 

economic activity or idiosyncratic commodity factors.  We can rule this out immediately because there 

exists at least one common shock to the supply of commodities: exogenous energy price movements.  

Because most commodities require energy in production and distribution, exogenous shocks to energy 

prices will necessarily induce some comovement in commodity prices since, as illustrated in Table 2, 

commodities are produced in different parts of the world but consumption occurs disproportionately in 

advanced economies, thereby generating significant shipping and distribution costs.  As a result, energy 

can be interpreted as a common input into the production of commodities in the same spirit as the “land” 

in the model of section 2.   

To assess whether exogenous energy shocks do indeed feed through to other commodity prices, 

we regress each commodity’s real price on lags of itself as well as contemporaneous and lagged values of 

Kilian’s (2008) measure of exogenous OPEC production shocks. Following Kilian (2008), we use one 

year of lags for the autoregressive component and two years of lags for OPEC shocks.  From the impulse 

responses implied by the estimates, we find that we can reject the null hypothesis of no response to an 

OPEC production shock for 20 (14) commodities at the 10% (5%) level.  This suggests that oil production 

shocks do tend to affect commodity prices and therefore that there exists at least one source of direct 

                                                           
6
 Appendix Table 2 presents R

2
s for each commodity from each factor. 
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commodity shocks.  Thus, we will focus on the two-factor representation of real commodity prices from 

this point on. 

 To estimate the rotation matrix, our baseline approach is to impose orthogonality conditions on 

the indirect aggregate common factor   
 .  Specifically, we take   

    
 the measure of OPEC production 

shocks from Kilian (2008) and define the orthogonality conditions as     
     where 

         
    

       
    

  is the vector of instruments that consists of a constant, the contemporaneous 

value of Kilian’s (2008) OPEC production shock, as well as L lags of the shock.  The IAC factor   
  (  

   

in the model) is a rotation over the two estimated factors    
  and    

 , i.e.,   
        

        
  where the 

orthogonal rotation parameters     and     can be expressed as a function of a single underlying rotation 

parameter θ such that          and         .  Given that we have more moment conditions (L+2) 

than parameters (θ), we can estimate the rotation parameter θ using GMM by minimizing      

                          
 

 
    

           
 

 
    

         
 
           (38) 

 Kilian’s (2008) measure of OPEC production shocks is available on a monthly basis from January 

1968 until August 2004 although the first production shock does not occur until November 1973.
7
  As 

noted before, many commodity prices respond significantly to OPEC oil production shocks.  

Furthermore, the second unrotated factor is significantly impacted by OPEC shocks, with peak effects 

obtaining 15 months after the shock and declining gradually thereafter.  We can reject the null that OPEC 

shocks have no effect on the unrotated second factor at the 1% level using anywhere between 18 and 36 

lags of OPEC shocks.
8
  Thus, the orthogonality condition of the instrument follows from the theory and 

this empirical evidence suggests that OPEC shocks have clearly discernible effects on commodity prices, 

justifying their use as instruments. We set L=36 months for our baseline estimation to capture the fact that 

OPEC shocks have long-lived effects on commodity prices, although as we document below, the results 

are robust to both shorter and longer lag specifications as well.  W is the Newey-West HAC estimate of 

the inverse of the variance covariance matrix of moment conditions, and we iterate over minimizing      

then computing the implied weighting matrix until the estimate of θ has converged (W=I in the first step).  

Table 3 presents the resulting estimate of θ and its associated standard error.  With          and a 

standard error of 0.20, we cannot reject the null hypothesis that θ = 0.  From this estimate of θ, we 

construct estimates of the rotation parameters     and    :      is close to 1, while we cannot reject the 

null hypothesis that      .  As a result, the estimated rotation matrix is not statistically different from 

the identity matrix.  Furthermore, the over-identification conditions cannot be rejected. 

 The results are insensitive to many of the specific choices made for the estimation of θ.  For 

example, we report in Table 3 the results from using fewer moment conditions (L = 12 and 24 months) as 

well as more moment conditions (L = 48 months).  Neither changes the estimates by much.  With fewer 

lags, the standard errors get somewhat larger.  This reflects the fact that OPEC shocks have only gradual 

                                                           
7
 We are grateful to Lutz Kilian for providing us with the monthly series underlying the quarterly data used in his 

(2008) paper.  We extend the series back to January 1968, with zero shocks to the series prior to 1973. 
8
 Specifically, we regress the unrotated factor on a constant, the contemporaneous OPEC shock, and L lags of the 

OPEC shock and test the null hypothesis that all coefficients on OPEC shocks are zero.   
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effects on commodity prices, so that moment conditions at shorter lag lengths are only weakly 

informative.  Similarly, we redid the GMM estimates using a 2-step procedure, in which θ is first 

estimated using a weighting matrix equal to the identity matrix with no subsequent iterations after 

updating the weighting matrix as well as continuously updated GMM in which we minimize over θ and W 

jointly until convergence.  In both cases, the results are qualitatively similar.  Finally, because non-linear 

GMM can be sensitive to normalizations, we replicate the baseline estimation after rewriting moment 

conditions as       
     

     

    
       and the results are qualitatively unchanged. 

 The fact that the estimated rotation matrix is close to the identity matrix reflects the fact that 

while the first unrotated factor is largely uncorrelated with OPEC production shocks, this is not the case 

for the second unrotated factor.  Because the unrotated factors are already largely consistent with the 

theoretically predicted orthogonality conditions (namely that the first factor is orthogonal to commodity 

shocks, but the second is not), the estimation procedure yields only a slight rotation of the original factors. 

 While the fact that we cannot reject the over-identifying conditions is consistent with the theory, 

we can further assess the extent to which our estimated rotation satisfies the theoretical predictions of the 

model.  For example, an additional theoretical prediction is that the loadings on the indirect factor all be 

of the same sign.  To assess this prediction, we present in Table 4 the estimated factor loadings for each 

rotated factor.  The loadings on the IAC factor are positive for all commodities, as predicted by the 

theory.  By contrast, loadings on the commodity-related factor are of mixed signs.  There are no 

systematic patterns across commodity groups (i.e., agricultural versus industrial) which again confirms 

that the factors explaining commodity prices are common across commodity subsets.  Thus, and despite 

not imposing any restrictions on the loadings as part of the identification strategy for the rotation matrix, 

the estimated rotation satisfies theoretical predictions on factor loadings as well as overidentifying 

restrictions. 

 Given our estimate of θ and therefore the rotation matrix, we construct the rotated factor   
 , that, 

according to the model, corresponds to the level of aggregate output and income that would have occurred 

in the absence of commodity-related shocks.  This structural factor is presented in Figure 2 after HP-

filtering with λ=129,600, the typical value for monthly data, to highlight cyclical variation.  In addition, 

we repetitively draw from the estimated distribution of θ, construct   
  for each new draw, and use this 

distribution to characterize the 99% confidence interval of the (HP-filtered) structural factor. 

 This factor displays a sharp rise in 1973-1974 before falling sharply during the 1974-1975 U.S. 

recession.  It is followed by a progressive increase over the course of the mid to late 1970s, peaking in 

1979 before falling sharply during each of the “twin” recessions of 1980-1982, and then rebounding 

sharply after the end of the Volcker disinflation.  Thus, over the course of the 1970s, this structural factor 

displays a clear cyclical pattern. During the mid-1980s, the factor drops sharply before rebounding in the 

late 1980s, then falls gradually through the 1990 U.S. recession before rebounding through the mid-

1990s.  It experiences a large decline in the late 1990s, prior to the 2000-2001 U.S. recession and 

rebounds shortly thereafter.  After a brief decline in the mid-2000s, the factor displays a sharp increase 

from 2005 to 2008, the period during which many commodity prices boomed, then falls sharply in late 
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2008 and 2009 before rebounding strongly in 2010.  In short, there is a clear procylical pattern to the IAC 

factor relative to U.S. economic conditions, a point to which we return in greater detail in section 3.5. 

  

3.4 Robustness Analysis of the Estimated Indirect Aggregate Common Factor 

In this section, we investigate the sensitivity of the estimated IAC factor to a number of potential issues.  

These include the identification strategy, the choice of commodities, the treatment of trends in the data, 

the imputation procedure for missing values, and the initial factor decomposition method. 

 First, we consider an alternative identification strategy for the rotation matrix.  Our baseline 

approach is to impose orthogonality conditions, namely that the non-commodity related shock be 

orthogonal to OPEC oil production shocks, but GMM estimates can be notoriously sensitive. An 

alternative approach described in section 2.5 is to use theoretical predictions on signs of factor loadings: 

loadings on the IAC factor should all be positive. Thus, one can characterize the set of admissible rotation 

matrices by restricting them to be consistent with the sign restrictions implied by the theory, in the spirit 

of Uhlig (2002).  In our case, this consists of identifying the set of θ such that                      

 , where     for i = {1,2} are the loading vectors associated with the unrotated factors and     is with 

respect to the elements of   .  We consider values of          (at increments of 0.001) and for each θ 

determine whether the restriction is satisfied.  This yields a set of admissible rotation matrices and thereby 

a set of possible IAC factors.  We HP-filter each of these and plot the resulting minimum and maximum 

values for each month in Panel B of Figure 2, along with the 99% confidence interval for the rotated IAC 

factor from the baseline GMM estimation.  There is tremendous overlap between the two approaches, 

with the minimum and maximum values from the sign restriction typically being within the 99% 

confidence interval of the GMM-estimated IAC factor.  Thus, despite the fact that the two identification 

strategies are quite different, they point toward a remarkably consistent characterization of the non-

commodity-related structural factor.   

 Second, we want to verify that the results are not unduly sensitive to specific commodities or 

groups of commodities within our cross-section.  For example, the sample includes five closely-related 

grains (barley, hay, oats, sorghum, wheat), which out of a cross-section of forty commodities could lead 

to the appearance of more general comovement if these specific commodities were affected by a common 

shock.  In the top left panel of Figure 3, we reproduce the 99% confidence interval from the GMM 

estimation of the rotation matrix when we keep only wheat out of the grains and replicate the factor 

analysis and rotation estimation.  There is, qualitatively, little difference between our baseline result and 

this alternative.  In the same spirit, we reproduce our results in the top right panel of Figure 3 keeping 

only palm oil out of the five oils in our cross-section.  Again, this changes little other than to increase the 

confidence intervals in a few periods, such as 1975-1976 and 1995-2000. 

 One might also be concerned about too much overlap in how some commodities are used.  For 

example, in Table 1, we documented that many of the agricultural commodities and oils are primarily 

used as feed or food.  In the two middle panels of Figure 3, we replicate our results dropping either all 

commodities whose primary (60% or more in Table 1) use is as food (left panel) or as feed (right panel).  
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Despite the fact that this implies dropping many commodities in each case (16 in the case of food, 6 in the 

case of feed), the results are again quite similar to our baseline case.   

Another concern is that while there is significant geographic variation among the primary 

producing countries of different commodities, it is still the case that the former U.S.S.R., China and India 

stand out as accounting for a large proportion of many of the commodities.  As a result, country-specific 

shocks could potentially induce comovement within the subset of commodities primarily produced in that 

country.  To assess this possibility, we consider two additional exercises.  First, we drop all commodities 

for which the primary producing country in 1990 (or as available in Table 1) was the former U.S.S.R.  

Results from this robustness exercise, which entails dropping 8 commodities out of the 40 in our cross-

section, are in the bottom left panel of Figure 3.  As can immediately be seen, there is now much more 

uncertainty around the estimated IAC factor than in our baseline.  Interestingly, the increase in 

uncertainty primarily occurs in the 1970s, not in the 1990s after the collapse of the Soviet Union.  

Furthermore, the increase in uncertainty primarily reflects an increase in the standard error of the 

estimated rotation parameter, while the actual estimates of θ and the underlying unrotated factors are 

almost identical to those in the baseline.  Thus, this is not suggestive of country-specific driven 

comovement in commodity prices.  In the bottom right panel of Figure 3, we perform a similar robustness 

check dropping all of the commodities for which either China or India were the primary producers in 

1990, or thirteen commodities in total.  In this case, the results are almost identical to those generated by 

the baseline and, if anything, add some precision over the course of the late 2000s.  Thus, we conclude 

that the baseline estimation of the common factors in commodity prices is robust to the choice of 

commodities included in our cross-section. 

We are also interested in assessing whether our results are sensitive to more statistical 

considerations.  For example, we perform factor analysis using the level of real commodity prices.  As 

can be seen in Appendix Figure 2, there is little visual evidence of commodity prices exhibiting 

pronounced trends over this period.  Nonetheless, we want to ensure that our results are not driven by 

spurious correlations from trends.  We address this in two ways.  First, we replicate our analysis after 

linear detrending each series prior to extracting factors.  Results from this alternative approach are 

presented in the top left panel of Figure 4.  The point estimates of the indirect aggregate common factor 

are similar, although the uncertainty surrounding these estimates follows a different pattern than in the 

baseline: the confidence intervals are much narrower through much of the sample but wider in the early 

2000s.  An alternative is to perform the factor analysis using the first-difference of real commodity prices.  

We present the IAC factor (accumulated in levels) from this additional specification in the top right panel 

of Figure 4.  The uncertainty surrounding the estimates is now much higher in a number of periods, but 

there are few qualitative differences between the two sets of estimates.  Thus, we conclude that our 

baseline results are not overly sensitive to the assumptions made about underlying trends in the data. 

We consider two final checks on our results.  First, we drop all commodities for which some 

significant imputations had to be done (i.e., more than a few missing observations at the end of the 

sample), or 7 commodities in total).  As shown in the bottom left panel of Figure 4, this has almost no 

effect on the results.  Thus, our findings are not sensitive to the imputation of commodity prices.  Second, 
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we implement the initial factor analysis by decomposing the correlation matrix of commodity prices 

rather than the covariance matrix, again finding little difference relative to our baseline, as shown in the 

bottom right panel of Figure 4.  In short, our estimates of the IAC factor are quite robust to commodity 

selection issues, treatment of trends in the data, the imputation of commodity prices, and the identification 

procedure used to recover the rotation matrix. 

The robustness of the results reflects two features of the data.  First, the initial factor 

decomposition, and particularly the first unrotated common factor, is largely insensitive to any the 

specific set of commodities used or econometric details such as the treatment of trends or the specific 

method used to decompose the data.  This reflects the fact that there is widespread and persistent 

comovement in real commodity prices, most of which is captured by a single factor.  Second, this first 

unrotated factor already satisfies the theoretical restrictions implied by the theory: the factor is largely 

orthogonal to OPEC shocks and its factor loadings are all of the same sign.  Thus, when imposing these 

theoretical restrictions implied by the model to identify the rotation matrix, we cannot reject the null 

hypothesis that the rotation matrix is equal to the identity matrix.  Almost all subsequent sensitivity found 

in robustness checks reflects variation in the standard errors of the GMM estimate of the rotation 

parameter, not variation in the underlying factor decomposition or the point estimate of the rotation 

matrix.   

 

3.5 The Contributions of the Factors to Historical Commodity Prices and Global Activity 

The theory of section 2 suggests that one can interpret one of the common factors among real commodity 

prices as the level of global activity that would have obtained absent any commodity-related shocks.  

Furthermore, the theory provides guidance as to how one can identify this specific factor from the data, 

and the previous sections have shown how one can implement this identification procedure empirically.  

In this section, we construct historical decompositions of commodity price movements and global 

economic activity following the structural interpretation suggested by the theory. 

 For prices, we decompose the average (across commodities) annual percentage change in 

commodity prices into those components driven by “indirect” shocks versus “direct” commodity shocks.  

This follows directly from the rotated factor structure, yielding 

                                  
         

                  
         

                             

where the bar denotes that these are averages across all commodities in the cross-section.  The first term 

on the RHS therefore constitutes the contribution of the IAC factor to average commodity price 

movements, the second constitutes the contribution of the DAC factor, and the third term reflects average 

idiosyncratic effects.  We focus on annual changes in prices to abstract from very high-frequency 

volatility in commodity price changes.  

 The results of this decomposition are presented in the top panel of Figure 5, in which we plot the 

contributions from the IAC and DAC factors each month as well as the actual annual average price 

change across commodities (the idiosyncratic component contributes little, so we omit it from the figure).  

The IAC factor explains most of the historical commodity price changes.  Thus, historical changes in 

commodity prices have primarily reflected endogenous responses to non-commodity shocks, i.e., shocks 
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that do not directly affect commodity markets other than through their general equilibrium effects on 

global economic activity.  To the extent that income effects on inputs into the production of commodities 

are most likely weak, the IAC factor could then be interpreted as primarily reflecting changing global 

demand for commodities in light of global economic activity.  During the commodity boom of 1973-74, 

for example, indirect shocks to commodity markets accounted for over two-thirds of the rise in 

commodity prices, with the remainder reflecting direct commodity-related shocks.  Similarly, the fall in 

commodity prices during the Volcker era of the early 1980s is attributed almost entirely to a decline in the 

IAC factor.   

The second commodity boom of the 1970s, however, suggests a more nuanced interpretation.  

While the rise in commodity prices in 1976 reflected rising levels of global activity, the IAC factor 

contributed much less to rising commodity prices during the second half of 1978 and was actually 

pushing toward lower commodity prices for most of 1979.  Despite this downward pressure from non-

commodity shocks, direct commodity shocks pushed real commodity prices higher during 1979 and did 

not weaken until very early 1980.  Thus, while the brunt of the second commodity boom of the 1970s can 

be interpreted as an endogenous response of commodity prices to non-commodity shocks, commodity-

related shocks played an important role in extending this period of rising commodity prices into early 

1980. 

The decomposition of commodity prices since the early 2000s also presents a mixed 

interpretation.  While much of the rise in commodity prices since 2003 is accounted for by the IAC factor, 

direct commodity shocks account for much of the surge in prices during 2004 and approximately 30% of 

the rise from early 2006 to late 2007.  The majority of the subsequent decline in commodity prices 

between October of 2008 and March of 2009 is also accounted for by direct commodity shocks, while the 

indirect factor accounts for most of the continuing decline after March 2009.  Out of the total decline in 

commodity prices between October of 2008 and October of 2009, over half (56%) was due to direct 

commodity shocks.  By contrast, the resurgence in commodity prices since the end of 2009 primarily 

reflects non-commodity shocks as measured by the IAC factor.  In short, the decomposition suggests that 

while most historical price movements in commodity prices have been endogenous responses to non-

commodity shocks, affecting commodity prices through the effects of these shocks on global activity, 

there have been a number of episodes in which direct shocks to commodity markets have played 

quantitatively important roles, including during the second commodity price boom of the 1970s as well as 

the run-up in commodity prices from 2003 to 2008 and their subsequent decline in 2008 and 2009. 

 We can also assess the contribution of each factor to global economic activity.  To do so, we rely 

on a measure of global industrial production constructed by Baumeister and Peersman (2011), who used 

the industrial production data in the United Nations’ Monthly Bulletin of Statistics from 1947Q1 until 

2008Q3 and aggregated individual country industrial production measures into a global measure of 

industrial production.  The series was extended from 2008Q3 until 2010Q4 using only advanced economy 

industrial production.  

 Unlike with commodity prices, the factor structure does not immediately lend itself to a 

decomposition of historical changes in global industrial production.  To do so, we first rely on the theory 
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of section 2 in which the IAC factor corresponds to the level of global activity that would have occurred 

in the absence of direct commodity shocks (  
  ).  Thus, changes in the IAC factor can be directly 

interpreted as those changes in aggregate output driven by indirect shocks.  Because the scale of the IAC 

factor is not identified, we normalize it such that the standard deviation of quarterly changes in the IAC is 

equal to the standard deviation of quarterly percent changes in global IP and then treat the resulting 

historical changes in the IAC as the contribution of indirect shocks to global IP.  The difference between 

the demeaned quarterly growth rate of global IP and the demeaned change in the IAC (which we define as 

   where           
  ) should therefore reflect the contribution of direct commodity shocks, 

potentially omitted factors, as well as mismeasurement in global production levels.  To evaluate the 

contribution of direct commodity shocks to global IP, we then estimate 

            

 

   

        
   

 

   

     

such that the direct factor can have dynamic effects on global IP.  This approach reflects the fact that the 

DAC factor, unlike the IAC factor, does not only reflect the contribution of direct commodity shocks to 

aggregate production but also the additional effects of these shocks on commodity markets through direct 

shifts in their supply and/or demand curves above and beyond the general equilibrium effects of these 

shocks of aggregate output.  Estimated at a quarterly frequency, we allow for one year of autoregressive 

lags and two years of lags of the DAC factor to capture potentially dynamic effects of commodity-related 

shocks on global IP.  From this specification, we construct the contribution of the DAC factor to global IP 

net of the contribution of the IAC factor.  Note that this approach leaves a component of global activity 

unaccounted for.  This can be interpreted as reflecting measurement error, omitted variables or 

misspecification of the model.  

 We plot the resulting contributions of the IAC and DAC factors to global IP growth in the bottom 

panel of Figure 5, again showing only the annual changes to filter out the significant high-frequency 

variation in the measurement of global IP.  The correlation between changes in the IAC factor and annual 

changes in global IP is quite high (0.55) so that historical changes in global IP are primarily attributed to 

indirect non-commodity shocks. This is particularly true from the early 1970s through the mid-1980s, 

although commodity-related shocks deepened the decline in global IP during late 1974 and early 1975. As 

was the case with the decomposition of commodity prices, the decline in economic activity during the 

Volcker disinflation is accounted for by the IAC factor.  The dynamics of global activity from the late 

1980s to mid 1990s are also largely attributed to the IAC factor, although actual changes in global IP 

exceeded those predicted by the two factors.  As was also the case with commodity prices, growth in the 

IAC factor during the 2000s coincides with the growth in global IP during this time period, whereas 

commodity-shocks in the DAC contributed modest downward pressure on economic activity in 2002 and 

2003, then again in 2007-2010.  To the extent that the DAC factor reflects exogenous energy price 

fluctuations, the negative contribution of the DAC factor from late 2007 through 2010 (subtracting 1-2% 

from the annual growth rate of global IP) is consistent with Hamilton (2009) who argued that oil shocks 

contributed to the severity of the Great Recession.  Nonetheless, our decomposition suggests that 
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approximately two-thirds of the decline in the growth rate of global IP from late 2007 to the depth of the 

recession can be attributed to declines in the growth rate of the IAC factor, i.e., non-commodity shocks. 

 Commodity shocks as captured by the DAC factor also had non-trivial consequences for global IP 

growth in several historical episodes.  From mid 1985 to late 1986, for example, the DAC factor 

contributed an extra 1 percentage point to global growth, likely reflecting the concurrent large declines in 

oil prices. From 1991 to 1994 after the Iraq war, this pattern was reversed with the DAC factor 

subtracting between one half to one percentage point from the growth rate of global production. Thus, the 

decomposition does point to some historical role for exogenous commodity shocks in affecting global 

production.  But the key take-away from this decomposition is that this contribution has generally been 

dwarfed by other economic shocks by the IAC factor. 

 

4 Storage 

The model in section 2 yields a tractable factor structure of commodity prices whose properties, as 

documented in section 3, conform closely to the data and permit us to make causal inferences about the 

relationship between global activity and commodity-related shocks.  The key to the identification in the 

factor structure is the fact that all “indirect” shocks to commodity markets (i.e., all shocks that affect 

commodity prices through the general equilibrium response of output) are aggregated into a single factor, 

the IAC factor.  This reflects the fact that indirect shocks all induce identical comovement of commodity 

prices. 

This aggregation property of the factor structure can be broken in the presence of storage.  To see 

why, suppose that in the model of section 2 productivity shocks are highly persistent while shocks to the 

household’s willingness to supply labor are transitory.  We can extend the model to include a perfectly 

competitive storage sector for each primary commodity j that purchases or sells that commodity on the 

spot market and has access to a storage technology, leading it to hold inventories in the steady-state.  As 

illustrated in Deaton and Laroque (1992), the key determinant of whether the storage sector will increase 

or decrease its inventories is the expected path of prices of the commodity.  If a current increase in prices 

is expected to be temporary, then the storage sector will sell a positive amount of its inventories on the 

spot market today when prices are high and rebuild inventories in future periods when prices are lower.  

This will increase the contemporaneous supply of the good and reduce it in the future.  By contrast, if the 

shock is expected to increase prices permanently, the storage sector has no incentive to change its stock of 

inventories and therefore will not be a net purchaser of the good.  Thus, the persistence of the driving 

process (through its effect on the path of expected prices) affects the size of net purchases made by the 

storage sector. This in turn alters the contemporaneous response of prices.  Thus, if aggregate productivity 

shocks in our model were highly persistent while labor supply shocks were transitory (or vice-versa), the 

presence of storage would lead these shocks to have different supply responses depending on the size of 

the resulting net purchases of the storage sector and therefore the comovement in commodity prices 

would not be the same across the two shocks.  This feature would break the aggregation of indirect shocks 

into a single IAC factor. 



 28 
 

 
 

In practice, there are three reasons to think that this is unlikely to be quantitatively important.  

First, if storage played an important role in the determination of commodity prices and the indirect shocks 

did affect the paths of expected prices differently such that the aggregation of indirect shocks into a single 

IAC factor were broken, we would expect a factor decomposition of commodity prices to indicate that 

many factors were required to explain the comovement of commodity prices.  This is because there are a 

number of different aggregate structural shocks affecting commodity prices through the indirect channel 

of global activity, such as financial shocks and fiscal policy shocks, in addition to the productivity and 

labor supply shocks that we explicitly model.  But as documented in Table 2, the comovement of 

commodity prices is well-characterized by two factors, with any additional factors adding little 

explanatory power.  This suggests either that different indirect shocks have common effects on expected 

price paths of commodity prices (such that the response of storage is similar across all indirect shocks and 

therefore that our aggregation of indirect shocks holds) or that the effects of net purchases for the storage 

motive are second-order in affecting commodity prices. 

The second reason why storage is unlikely to be important is precisely that the effects of net 

purchases for storage motives do indeed appear to be second-order for most commodities. To examine 

this claim, suppose that we integrated a storage sector for each primary commodity into the model, in 

which firms purchase or sell the commodity on the spot market as well as store it subject to some 

depreciation, costs, and convenience yield.  In the presence of adjustment costs associated with changing 

inventory holdings, net purchases of the storage sector would reflect expected price changes, interest rates 

and the current stock of inventories.  The storage sector would therefore affect spot markets through its 

forward-looking net purchases, defined as        at time t for commodity j.  The market clearing 

condition in the presence of an additional storage sector would then be given by 

                   

such that high net purchases by the storage sector to accumulate inventories would increase the demand 

for commodity j at time t holding all else constant.  Allowing for trend growth in production such that 

Y/Q and NP/Q are stationary along the balanced growth path, the log-linearized version of this equation is 

 
 

 
           

 

 
       

where the terms in parentheses are BGP ratios.  For the storage sector to have first-order effects on 

equilibrium outcomes (including prices), it must be the case that net purchases are different from zero on 

average, or equivalently that the ratio of consumption to production (Y/Q) of the commodity is different 

from one. 

 We investigate whether ratios of consumption to production of commodities are empirically 

significantly different from one.  Specifically, for each commodity we construct a time series of the ratio 

of consumption to production and test the null hypothesis that the mean is different from one.  Because of 

the limited availability of historical consumption and production data, the analysis is done at the annual 

frequency.  When available, we use measures of consumption and production of commodities from the 

CRB.  When these are not available, we rely on measures from the UN FAO for agricultural and oil 

commodities, from the US Department of Agriculture’s Food and Agricultural Services (USDA FAS), 
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and from trade associations.  For example, aluminum data were provided to us by the European 

Aluminum Association (EAA), data for copper is from the International Copper Study Group (ICSG), 

data for tin were provided by the International Tin Research Institute (ITRI), nickel data are from 

International Nickel Study Group (INSG), while data for zinc and lead were tabulated from the 

International Lead and Zinc Study Group’s Monthly Bulletin.  For many commodities, we were able to 

construct global production and consumption data going back to 1968.  There are only eight commodities 

for which we could not compile consumption and production data: beef, hay, orange juice, shrimp, 

cement, lumber, mercury and wool. 

 With annual time series for global consumption and production of commodities, we define 

   
  

  
   for each commodity where Y is global consumption and Q is global production of the 

commodity.  The difference between Y and Q reflects the net purchases of the storage sector, i.e., the 

change in the stock of inventories after depreciation.  We then regress the net ratio    on a constant.  

Results from these regressions are presented in Table 5 for all commodities for which the data are 

available.  Out of thirty two commodities, we reject the null that      on average for only eight: apples, 

bananas, onions, potatoes, rice, sugar, tea, palm oil, and safflower oil.  Note that four of these are highly 

perishable commodities (apples, bananas, onions, and potatoes), so one would expect some fraction of the 

goods to go bad while being transported from production to retail facilities.  But even in the case of these 

highly perishable goods, the implied gaps between consumption and production are, on average, small -- 

less than 1% per year.  Furthermore, in the case of potatoes the rejection of the null has the wrong sign 

(i.e., consumption is larger than production on average).  Among the less perishable agricultural 

commodities (e.g., grains), there is little evidence that consumption is significantly less than production 

on average, with most of the point estimates being less than 1%.  This is also the case for industrial 

commodities, which are highly storable and for which one would expect inventory motives to be 

potentially important.  In fact, there is little evidence of non-zero net purchases by the storage sector.  

Thus, with the exception of a few commodities it is difficult to reject the null that speculative motives 

through storage have only second-order effects on prices.  Furthermore, the failure to reject the null does 

not typically reflect large standard errors.  Rather, the point estimates of the net ratio are typically smaller 

than 1%, which suggests that net flows to storage sector are on average small.  Finally, if we replicate our 

analysis using only the commodities for which we cannot reject the null of zero net-purchases on average, 

this has little effect on our estimate of the IAC factor (Appendix Figure 3). 

A third way to assess the possibility that the effects of storage could break the aggregation of 

indirect commodities into a common IAC factor is to note that, in the presence of storage motives, interest 

rates would play an important role in affecting commodity prices as an opportunity cost to holding 

inventories (Deaton and Laroque 1992, Frankel 2008).  As a result, the logic of the model in section 2 

would imply that monetary policy shocks would directly affect commodity prices through changes in 

desired inventories. Therefore, in a factor decomposition these monetary policy shocks would not be 

incorporated into the indirect factor.  Hence, a testable implication of a quantitatively important storage 

motive is that monetary policy shocks should not affect the IAC factor. 
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 To assess this prediction, we identify monetary policy shocks using a time-varying-coefficients 

Taylor rule 

           
              

  
        

               
  

      (39) 

in which the central bank responds to its real-time forecasts (  ) of each of average inflation over the next 

two quarters (        ), the current quarter’s output growth (   ), and the current quarter’s output gap 

(  ) as well as the previous period’s interest rate as in Kozicki and Tinsley (2009) and Coibion and 

Gorodnichenko (2011).  We assume that each of the time-varying coefficients follows a random walk, 

including the intercept which captures changes in the central bank’s target levels of macroeconomic 

variables and the natural rate of interest.  Following Orphanides (2003) and Romer and Romer (2004), we 

use the Greenbook forecasts prepared by the staff of the Federal Reserve prior to each FOMC meeting to 

characterize the FOMC’s real-time beliefs about current and future macroeconomic conditions.  The time-

varying coefficients allow us to distinguish between systematic changes in the monetary policy rule from 

transitory deviations captured by the residuals.  We estimate this rule using data at the frequency of 

FOMC meetings from March 1969 until December 2008.  Because Greenbook data are not available after 

2007, we use Blue Chip Economic Indicator forecasts.  The sample ends in December 2008 when the 

zero-bound on interest rates was reached.  We then define the residuals from estimated equation (39) as 

monetary policy shocks and construct a monthly series from the FOMC-frequency dated series of shocks. 

 To quantify the effects of monetary policy shocks on the indirect aggregate common factor, we 

use a vector autoregressive representation of macroeconomic dynamics.  Specifically, we estimate a VAR 

with four variables: our measure of monetary policy shocks, the log of US industrial production, the log 

of the U.S. Consumer Price Index (CPI), and the IAC factor.  We order the monetary policy shock first 

given that it should already incorporate the most recent economic information via Greenbook forecasts 

and to allow other variables to respond on effect of this shock.  We use data from 1969:3 until 2008:12 to 

estimate the VAR with 18 months of lags, midway between the 12 month lag specifications typical of 

monetary VAR’s and the 24 month lag specification used by Romer and Romer (2004).  We then plot in 

Figure 6 the impulse responses of industrial production, the CPI, and the IAC factor to a monetary policy 

innovation.    

 An expansionary monetary policy shock in the VAR leads to higher industrial production, with 

peak effects happening one to two years after the shock.  The CPI starts rising moderately but persistently 

around 6 months after the shock, consistent with the delayed effect on prices of monetary policy shocks 

long observed in the empirical monetary policy literature (e.g., Christiano, Eichenbaum and Evans 1999).  

The indirect factor rises much more rapidly, within the first 3 months, but does not peak until nearly two 

years after the shock before gradually declining back toward zero.  The responses are significantly 

different from zero at the 5% level for the first twenty months and briefly at the 1% level.
9
  Thus, we can 

                                                           
9 Note that these standard errors do not account for the fact that the IAC factor is a generated regressor, and they 

therefore understate the true uncertainty around the point estimates.  This will be addressed in a future version of the 

paper.  However, there are at least two reasons to suspect that this result will not change.  First, one could also test 

the null that monetary policy shocks have no effect on the AIC factor by regressing it on current and lagged 

monetary shocks, i.e.   
             

   
      , setting I=36 months to account for the gradual effects of 
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statistically reject the null hypothesis arising from speculative motives that monetary policy shocks have 

no effect on the IAC factor. 

 In addition, we plot the historical contribution of monetary policy shocks to each of these 

variables in the bottom panel of Figure 6.  Monetary policy shocks can account for much of the historical 

variation in industrial production and CPI inflation over the course of the 1970s and early 1980s, 

consistent with the “stop-go” description of monetary policy during this time period in Romer and Romer 

(2002).  By contrast, monetary policy shocks have accounted for little of the macroeconomic volatility 

since the mid-1980s, consistent with Coibion (2012).  For the indirect aggregate common factor, we find 

that monetary policy shocks can account for much of the sustained increase in the IAC factor from late 

1975 until 1980, and approximately two-thirds of the subsequent decline from 1980 to 1982, which is 

consistent with the monetary interpretation of the mid-1970s suggested by Barsky and Kilian (2002).  

However, exogenous U.S. monetary policy shocks appear to have contributed little to common 

commodity prices in other periods, including during the first large run-up in commodity prices in 1973-

1974 as well as during the more recent run-up from 2003-2008.  Thus, neither episode can be directly 

attributed to US monetary policy according to the VAR. 

 In short, while the presence of commodity storage could potentially break the aggregation of 

indirect shocks into a common IAC factor, there is little quantitative evidence for this possibility.
10

  First, 

the fact that the comovement is commodity prices is well-characterized by a small number of factors is 

difficult to reconcile with the aggregation result failing to hold.  Second, for most commodities we cannot 

reject the null that storage has only second-order effects on commodity prices.  And third, monetary 

policy shocks have both statistically and economically significant effects on the IAC factor, which 

suggests that the factor decomposition is not treating them as a direct commodity-related shock as would 

be the case if speculative considerations were economically important.  While storage motives are 

nonetheless likely to play a role in commodity prices in periods when inventory constraints are close to 

                                                                                                                                                                                           
monetary policy shocks on macroeconomic variables.  From this procedure, we can reject the null hypothesis that 

monetary policy shocks have no effect on the global factor (i.e.         ) with a p-value of 0.013.  The generated 

regressor issue is not binding in this case since the global factor is only on the LHS and the null hypothesis is that 

the coefficients on monetary policy shocks are zero, so asymptotic (Newey-West) standard errors are valid (Pagan 

1984).  The advantage of the VAR specification is that it also purifies the monetary policy shocks of potentially 

remaining predictability from macroeconomic variables and is therefore in this sense a more conservative approach.  

Second, given that we cannot reject the null of the rotation matrix being equal to the identity matrix, one can use the 

unrotated first common factor in the VAR in lieu of the rotated one.  Since the unrotated factor can be treated as 

observable following Bai and Ng (2002) and Stock and Watson (2002) for large enough cross-sections and time 

samples, the corresponding standard errors are valid.  The results from this alternative specification are almost 

identical, and we can reject the null of no response at the same confidence level. 

10
 Another reason why one might be skeptical of the quantitative importance of the storage mechanism is recent 

work examining the role of speculative shocks in oil markets has found little evidence that these have contributed in 

economically significant ways to historical oil-price fluctuations, either in statistical VAR models such as Kilian and 

Murphy (2012) and Kilian and Lee (2013) or DSGE models such as Unalmis et al. (2012).  While little evidence 

exists on this question for other commodities, one would expect that oil markets would be most likely to display 

sensitivity to speculation given the relative ease with which oil can be stored (both underground and in above-

ground storage facilities) and the potentially large convenience yields to refineries associated with holding oil as 

inventories. The fact that storage shocks are not quantitatively important of course does not imply that storage has 

no effects on the response of prices to other shocks, but it is consistent with this result.  
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binding (i.e. when log-linear approximations are less binding), our results suggest that, on average, the 

aggregation result from section 2 provides a succinct and adequate characterization of the data. 

 

5 Forecasting Applications 

The model presented in Section 2 predicts that the level of real commodity prices and total demand for 

commodities are mutually endogenous and jointly determined.  For example, a positive technology shock 

increases total income and, all else equal, increases the demand for commodities and hence their real 

prices. Furthermore, the empirical evidence in section 3 documented that a large proportion of 

commodity-price movements are systematically related and can be interpreted as reflecting aggregate 

shocks that are not specific to the commodity sector.  Guided by this insight, we examine whether the 

common factor identified from the cross-section of commodity prices contains information relevant for 

predicting real commodity prices in a pseudo out-of-sample forecasting exercise.   

 While we restricted the cross-section of commodities in section 3 to conform to the theoretical 

structure of the model for the purposes of better identifying the structural factors, from a forecasting 

perspective we can use our identified factors to forecast a much broader set of commodities.  For 

example, we ruled out vertically integrated commodities such as soybeans and soybean meal to avoid 

identifying spurious comovement reflecting idiosyncratic shocks to the soybean sector.  But once we have 

recovered the IAC factor from the restricted cross-section, it should be able to help predict all 

commodities, not just those in our sample.  Thus, in the out-sample forecasting exercise, we assess the 

ability of the common commodity factor to forecasted not just the set of commodities in our data set but 

also commonly used commodity indices frequently and the real price of oil. 

 

5.1 Forecasting Model 

The forecasting model is a linear bivariate VAR(p) model for the real price of commodity j and the IAC 

factor: 

                                                                             (40) 

where                 ,       denotes the log of real price of commodity  ,      is the IAC factor 

extracted from the cross-section of real commodity prices,      is the regression error, and         

       
       

   .  In the forecasting exercise, the lag length p is chosen recursively using the 

Bayesian information criterion (BIC). 

All of the nominal commodity prices are deflated by U.S. CPI.  In addition to the cross-section of 

40 commodity prices used to compute the IAC factor, we examine the ability of the IAC factor to forecast 

three widely used commodity price indices – the CRB spot index, the World Bank non-energy index, and 

the International Monetary Fund non-fuel index.
11

  The indices are also deflated by U.S. CPI.  Finally, we 

evaluate the ability of the bivariate VAR to forecast the real price of crude oil given the evidence that 

                                                           
11

 The IMF non-fuel commodity price index available from Haver Analytics begins in 1980:2. The price index was 

backcast to 1957:1 using the IMF agricultural raw, beverage, food, and metals sub-indices using the weights 

obtained from regressing the non-fuel index on the individual sub-indices. Over the sample period during which the 

indices overlap, a regression of the non-fuel index on the sub-indices yields an    in excess of 0.99999. 
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VAR-based models of oil-market fundamentals can generate economically large improvements in 

forecast accuracy (Baumeister and Kilian 2012; and Alquist et al. forthcoming).  The real price of oil used 

in the forecasting exercise is the refiner’s acquisition cost of imported oil, which is a good proxy for the 

international price of crude oil (see Alquist et al. forthcoming). 

We apply the EM algorithm recursively to fill in the missing observations and estimate the 

common factor at each point in time (Stock and Watson 2002).  We appeal to the fact that, in section 3, 

we are unable to reject the null that the rotation matrix equals the identity matrix and therefore use the 

unrotated first factor in the forecasting exercises.  The rationale is the well-known sensitivity of GMM in 

short-samples and the related concern that small-sample considerations may induce significant variation 

in the estimate of the rotation matrix across periods. 

The forecast performance of the VAR is evaluated over two periods.  In the first case, the forecast 

evaluation period depends on the commodity.  It begins either in 1968:1 or at the earliest date subject to 

the condition that the initial estimation window contains at least 48 observations (see Appendix Table 3).  

The second forecast evaluation period begins in 1984:1 and ends in 2012:12, with the initial estimation 

window ending in 1983:12.  We again impose the condition that the initial estimation period contains at 

least 48 observations.  These constraints reduce the total number of commodities that we can consider in 

the common forecast evaluation period from 40 to 28.  We evaluate the MSPE of the VAR-based forecast 

the real commodity price at the 1-, 3-, 6-, and 12-month horizons, which correspond to the horizons of 

interest for policy makers.  All forecast accuracy comparisons are conducted relative to the no-change 

benchmark.  Multistep-ahead forecasts are computed iteratively using the VAR. 

 

5.2 Forecasting Results 

Table 6 summarizes the results obtained from the forecasting exercise for the commodity-specific and 

common sample periods.  The first column of Table 6 shows the aggregate MSPE ratio, which is defined 

as: 

                     
      

    
   

      
   

   

 

where      
    is the mean-squared prediction error of the VAR-based forecast for commodity  ; 

     
   is the mean-squared prediction error of the random walk forecast for commodity  .  Thus, the 

aggregate MSPE ratio summarizes the performance of the all of the forecasting models for a given 

horizon.  For both the commodity-specific and the common forecast evaluation periods, common-factor 

based forecasts generate improvements in forecast accuracy relative to the no-change forecast up to the 6-

month horizon.  In the commodity-specific period, the improvements range between about 6-8%.  In the 

common forecast evaluation period, the improvements are smaller and lie in the 1% to 7% range.  These 

forecast-accuracy improvements are modest in economic terms. 

 But these summary statistics mask the heterogeneity in the ability of the VAR to produce more 

accurate forecasts than the no-change forecast.  Table 6 also reports the distribution of the MSPE ratios 

for each forecast evaluation period. In the commodity-specific period, there are 32 (out of 40) 

commodities at the 1-month horizon and 20 (out of 40) commodities at the 3-month horizon for which the 
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VAR-based forecasts are more accurate than the no-change forecast.  The performance of the VAR 

deteriorates as the forecast horizon lengthens.  Similar, if not somewhat stronger, results obtain in the 

common forecast evaluation period.  There are 22 (out of 28) commodities at the 1-month horizon and 18 

(out of 28) commodities at the 3-month horizon for which the VAR-based forecasts are more accurate 

than the no-change forecast.  In addition, at the 6- and 12-month horizons the VAR generates superior 

forecasts relative to the no-change forecast for about half of the commodities in the sample. 

For the commodity-specific sample period, the common factor-based forecasts of the real 

commodity price indices achieve improvements in forecast accuracy relative to the no-change forecast at 

the 1-month horizon.  The VAR does best at predicting the World Bank non-energy index and the IMF 

non-fuel index, with forecast accuracy improvements in the 11-13% range.  The accuracy of the VAR-

based forecast diminishes at the 3-month horizon, with a maximum improvement in forecast accuracy of 

about 1% for the IMF non-fuel index.  Over the common forecast evaluation period, the VAR does 

somewhat better at forecasting the price indices compared to the no-change forecast.  Again, the largest 

improvements in forecast accuracy are obtained for the World Bank and IMF commodity-price indices, 

with improvements of at most 14% relative to the no-change forecast.  At the 3-month horizon, the VAR 

is more accurate than the no-change forecast, but the improvements are smaller (i.e., at most about 7%). 

The VAR model also does well at forecasting the real price of oil at short horizons.  For both 

forecast evaluation periods, it is able to produce improvements in forecast accuracy of about 20% at the 1-

month horizon.  The 3-month ahead forecasts are about 3-6% more accurate than the random walk 

forecast.  The forecasts based on the VAR become less accurate as the forecast horizon lengthens. 

Appendix Tables 3 and 4 report the forecast accuracy results for the individual commodities for 

the commodity-specific and common sample periods.  Several things stand out about these results.  First, 

the VAR-based forecasts generate improvements in forecast accuracy for some agricultural commodities 

and oils up to 12 months ahead.  For example, Appendix Table 4 shows that 12 (out of 15) agricultural 

commodities and 2 (out of 3) oils achieve improvements in forecast accuracy at the 12-month horizon.  

For the agricultural commodities, the improvements in forecast accuracy relative to the random walk 

forecast range between about 4% for cocoa to 41% for hay.  For oils, the gains are about 32% for 

groundnut oil and about 4% for palm oil at the 12 month horizon.  Second, the improvements in forecast 

accuracy in the industrial commodities are concentrated at the 1- and 3-months horizons.  Appendix Table 

4 shows that the improvements in forecast accuracy range between about 22% for cotton to less than 1% 

for lead at the 1-month horizon; and between about 11% for tin to around 1% for aluminum at the 3-

month horizon. 

Additional results on the ability of the commodity-price factor to forecast the real price of oil are 

reported in Appendix Table 5.  That table compares the bivariate VAR with a standard model of the 

global oil market that has been shown to perform well at forecasting the real price of oil out-of-sample 

(Baumeister and Kilian 2012; and Alquist et al. 2013).
12

  The first column of Appendix Table 5 shows 

                                                           
12

 We thank Christiane Baumeister for sharing the real-time data set for the oil-market model. The variables in the 

oil-market VAR include the percent change in global crude oil production, the global real activity index constructed 
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that the IAC factor based model does well relative to the oil-market model at the 1- and 3-month horizons 

when the BIC is used.
13

  On the other hand, the IAC factor-based model is dominated by the oil-market 

model when a fixed lag length of 12 is used, although the IAC factor model still delivers improvements in 

forecast accuracy up to about 14% relative to the no-change forecast.
14

  This evidence suggests that the 

IAC factor contains some information relevant for forecasting the real price of crude oil at short horizons. 

Taken together, these findings indicate that the prices of internationally traded commodities are, 

to some extent, forecastable in a way suggested by the model presented in section 2.  The improvements 

in forecast accuracy can be substantial, particularly at short horizons, and agricultural commodities and 

oils tend to be more predictable than industrial commodities.  This evidence is important from a practical 

perspective: data on market fundamentals at the relevant frequency for many of the commodities included 

in our data set are unavailable, unlike the case of crude oil, making the construction of forecasting models 

challenging.  These results show that a VAR whose construction is guided by an economic model that 

focuses on the role of demand in driving commodity prices can be used to generate accurate forecasts of 

real commodity prices relative to the no-change benchmark.  Moreover, to the extent that commodity 

prices do not adjust instantaneously to news about global demand conditions, we expect that the indirect 

aggregate common factor will contain some predictive power for real commodity prices.  This model-

based intuition is validated by the forecasting exercise.  Thus, the factor structure in commodity prices 

can serve a dual purpose for policymakers and practitioners – providing a structural decomposition of the 

forces driving commodity prices while also helping to forecast commodity-price movements within a 

common framework. 

 

6 Conclusion 

In this paper, we examine the long-standing question of what drives the comovement among commodity 

prices and propose a way of interpreting this comovement in economic terms.  We reach four main 

conclusions.  First, the model suggests that the each commodity price can be decomposed into three 

distinct components. The first component captures the idiosyncratic price movements, the second one 

captures global economic forces, and the third one is related to commodity-specific shocks.  In terms of 

our subsequent analysis, the IAC factor is of particular interest because it represents the level of global 

economic activity that would have prevailed in the absence of any contemporaneous commodity-related 

shocks.  Thus, the factor structure of commodity prices predicted by theory suggests a way that the IAC 

factor could help address the identification problem surrounding global economic conditions and 

commodity prices by exploiting the common comovement induced by indirect shocks captured by the 

IAC. 

                                                                                                                                                                                           
in Kilian (2009), the log of the real price of oil, and a proxy for the change in global above-ground crude oil 

inventories. For further discussion of these data, see Kilian and Murphy (forthcoming). 
13

 During the 1984:1-2012:8 forecast evaluation period, for example, the IAC factor based model achieves an 

improvement in forecast accuracy of about 21% relative to the no-change forecast whereas the oil-market 

fundamental model’s improvement in forecast accuracy is about 17% at the 1-month horizon. 
14 The oil-market fundamentals model generates forecast-accuracy improvements up to about 16% compared to the 

no-change forecast. 
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Second, we show how the model’s predictions can be used to identify the rotation matrix that 

recovers a set of structural factors implied by the theory, including the IAC factor.  This point addresses 

the central problem of factor analysis, namely that it is difficult to interpret the factors in economic terms.  

However, the theory provides a set of orthogonality conditions and sign restrictions that can be used to 

identify the parameters of the rotation matrix consistent with a structural interpretation of the factors.   

 Third, we apply these methods to a broad cross-section of commodity prices that, in some cases, 

extend back to the late 1950s to understand better the key drivers of the commodity-price comovement 

over long period of time.  The IAC factor that we identify accounts for about 60-70% of the variance in 

commodity prices.  In addition, we are unable to reject the theoretical restrictions implied by the model. 

The IAC factor is highly correlated with independently computed measures of global economic activity at 

business cycle frequencies.  Its behavior during the 1970s and 1980s suggest that the macroeconomic 

volatility observed during that era was not driven primarily by commodity-related shocks, consistent with 

the interpretation of Barsky and Kilian (2002).  Nevertheless, there are episodes during which the direct 

commodity shocks contributed negatively to global economic activity, particularly in the early 1990s and 

again during the Great Recession.  

Finally, we show that the IAC factor is useful for forecasting real commodity prices, some widely 

used commodity-price indices, and the real price of crude oil.  A pseudo out-of-sample forecasting 

exercise shows that a simple bivariate model that includes the IAC factor and the real commodity price 

can generate economically important improvements in forecast accuracy relative to a no-change 

benchmark.  The results of this exercise are also consistent with the macroeconomic model that we use to 

interpret commodity-price comovement.  Insofar as commodity prices do not respond instantaneously to 

macroeconomic news, the theory predicts that the IAC factor should have some predictive power for real 

commodity prices.  Thus, our approach can be used to simultaneously forecast a wide range of 

commodity prices within a common framework while also providing a structural interpretation to those 

forecasts. 

 In sum, we provide a new model for thinking about the sources and implications of commodity-

price comovement and show that several implications of the model are consistent with the data.  This 

framework suggests a way of interpreting the common factors driving commodity prices and offers a new 

perspective on the historical behavior of a broad cross-section of internationally traded commodities since 

the early 1970s. 



 37 
 

 
 

References 

Ahn, Seung C. and Alex R. Horenstein, 2013. “Eigenvalue Ratio Test for the Number of Factors,” 

forthcoming: Econometrica. 

Alquist, Ron, Lutz Kilian, and Robert Vigfusson, 2013. “Forecasting the Price of Oil,” forthcoming in: G. 

Elliott  and A. Timmermann (eds.), Handbook of Economic Forecasting, 2, Amsterdam: North-

Holland.  

Aruoba, S. Boragan, Francis X. Diebold, M. Ayhan Kose, Marco E. Terrones, 2011.  “Globalization, the 

Business Cycle, and Macroeconomic Monitoring,” IMF Working Paper 11/25. 

Bai, Jushan and Serena Ng, 2002. “Determining the Number of Factors in Approximate Factor Models,” 

Econometrica, 70, 191-221. 

Barsky, Robert B. and Lutz Kilian, 2002.  “Do We Really Know that Oil Caused the Great Stagflation? A 

Monetary Alternative,” in B. Bernanke and K. Rogoff (eds.), NBER Macroeconomics Annual 

2001, May 2002, 137-183. 

Baumeister, Christiane and Geert Peersman, 2011.  “The Role of Time-Varying Price Elasticities in 

Accounting for Volatility Changes in the Crude Oil Market,” Bank of Canada Working Paper 11-

28. 

Baumeister, Christiane and Lutz Kilian, 2012. “Real-Time Forecasts of the Real Price of Oil,” Journal of 

Business and Economic Statistics, 30(2), 326-336. 

Blanchard, Olivier.  2009.  “The State of Macro,”  Annual Review of Economics, 1(1), 209-228. 

Blinder, Alan S. and Jeremy B. Rudd, 2012. “The Supply Shock Explanation of the Great Stagflation 

Revisited,” NBER Chapters, in: The Great Inflation: The Rebirth of Modern Central Banking 

National Bureau of Economic Research, Inc. 

Bosworth, Barry P. and Robert Z. Lawrence, 1982.  Commodity Prices and the New Inflation, The 

Brookings Institution, Washington D.C. 

Byrne, Joseph P., Giorgio Fazio, and Norbert Fiess, 2011.  “Primary Commodity Prices: Co-Movements, 

Common Factors and Fundamentals,” World Bank Working Paper 5578. 

Chen, Yu Chin, Kenneth Rogoff, and Barbara Rossi, 2010.  “Can Exchange Rates Forecast Commodity 

Prices?”  Quarterly Journal of Economics 125(3), 1145-1194. 

Chinn, Menzie and Olivier Coibion, 2013.  “The Predictive Content of Commodity Futures,” forthcoming 

in the Journal of Futures Markets. 

Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans, 1999. “Monetary policy shocks: 

What have we learned and to what end?,” in: J. B. Taylor & M. Woodford (ed.), Handbook of 

Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier. 

Coibion, Olivier.  2012.  “Are the effects of monetary policy shocks big or small?”  American Economic 

Journal: Macroeconomics, 4(2), 1-32. 

Coibion, Olivier and Yuriy Gorodnichenko, 2011.  “Monetary Policy, Trend Inflation and the Great 

Moderation: An Alternative Interpretation,” American Economic Review, 101(1), 341-370. 

Connor, Gregory, and Robert A. Korajczyk, 1993.  “A Test for the Number of Factors in an Approximate 

Factor Model,” Journal of Finance 48(4), 1263-1291. 

Deaton, A. and G. Laroque, 1992.  “Behaviour of Commodity Prices,” Review of Economic Studies 59(1), 

1-23. 

Frankel, Jeffrey A., 2008.  “The Effect of Monetary Policy on Real Commodity Prices,” in John H. 

Campbell (ed.) Asset Prices and Monetary Policy, NBER Books. 

Gospodinov, Nikolay and Serena Ng, 2013.  “Commodity Prices, Convenience Yields, and Inflation,” 

The Review of Economics and Statistics 95(1), 206-219. 

Hamilton, James D., 1983.  “Oil and the Macroeconomy since World War II,” Journal of Political 

Economy 91(2), 228-248. 

Hamilton, James D. 2009.  “Causes and Consequences of the Oil Shock of 2007-2008,” Brookings Papers 

on Economic Activity 2009(2): 215-259. 



 38 
 

 
 

Kilian, Lutz.  2008.  “Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter 

for the U.S. Economy?” Review of Economics and Statistics, 90(2), 216-240.  

Kilian, Lutz.  2009.  “Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in 

the Crude Oil Market,” American Economic Review, 99(3), June 2009, 1053-1069. 

Kilian, Lutz and Thomas K. Lee, 2013.  “Quantifying the Speculative Component in the Real Price of 

Oil: The Role of Global Oil Inventories,” manuscript. 

Kilian, Lutz and Daniel P. Murphy.  2012. “The Role of Inventories and Speculative Trading in the 

Global Market for Crude Oil,” forthcoming: Journal of Applied Econometrics. 

Kydland, Finn E. and Edward C. Prescott, 1982.  “Time to Build and Aggregate Fluctuations,” 

Econometrica 50(6), 1345-1370. 

Kozicki, Sharon and Tinsley, Peter A., 2009. “Perhaps the 1970s FOMC did what it said it did,” Journal 

of Monetary Economics, vol. 56(6), pages 842-855 

Newey, Whitney K; West, Kenneth D (1987). "A Simple, Positive Semi-definite, Heteroskedasticity and 

Autocorrelation Consistent Covariance Matrix". Econometrica 55 (3): 703–708. 

Onatski. Alexei. 2010. “Determining the Number of Factors From Empirical Distribution of 

Eigenvalues,” Review of Economics and Statistics, 92(4), 1004-1016. 

Orphanides, Athanasios, "Historical Monetary Policy Analysis and the Taylor Rule", Journal of Monetary 

Economics, 50(5), 983-1022, July 2003. 

Pagan, Adrian.  “Econometric Issues in the Analysis of Regressions with Generated Regressors,” 

International Economics Review, 25(1), 221-247. 

Romer, Christina D. and David H. Romer, 2002. “The Evolution of Economic Understanding and 

Postwar Stabilization Policy,” in Rethinking Stabilization Policy, Federal Reserve Bank of 

Kansas City, 2002.  

Romer, Christina D. and David H. Romer. 2004.  “A New Measure Of Monetary Shocks: Derivation And 

Implications,” American Economic Review, 2004, v94(4,Sep), 1055-1084. 

Stock, James and Mark Watson. 2002 “Macroeconomic Forecasting Using Diffusion Indexes,” Journal of 

Business and Economic Statistics, 20, 147-162. 

Uhlig, Harald, 2002. “What are the Effects of Monetary Policy on Output?  Results from an Agnostic 

Identification Procedure,” Journal of Monetary Economics 52(2), 381-419. 

Unalmis, D., I. Unalmis and D.F. Unsal, 2012.  “On Oil Price Shocks: The Role of Storage,” IMF 

Economic Review, 60, 505-532. 

West, Kenneth D. and Ka-Fu Wong, 2012.  “Using Co-Movements to Forecast Commodity Prices,” 

Manuscript. 



 39 
 

 
 

Table 1:  The Production and Usage of Commodities 

 Largest Producers  Primary Uses  

     
Agr./Food Commodities     

Apples (1990-91) US (0.21), Germany (0.10), Italy (0.10)  Food (0.86), beverage, feed.  

Bananas* (1990) India (0.15), Brazil (0.12), Ecuad. (0.07)  Food (0.84), feed, other.  

Barley (1990-91) USSR (0.28), Germany (0.08)  Feed (0.73), distillation, food  

Beef   Food  

Cocoa (1990-91) Ivory Coast (0.32), Brazil (0.25)  Food (0.96)   

Coffee (1990-91) Brazil (0.31), Columbia (0.14)  Food/beverages (0.98)  

Corn (1990-91) US (0.42), Brazil (0.05)  Feed (0.62), food (0.16), adhesives  

Fishmeal* (1984) Japan (0.21), Chile (0.17), Peru (0.08)  Feed (0.90)  

Hay   Feed  

Oats (1990-91) USSR (0.39), US (0.13)  Food (0.74), feed (0.09), ref. solvent  

Orange Juice (1990-1) Oranges:  Brazil (0.35), Spain (0.07)  Beverage (pulp for feed, oil)  

Onions* (1990) China (0.16), India (0.10)  Food (0.91)  

Pepper (1990) Main exporters: Indonesia, India  Food (0.96), oil (medical, perfumes)  

Potatoes* (1990) USSR (0.24), Poland (0.13)  Food (0.52), distillation, feed (0.19).  

Rice (1990-91) China (0.36), India (0.21)  Food (0.84), distillation, other.  

Shrimp   Food  

Sorghums* (1990) US (0.26), India (0.21), Mex. (0.11)  Food (0.39), feed (0.52)  

Soybeans (1990-91) US (0.50), Brazil (0.15)  Food/feed (0.11), (paints, plastics)  

Sugar (1990-91) India (0.12), Brazil (0.07), Cuba (0.07)  Food/beverages (0.96), fuel.  

Tea (1990) India (0.29), China (0.21), S. Lank (.09)  Beverage (0.98)  

Tobacco (1990) China (0.37), US (0.10)  Smoking  

Wheat (1990-91) USSR (0.17), China (0.17), US (0.13)  Food (0.65), feed (0.22)  

     
Oils     

Coconut oil (1990-91) Philippines (0.41), Indonesia (0.27)  Food (0.57), cosmetics, synth. Rubber  

Groundnut oil* (1990) India (0.45), China (0.22), Nigeria (.09)  Food (0.98)  

Palm oil (1990-91) Malaysia (0.55), Indonesia (0.25)  Food (0.57), soaps, machine lubricants  

Rapeseed oil (1990) China (0.28), India (0.20), Canada (.13)  Food (0.82), inks, pharma, cosmetics  

Sun/Safflower oil (90-1) USSR (0.29), Argentina (0.17)  Food (0.90), fuel.  

     
Industrial Commodities     

Aluminum (1990) US (0.22), USSR (0.12), Canada (0.09)  Transportation, containers  

Burlap* (1990) India (0.52), Bangladesh (0.30)  Fabric  

Cement (1990) China (0.18), USSR (0.12), Japan (0.07)  Construction  

Copper (1990) Chile (0.18), US (0.18)  Electrical (0.75), construction  

Cotton (1990-91) China (0.24), US (0.18), Uzb. (0.14)  Clothing, furnishings, medical  

Lead  (1990) US (0.23), Kazakhstan (0.12)  Construction, lining, batteries  

Lumber Russia (0.39), Canada (0.39)  Construction, industrial uses  

Mercury (1990) China (0.22), Russia (0.18)  Batteries, paints, dental  

Nickel (1990) USSR (0.24), Canada (0.22)  Coins, batteries, electronics  

Natural Rubber (1990) Malaysia (0.25), Thailand (0.24)  Household to industrial  

Tin (1990) China (0.19), Brazil (0.18)  Industrial uses  

Wool (1990-91) Australia (0.35), New Zealand (0.12)  Clothing/furnishing, insulation  

Zinc (1990) USSR (0.13), Japan (0.10), Can. (0.08)  Coating, alloy, batteries, medical  

     
     

 

Note: The table presents information on the largest-producing countries for each type of commodity in 1990 or as 

available.  These data comes from the CRB or the FAO (when marked with a *).  The third column presents the 

most common uses of each commodity, as reported by the CRB (for industrials) or by the FAO in 1990 for all 

others.
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Table 2:  Contribution of common factors to commodity prices 

 Cumulative Variance Explained by Common Factors 

Number of common factors: 1 2 3 4 5 

Complete Sample:      

Cumulative eigenvalue shares 0.59 0.69 0.75 0.79 0.82 

Mean across commodity-specific R
2
s 0.60 0.69 0.74 0.78 0.81 

Median across commodity-specific R
2
s 0.70 0.76 0.78 0.84 0.85 

R
2
 across all commodities 0.62 0.71 0.75 0.79 0.82 

      

Subset of Commodities:      

R
2
 across food/agric. commodities 0.64 0.72 0.75 0.77 0.80 

R
2
 across oils 0.72 0.74 0.76 0.82 0.85 

R
2
 across industrial commodities 0.55 0.68 0.75 0.80 0.83 

      
Note:  The table provides metrics of the cumulative variance associated with using additional factors as indicated by 

each column.  The first row provides the cumulative sum of eigenvalues associated with each factor normalized by 

the sum of all eigenvalues.  The second row provides the mean across the R
2
 of each commodity for each given 

factor, using the specific sample associated with each commodity.  The third row provides the median R
2
 across all 

commodity-specific R
2
s.  The fourth row provides the joint R

2
 constructed using all commodities. In addition, the 

top panel presents joint R
2
s for subsets of commodities (as defined in Table 1).  Each of the R

2
 omits imputed values.  

See section 3.2 for details. 
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Table 3:  GMM Estimates of Rotation Matrix 

 GMM Estimates of Rotation Parameter  Implied Rotation Coefficients 

 θ se(θ) p(over-id) N  t11 95% CI(t11) t21 95% CI(t21) 

          
Baseline GMM Estimates:  -0.24 (0.20) 1.00 405  0.97 [0.81 1.00] -0.24 [-0.59 0.14] 

(Iterative GMM, L=36)          

          
Robustness of GMM Estimates:          

More moments: (L=48) -0.25 (0.19) 1.00 393  0.97 [0.82 1.00] -0.25 [-0.58 0.12] 

Fewer moments: (L=24) -0.24 (0.21) 1.00 417  0.97 [0.78 1.00] -0.24 [-0.62 0.18] 

Fewer moments: (L=12) -0.31 (0.30) 1.00 429  0.95 [0.61 1.00] -0.31 [-0.79 0.28] 

Two-step GMM -0.25 (0.20) 1.00 405  0.97 [0.80 1.00] -0.25 [-0.59 0.13] 

Continuous GMM -0.26 (0.19) 1.00 405  0.97 [0.80 1.00] -0.25 [-0.60 0.12] 

Alternative normalization -0.22 (0.20) 1.00 405  0.98 [0.82 1.00] -0.22 [-0.58 0.17] 

          
 

Notes: The table presents nonlinear GMM estimates of parameter θ from (44) in the text, along with Newey-West (1987) standard errors (se(θ)), the p-value for 

over-identifying restrictions (p(over-id)), and the number of observations used in the estimation.  The panel on the right presents the implied reduced-form 

parameters of the first row of the rotation matrix, along with the 95% confidence interval implied from the estimated distribution of θ.  The baseline estimates are 

based on iterative GMM until convergence, using a constant as well as the contemporaneous value and 36 lags of OPEC production shocks for moment 

conditions.  Subsequent rows present robustness to using more or fewer lags of OPEC production shocks as moment conditions, a 2-step GMM procedure, a 

continuously-updated GMM procedure, and an alternative normalization of moment conditions.  See section 3.3 for details. 
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Table 4:  Rotated Commodity-Specific Factor Loadings:   

 Factor Loadings   Factor Loadings 

Commodity IAC DAC  Commodity IAC DAC 

       
Agr./Food Commodities    Oils   

Apples 0.43 0.20  Coconut oil 0.81 0.14 

Bananas 0.53 0.30  Groundnut oil 0.83 0.25 

Barley 0.68 0.51  Palm oil 0.86 0.26 

Beef 0.88 0.03  Rapeseed oil 0.47 0.46 

Cocoa 0.90 0.01  Sun/Safflower oil 0.79 0.34 

Coffee 0.87 -0.05     

Corn 0.93 0.23  Industrial Commodities   

Fishmeal 0.88 0.28  Aluminum 0.79 0.17 

Hay 0.85 0.08  Burlap 0.84 0.12 

Oats 0.86 0.24  Cement 0.20 0.09 

Orange Juice 0.76 -0.11  Copper  0.50 0.77 

Onions 0.58 -0.31  Cotton 0.94 -0.07 

Pepper 0.64 -0.54  Lead  0.63 0.68 

Potatoes 0.73 0.05  Lumber 0.55 -0.15 

Rice 0.91 0.22  Mercury 0.35 0.81 

Shrimp 0.55 -0.68  Nickel  0.09 0.76 

Sorghums 0.92 0.22  Rubber 0.72 0.56 

Soybeans 0.94 0.15  Tin  0.87 0.30 

Sugar 0.75 0.22  Wool 0.84 0.29 

Tea 0.89 -0.09  Zinc  0.54 0.44 

Tobacco 0.88 -0.21     

Wheat 0.90 0.26     

       
 

Note: The table presents the rotated loadings from factor analysis using the GMM estimates of the 

rotation matrix.  See section 3.3 for details. 
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Table 5:  Testing the null of zero net purchases by storage sector 

 Estimates of Mean Ratio of Consumption to Production - 1 

Number of Factors:           N Sample Source 

      
Agr./Food Commodities      

Apples -0.007*** (0.003) 42 1968-2009 UN FAO 

Bananas -0.008** (0.004) 42 1968-2009 UN FAO 

Barley 0.001 (0.005) 33 1979-2011 CRB 

Beef      

Cocoa -0.009 (0.010) 43 1968-2010 CRB 

Coffee 0.016 (0.011) 41 1968-2009 UN FAO 

Corn 0.004 (0.005) 32 1980-2011 CRB 

Fishmeal -0.014 (0.016) 45 1968-2012 USDA-FAS 

Hay      

Oats 0.002 (0.004) 45 1968-2012 USDA-FAS 

Orange Juice      

Onions -0.007*** (0.001) 42 1968-2009 UN FAO 

Pepper -0.000 (0.018) 42 1968-2009 UN FAO 

Potatoes 0.005** (0.002) 42 1968-2009 UN FAO 

Rice -0.010** (0.005) 45 1968-2012 USDA-FAS 

Shrimp      

Sorghums 0.010 (0.009) 28 1983-2011 CRB 

Soybeans -0.002 (0.006) 42 1968-2009 UN FAO 

Sugar -0.020*** (0.005) 45 1968-2012 USDA-FAS 

Tea -0.022*** (0.005) 42 1968-2009 UN FAO 

Tobacco 0.004 (0.015) 37 1968-2004 USDA-FAS 

Wheat 0.000 (0.006) 34 1978-2011 CRB 

      
Oils      

Coconut oil 0.003 (0.009) 42 1968-2009 UN FAO 

Groundnut oil -0.003 (0.004) 41 1971-2011 USDA-FAS 

Palm oil -0.045** (0.017) 42 1968-2009 UN FAO 

Rapeseed oil -0.007 (0.005) 45 1968-2012 USDA-FAS 

Sun/Safflower oil -0.024** (0.010) 41 1972-2012 USDA-FAS 

      
Industrial Commodities      

Aluminum -0.007 (0.005) 45 1968-2012 TA  

Burlap 0.020 (0.012) 42 1968-2009 UN FAO 

Cement      

Copper  0.001 (0.005) 45 1968-2011 TA 

Cotton 0.001 (0.010) 43 1968-2010 CRB 

Lead  -0.001 (0.004) 39 1972-2012 TA 

Lumber      

Mercury      

Nickel  -0.009 (0.008) 45 1968-2012 BREE 

Rubber 0.001 (0.004) 43 1968-2010 CRB 

Tin  0.011 (0.012) 45 1968-2012 TA 

Wool      

Zinc  -0.007 (0.006) 39 1972-2012 TA 

      
Note: The table presents the average ratio of consumption to production (minus one) for each commodity and 

associated Newey-West standard errors.  Data on global consumption and production are from Commodity Research 

Bureau (CRB), trade associations (TA), the UN Food and Agriculture Organization (FAO), the Food and 

Agricultural Services of the US Department of Agriculture (USDA-FAS), or the Bureau of Resources and Energy 

Economics of the Australian Government (BREE). See section 4 for details and additional information on specific 

trade organizations. Series left blank are those for which consumption and production data are unavailable. 
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Table 6: Summary of Recursive Forecast Accuracy Diagnostics for Real Commodity Prices 

             

 Forecast Evaluation Period: Commodity-Specific 

         

 Aggregate MSPE Ratio  Distribution of MSPE Ratios    

   [0,0.9) [0.9,0.95) [0.95,1) [0,1) [1,    CRB WB IMF Crude Oil 

1 month 0.921  10 11 11 32 8  0.974 0.834 0.874 0.805 

             

3 months 0.922  4 5 11 20 20  1.057 1.022 0.990 0.972 

             

6 months 0.938  5 4 4 13 27  1.127 1.245 1.072 1.141 

             

12 months 1.096  5 6 5 16 24  1.187 1.214 1.155 1.318 

             

No. of commodities 40        24 (15) 39 (17) 45(17)  

             

 Forecast Evaluation Period: 1984:1-2012:12 

         

 Aggregate MSPE Ratio  Distribution of MSPE Ratios      

   [0,0.9) [0.9,0.95) [0.95,1) [0,1) [1,    CRB WB IMF Crude Oil 

1 month 0.930  8 7 7 22 6  0.964 0.863 0.888 0.790 

             

3 months 0.946  7 4 7 18 10  0.991 0.982 0.928 0.947 

             

6 months 0.984  8 3 3 14 14  1.068 1.106 1.008 1.111 

             

12 months 1.106  9 3 5 17 11  1.128 1.256 1.112 1.308 

             

No. of commodities 28        24 (15) 39 (17) 45(17)  
Notes: For the commodity-specific forecast evaluation period, the initial estimation window depends on the commodity. It begins either in 1968:1 or at the 

earliest date such that the initial estimation window contains at least 48 observations. The maximum length of the recursive sample is restricted by the end 

of the data and the forecast horizon. The “Aggregate MSPE Ratio” is the ratio of the sum of the MSPEs for the bivariate VAR forecasts of the real 

commodity prices relative to the sum of the MSPEs for the no-change forecast. The MSPE ratios of the individual real-commodity price forecasts are also 

computed relative to the benchmark no-change forecast. For the VAR-based forecasts, the lag length is chosen recursively using the BIC. The number of 

commodities included in the commodity-price indices but not in the cross-section of 40 commodities used to extract the factor is in parentheses.
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Figure 1: Comparative Statics and Commodity Comovement across Shocks 

Panel A:  Aggregate Productivity Shock 

 
Panel B: Relative Demand Shock for Commodities 

 
Notes: The top figure plots the effects of a change in aggregate TFP from    to     on commodity prices.     and 

     are supply curves for relatively elastically and inelastically supplied commodities,   denotes demand curves.  

Black lines correspond to curves before the change in TFP, blue lines denote curves after the change in TFP.  Red 

lines with arrows denote the set of all possible prices that can obtain from changes in TFP of different sizes, with    

being for elastically supplied commodity and      for inelastically supplied commodity.  Bold black dots identify 

equilibrium outcomes for given change in TFP.  The bottom panel plots equivalent comparative statics for an 

increase in the relative demand for commodities (   ). 
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Figure 2:  Indirect Aggregate Common Factor in Commodity Prices 

Panel A:  Indirect Aggregate Common Factor (GMM Approach)

 

Panel B:  Indirect Aggregate Common Factor (Factor Loading Sign Restrictions) 

 
Note: The top figure presents the IAC factor from the factor analysis in section 3.3. The IAC factor is HP-filtered 

(λ=129,600) in the figure. The light grey shaded areas are NBER-dated recessions.  The dark grey shaded areas are 

99% confidence intervals of HP-filtered rotated factors constructed from the estimated distribution of rotation 

parameters. The bottom figure plots the 99% confidence interval of the IAC factor as estimated by GMM (dark 

shaded areas) and the minimum and maximum range for admissible values of the IAC factor using sign restrictions 

on factor loadings (solid blue lines). See sections 3.3 and 3.4 in the text for details. 
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Figure 3:  Robustness of Indirect Aggregate Common Factor using Subsets of Commodities 

 

Note: The figures present the 99% confidence interval for the (HP-filtered) IAC factor (dark grey shaded area) and the 99% confidence intervals for the HP-

filtered IAC factor for subsets of commodities (areas between blue lines). In the top two panels, we drop barley, hay, oats, and sorghums from the cross-section 

of commodities (left figure) and coconut oil, peanut oil, rapeseed oil, and safflower oil (right figure).  In the two middle panels, we drop all commodities for 

which food is the primary use as measured in Table 1 (left figure) and all commodities for which feed is the primary use (right figure).  In the bottom two figures, 

we drop all commodities for which the former USSR was the primary producer in 1990 (8 commodities) as measured in Table 1 (left figure) and all commodities 

for which China or India were primary producers (13 commodities, right figure). See section 3.4 for details. 
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Figure 4:  Additional Robustness Checks of Indirect Aggregate Common Factor 

0

 

Note: The figures present the 99% confidence interval for the (HP-filtered) IAC factor (dark grey shaded area) and the 99% confidence intervals for the HP-

filtered IAC factor under alternative conditions (areas between blue lines). In the top left figure, we linearly detrend each real commodity price series prior to 

factor analysis.  In the top right figure, we implement factor analysis in first-differences.  In the bottom left figure, we include only commodities for which no 

imputation was necessary prior to 2010.  In the bottom right figure, we extract factors from the correlation matrix of the cross-section of real commodity prices 

rather than the covariance matrix. See section 3.4 in the text for details. 
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Figure 5:  The Contribution of “Indirect” and “Direct” Factors to Commodity Price Changes 

Panel A:  Contributions to Average Annual Commodity Price Changes 

 
Panel B:  Contributions to Annual Changes in Global Industrial Production 

 
Note: The two figures plot the contributions of the “direct” and “indirect” factors (DAC and IAC respectively) to the 

average (across all commodities in our sample) annual commodity price change (top panel) and the annual growth 

rate of global industrial production (bottom panel).  Data is monthly in the top panel and quarterly in the bottom 

panel.  See section 3.5 for details. 
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Figure 6:  Effects of Monetary Policy Shocks on the Indirect Aggregate Common Factor 

 

Note: The figures in the top row present estimated impulse responses of U.S. industrial production, the U.S. consumer price index, and the IAC factor to a 

100b.p. expansionary monetary policy shock using the VAR described in section 4. Confidence intervals are constructed from the distribution of impulse 

responses generated by drawing 2000 times from the estimated distribution of VAR parameters.  The bottom row presents actual values of each variable 

normalized by the predicted values from the VAR given initial conditions and no subsequent shocks (solid black line), U.S. recessions (light grey shaded areas), 

and the estimated contribution of monetary policy shocks to historical variation in each variable (blue areas). For the CPI, the bottom figure presents year-on-year 

inflation rates.  See section 4 in the text for details. 
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Appendix Table 1:  Notes on Commodity Price Data 

Commodity Sources Description 
Available 

Sample 
Additional Notes 

Apples CRB 

Wholesale price of (delicious) apples in 

U.S. until 1978:12, apple price received by 

growers starting 1979:1 

1957:1-

2011:12 

Data from 1979:1 is apple price received by growers.  

Data prior to that is wholesale price of (delicious) 

applies in U.S., rescaled by average price ratio of two 

series from 1979:1-1980:12.  Data prior to 1979 has 

numerous missing values. 

Bananas WB 

Bananas (Central & South America), major 

brands, US import price, free on truck 

(f.o.t.) US Gulf ports 

1960:1-

2013:1 
 

Barley CRB/WB 

WB: Barley (Canada), feed, Western No. 1, 

Winnipeg Commodity Exchange, spot, 

wholesale farmers' price.  CRB: No. 3 

straight Barley, Minneapolis Exchange. 

1957:1-

2013:1 

Data from 1957:1-1959:12 is CRB series.  Data from 

1960:1-2013:1 is WB series rescaled by ratio of the two 

series in 1960:1.  

Beef IMF 

Australian and New Zealand, frozen 

boneless, 85 percent visible lean cow meat, 

U.S. import price FOB port of entry 

1957:1-

2013:1 
 

Cocoa IMF 

International Cocoa Organization cash 

price. Average of the three nearest active 

futures trading months in the New York 

Cocoa Exchange at noon and the London 

Terminal market at closing time, CIF U.S. 

and European ports. 

1957:1-

2012:12 
 

Coffee IMF 

International Coffee Organization; cash 

prices for 4 kinds of beans: Brazilian 

unwashed Arabica, Columbian mild 

Arabica, other mild Arabica, and Robustas. 

1957:1-

2012:12 

Value for 1957:1 is average across all four types of 

coffee beans.  Subsequent values are equally-weighted 

average of percent change in price of each kind of bean 

times previous period’s price. 

Corn IMF 

U.S. No. 2 yellow, prompt shipment, FOB 

Gulf of Mexico ports (USDA, Grain and 

Feed Market News, Washington, D.C.). 

1957:1-

2012:12 
 

Fishmeal IMF 
Peru Fish meal/pellets, 65% protein, CIF 

United Kingdom (DataStream) 

1957:1-

2012:12 
 

Hay CRB 
Mid-month price received by farmers for all 

hay (baled) in the US, dollars per ton 

1957:1-

2012:2 
 

Oats CRB CD  
1957:1-

2010:11 
 

Orange Juice CRB CD Orange Juice Frozen Concentrate: nearest- 1967:1-  
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term futures contract traded on ICE. 2012:10 

Onions CRB Average price received by farmers. 
1957:1-

2011:12 
 

Pepper CRB 

1- Average black pepper (Brazilian) 

arriving in NY. 2- Average black pepper 

(Lampong) arriving in NY. 

1957:1-

2007:6 

From 1984:1-2007:6, we use Brazilian pepper price.  

Prior to 1984, we use Lampong price rescaled by ratio 

of two prices in 1984:1. 

Potatoes CRB Average price received by farmers 
1957:1-

2011:12 
 

Rice IMF 

Thai, white milled, 5 percent broken, 

nominal price quotes, FOB Bangkok 

(USDA, Rice Market News, Little Rock, 

Arkansas). 

1957:1-

2012:12 
 

Shrimp IMF 

Mexican, west coast, white, No. 1, shell-on, 

headless, 26 to 30 count 

per pound, wholesale price at New York 

1957:1-

2013:1 
 

Sorghums CRB/WB 

CRB: average price of no. 2, yellow, at 

Kansas City, $/100 pounds, WB: no. 2 milo 

yellow, f.o.b. Gulf ports 

1957:1-

2013:1 

From 1960:1-2013:1, we use the WB series.  Prior to 

1960:1, we use the CRB series rescaled by the ratio of 

the two series in 1960:1. 

Soybeans CRB CD No. 1 yellow, Chicago Board of Trade. 
1959:7-

2012:9 
 

Sugar IMF 

CSCE contract No. 11, nearest future 

position (Coffee, Sugar and Cocoa 

Exchange, New York Board of Trade). 

1957:1-

2012:12 
 

Tea IMF 

Mombasa auction price for best PF1, 

Kenyan Tea. Replaces London auction price 

beginning July 1998 

1957:1-

2013:1 
 

Tobacco WB 
Tobacco (any origin), unmanufactured, 

general import , cif, US 

1968:1-

2013:1 
 

Wheat IMF 

U.S. No. 1 hard red winter, ordinary 

protein, prompt shipment, FOB $/Mt,  

Gulf of Mexico ports (USDA, Grain and 

Feed Market News). 

1957:1-

2012:12 
 

Coconut oil CRB 

Avg price of coconut oil (crude) at Pacific 

Coast of US and Avg price of coconut oil 

(crude) tank cars in NY 

1965:1-

2010:12 

Data from 1965:1-1980:12 is Pacific Coast, data from 

1981:1-2010:12 is NY.  Series have identical prices in 

overlapping months: 1980:1-1980:12. 

Groundnut oil WB Groundnut oil (any origin), c.i.f. Rotterdam 
1960:1-

2013:1 
 

Palm oil IMF 

Crude Palm Oil Futures (first contract 

forward) 4-5 percent FFA, Bursa Malaysian 

Derivatives Berhad. 

1957:1-

2013:1 
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Rapeseed oil IMF Crude, fob Rotterdam (Datastream) 
1980:1-

2013:1 
 

Sun/Safflower oil IMF 
Sunflower Oil, crude, US export price from 

Gulf of Mexico (DataStream) 

1960:1-

2013:1 

Data from 2005:7-2005:12 and data from 2006:6-

2008:2 treated as missing because of no price variation. 

Aluminum IMF 

London Metal Exchange, standard grade, 

spot price, minimum purity 99.5 percent, 

CIF U.K. ports (Wall Street Journal, New 

York and Metals Week, New York). Prior 

to 1979, U.K. producer price, minimum 

purity 99 percent. 

1957:1-

2013:1 

Data from 1957:1-1972:12 treated as missing because 

of infrequent price variation. 

Burlap CRB CD Original source of data is USDA. 
1957:1-

2012:9 
 

Cement BLS 
BLS PPI Index Industry (series  

PCU32731-32731) Cement Manufacturing. 

1965:1-

2012:12 

Data prior to 1980:1 is treated as missing because of 

infrequent price variation. 

Copper IMF 

London Metal Exchange, grade A cathodes, 

spot price, CIF European ports (Wall Street 

Journal, New York and Metals Week, New 

York). Prior to July 1986, higher grade, 

wire bars, or cathodes. 

1957:1-

2012:12 
 

Cotton IMF 

Middling 1-3/32 inch staple, Liverpool 

Index "A", average of the cheapest five of 

fourteen styles, CIF Liverpool (Cotton 

Outlook, Liverpool). From 

January 1968 to May 1981 strict middling 

1-1/16 inch staple. Prior to 1968, Mexican 

1-1/16. 

1957:1-

2012:12 
 

Lead IMF 
London Metal Exchange, 99.97 percent 

pure, spot price, CIF European ports 

1957:1-

2012:12 
 

Lumber CRB/IMF 

CRB: Douglas-fir softwood lumber 2x4 

dried, S4S, IMF: Average export price of 

Douglas-fir, Western hemlock and other 

sawn softwood exported from Canada. 

1957:1-

2012:12 

From 1975:1-2012:12, we use the IMF series.  Prior to 

1975:1, we use the CRB series rescaled by the ratio of 

the two price series in 1975:1. 

Mercury CRB 
Average cash price in N.Y. for flask of 76 

pounds. 

1957:1-

2010:12 

Only data from 1962:12-1995:3 is used, other periods 

display infrequent price adjustment. 

Nickel IMF 

London Metal Exchange, melting grade, 

spot price, CIF Northern European ports 

(Wall Street Journal, New York and Metals 

Week, New York). Prior to 1980 INCO, 

melting grade, CIF Far East and American 

ports (Metal Bulletin, London). 

1957:1-

2013:1 

Data prior to 1979:3 is treated as missing because of 

infrequent price variation. 
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Rubber CRB 

Average spot crude rubber prices (smoked 

sheets, no 1, ribbed, plantation rubber) in 

NY, cents per pound 

1957:1-

2010:12 
 

Tin IMF 

London Metal Exchange, standard grade, 

spot price, CIF European ports (Wall Street 

Journal, New York, New York). From Dec. 

1985 to June 1989 Malaysian, straits, 

minimum 99.85 percent purity, Kuala 

Lumpur Tin Market settlement price. Prior 

to November 1985, London Metal 

Exchange 

1957:1-

2012:12 
 

Wool IMF 
23 micron (AWEX, Australian Wool 

Exchange) Sidney, Australia 

1957:1-

2012:12 
 

Zinc IMF 

London Metal Exchange, high grade 98 

percent pure, spot price, CIF U.K. ports 

(Wall Street Journal and Metals Week, New 

York). Prior to January 1987, standard 

grade. 

1957:1-

2012:12 
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Appendix Table 2:  Contribution of Common Factors to Individual Commodity Prices 

 Cumulative R
2
 from Common Factors 

Number of Factors: 1 2 3 4 5 

Agricultural/Food      

Apples 0.20 0.22 0.22 0.23 0.38 

Bananas 0.34 0.37 0.43 0.43 0.63 

Barley 0.62 0.73 0.78 0.86 0.86 

Beef 0.74 0.77 0.77 0.85 0.85 

Cocoa 0.76 0.80 0.88 0.89 0.90 

Coffee 0.69 0.75 0.86 0.87 0.87 

Corn 0.91 0.91 0.93 0.94 0.94 

Fishmeal 0.85 0.85 0.85 0.86 0.86 

Hay 0.73 0.75 0.76 0.84 0.87 

Oats 0.82 0.82 0.82 0.84 0.84 

Orange Juice 0.51 0.59 0.64 0.73 0.78 

Onions 0.24 0.43 0.46 0.47 0.53 

Pepper 0.25 0.50 0.52 0.59 0.59 

Potatoes 0.54 0.55 0.64 0.64 0.69 

Rice 0.87 0.87 0.89 0.89 0.89 

Shrimp 0.14 0.76 0.79 0.79 0.80 

Sorghums 0.90 0.90 0.93 0.93 0.93 

Soybeans 0.91 0.91 0.93 0.93 0.93 

Sugar 0.61 0.62 0.71 0.73 0.75 

Tea 0.71 0.80 0.82 0.83 0.84 

Tobacco 0.65 0.82 0.82 0.83 0.84 

Wheat 0.87 0.87 0.89 0.90 0.90 

Oils      

Coconut oil 0.71 0.71 0.71 0.71 0.79 

Groundnut oil 0.75 0.75 0.78 0.83 0.86 

Palm oil 0.81 0.81 0.81 0.85 0.90 

Rapeseed oil 0.46 0.63 0.71 0.85 0.85 

Sun/Safflower oil 0.73 0.76 0.78 0.84 0.85 

Industrials      

Aluminum 0.62 0.62 0.68 0.78 0.79 

Burlap 0.72 0.72 0.73 0.81 0.85 

Cement 0.14 0.14 0.79 0.79 0.80 

Copper  0.44 0.83 0.85 0.92 0.93 

Cotton 0.80 0.88 0.89 0.89 0.89 

Lead  0.60 0.86 0.87 0.87 0.87 

Lumber 0.25 0.33 0.53 0.64 0.76 

Mercury 0.25 0.49 0.51 0.73 0.77 

Nickel  0.13 0.70 0.70 0.84 0.87 

Rubber 0.71 0.84 0.86 0.86 0.86 

Tin  0.84 0.85 0.92 0.93 0.93 

Wool 0.78 0.79 0.79 0.79 0.79 

Zinc  0.39 0.48 0.54 0.54 0.65 

      
Note: The table presents the R

2
 associated with the cumulative number of factors across columns for 

each commodity.  Imputed values are not included in R
2
 calculations.  See section 3.2 in the text for 

details.
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Appendix Figure 1:  Price Observations Dropped 

 

 

Note:  Each figure presents the price series used in the empirical analysis (light blue line: “Restricted X 

price series”) and the observations dropped (thick red line: “Observations dropped). 
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Appendix Figure 2:  Real Commodity Prices and Imputed Values 

 

Note: The figure plots real commodity prices (black lines) and imputed values (bold red values) from the EM algorithm of Stock and Watson 

(2002).  
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Appendix Figure 2 (continued): Real Commodity Prices and Imputed Values 

 

Note: The figure plots real commodity prices (black lines) and imputed values (bold red values) from the EM algorithm of Stock and Watson 

(2002).
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Appendix Figure 3:  Indirect Aggregate Common Factor from Subset of Commodities with “No First 

Order Speculation” 

 

Note: The figure presents the 99% confidence interval of the (HP-filtered) IAC factor from the factor analysis on the 

full cross-section of commodities in section 3.3 using the estimated rotation parameters from GMM estimates (dark 

grey shaded area).  The blue lines correspond to the 99% confidence interval for the equivalent factor using only 

those commodities for which we cannot reject the null of no first-order speculative price effects in Table 5. 

Confidence intervals are 3-month moving averages.  See section 4 for details. 
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Appendix Table 3: Recursive Forecast Error Diagnostics for Real Commodity Prices 

 h = 1 h = 3 h = 6 h = 12 Forecast Evaluation Period 

Agr./Food Commodities      

Apples 0.886 0.738 0.598 0.703 1982:11-2011:12 

Bananas 0.898 0.726 0.659 0.929 1968:1-2013:1 

Barley 0.973 0.975 1.002 0.986 1968:1-2013:1 

Beef 1.138 1.261 1.359 1.367 1968:1-2013:1 

Cocoa 0.933 1.020 1.039 1.032 1968:1-2012:12 

Coffee 0.959 0.986 1.072 1.088 1968:1-2012:12 

Corn 0.904 0.943 0.924 0.910 1968:1-2012:12 

Fishmeal 1.025 1.167 1.108 1.078 1968:1-2013:1 

Hay 1.026 0.953 0.909 0.878 1968:1-2013:3 

Oats 0.932 0.965 0.937 0.955 1968:1-2010:11 

Orange juice 0.967 1.023 1.045 0.967 1971:2-2012:10 

Onions 0.886 0.762 0.618 0.623 1968:1-2011:12 

Pepper 0.906 1.073 1.197 1.375 1983:6-2007:6 

Potatoes 0.816 0.799 0.701 0.947 1968:1-2011:12 

Rice 0.873 0.961 1.025 1.115 1968:1-2012:12 

Shrimp 1.029 1.100 1.136 1.256 1968:1-2013:1 

Sorghum 0.930 0.997 0.988 0.982 1968:1-2013:1 

Soybeans 0.936 1.016 1.053 1.078 1968:1-2012:9 

Sugar 0.937 0.999 1.025 1.038 1968:1-2012:12 

Tea 1.042 1.193 1.237 1.313 1968:1-2013:1 

Tobacco 0.894 0.912 0.904 0.873 1968:1-2013:1 

Wheat 0.970 1.049 0.997 0.947 1968:1-2012:12 

Oils      

Coconut 0.988 0.984 0.964 0.914 1989:7-2010:12 

Groundnut 0.993 0.937 0.893 0.773 1968:1-2013:1 

Palm 0.915 1.071 1.072 1.036 1968:1-2013:1 

Rapeseed 1.030 0.992 1.028 0.963 1984:1-2013:1 

Sunflower 0.946 1.028 1.057 1.106 1968:1-2005:6 

Industrial Commodities      

Aluminum 0.999 1.004 1.058 1.155 1977:1-2013:1 

Burlap 0.880 1.050 1.068 1.054 1968:1-2012:9 

Cement 1.028 1.075 1.148 1.200 1984:1-2012:12 

Copper 0.887 1.006 1.072 1.104 1968:1-2012:12 

Cotton 0.762 0.927 1.000 0.950 1968:1-2012:12 

Lead 0.964 1.034 1.084 1.092 1968:1-2012:12 

Lumber 1.005 1.127 1.149 1.172 1968:1-2012:12 

Mercury 0.884 1.077 1.198 1.419 1968:1-1995:3 

Nickel 0.955 1.157 1.444 2.422 1983:3-2013:1 

Rubber 0.952 0.989 1.054 1.117 1968:1-2010:12 

Tin 0.915 0.922 0.991 1.068 1968:1-2012:12 

Wool 0.967 0.987 1.034 1.096 1968:1-2013:1 

Zinc 0.936 1.030 1.101 1.339 1968:1-2012:12 
Notes: The forecast evaluation period depends on the commodity. It begins either in 1968:1 or at the earliest date such that the 

initial estimation window contains at least 48 observations. The maximum length of the recursive sample is restricted by the end 

of the data and the forecast horizon. All forecasts are obtained from a bivariate VAR that includes the level of the real commodity 

price and the first principal component extracted from the cross-section of real commodity prices. The lag length of the VAR is 

chosen recursively using the BIC. The MSPE of the VAR forecast is expressed as a ratio relative to that of the no-change 

forecast. Entries smaller than 1 indicate that the VAR forecast is superior to the no-change forecast and are shown in boldface. 
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Appendix Table 4: Recursive Forecast Error Diagnostics for Real Commodity Prices 

 h = 1 h = 3 h = 6 h = 12 

Agr./Food Commodities     

Bananas 0.880 0.698 0.625 0.842 

Barley 0.956 0.955 0.994 0.931 

Beef 1.048 1.207 1.475 1.787 

Cocoa 0.972 0.996 1.002 0.964 

Coffee 0.963 0.948 0.987 0.954 

Corn 0.874 0.870 0.838 0.769 

Fishmeal 0.968 1.104 1.199 1.319 

Hay 0.951 0.829 0.697 0.588 

Rice 0.847 0.885 0.838 0.758 

Shrimp 1.030 1.079 1.081 1.187 

Sorghum 0.908 0.911 0.863 0.813 

Sugar 0.942 1.010 0.994 0.922 

Tea 0.958 0.980 0.946 0.941 

Tobacco 0.858 0.876 0.831 0.726 

Wheat 0.921 0.919 0.826 0.750 

Oils     

Groundnut 0.877 0.891 0.825 0.679 

Palm 0.914 1.088 1.042 0.962 

Rapeseed 1.008 1.007 1.077 1.006 

Industrial Commodities     

Aluminum 1.000 0.985 1.000 1.020 

Cement 1.023 1.057 1.128 1.190 

Copper 0.865 0.980 1.015 1.063 

Cotton 0.784 0.913 1.019 0.972 

Lead 0.995 1.050 1.080 1.123 

Lumber 1.040 1.052 1.083 1.242 

Nickel 0.948 1.147 1.453 2.504 

Tin 0.893 0.889 0.947 0.969 

Wool 0.924 0.961 1.015 1.079 

Zinc 0.923 0.960 0.929 0.872 
Notes: The forecast evaluation period is 1984:1-2012:12. The initial estimation 

window begins at the earliest date such that it contains at least 48 observations. The 

maximum length of the recursive sample is restricted by the end of the data and the 

forecast horizon. All forecasts are obtained from a bivariate VAR that includes the 

level of the real commodity price and the first principal component extracted from the 

cross-section of real commodity prices. The lag length of the VAR is chosen 

recursively using the BIC. The MSPE of the VAR forecast is expressed as a ratio 

relative to that of the no-change forecast. Entries smaller than 1 indicate that the VAR 

forecast is superior to the no-change forecast and are shown in boldface.
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Appendix Table 5: Summary of Recursive Forecast Accuracy Diagnostics for the Real Price of Oil 

        

 Forecast Evaluation Period: 1984:1-2012:8 

      

 BIC  12 lags 

 Factor  Oil Market  Factor  Oil Market 

1 month 0.790  0.825  0.858  0.843 

        

3 months 0.947  1.047  1.037  1.028 

        

6 months 1.111  1.268  1.224  1.206 

        

12 months 1.308  1.501  1.419  1.427 

        

        

 Forecast Evaluation Period: 1992:1-2012:8 

    

 BIC  12 lags 

 Factor  Oil Market  Factor  Oil Market 

1 month 0.832  0.846  0.904  0.857 

        

3 months 0.980  1.016  1.105  0.960 

        

6 months 1.182  1.174  1.329  1.115 

        

12 months 1.459  1.336  1.524  1.172 
Notes: The oil-market data are from Baumeister and Kilian (2012) and span the 

period 1973:1-2012:8. “Factor” refers to the bivariate VAR forecasting model that 

includes the commodity-price factor and the real price of oil. “Oil Market” refers to 

the four-variable oil-market VAR, as described in the text. “BIC” indicates that the 

lag length is chosen recursively using the BIC. “12 lags” indicates that the lag 

length is fixed at 12. The MSPE ratios of the real-oil price forecasts are computed 

relative to the benchmark no-change forecast. Entries smaller than 1 indicate that 

the VAR forecast is superior to the no-change forecast and are shown in boldface. 




