Effective Protection with Global Value Chains

Emily J. Blanchard (Tuck @ Dartmouth)
Mitchell W. Boice (Notre Dame)
Robert C. Johnson (Notre Dame)

November 7, 2025 IMF Annual Research Conference

Big Picture

Question: How do tariffs affect resource allocation across sectors?

Challenge: Tariffs are often applied to inputs and outputs \rightarrow competing effects.

Example: US tariffs on autos and steel have increased.

- Auto tariffs boost demand for cars assembled in the United States.
- ▶ Steel tariffs raise the cost of US-assembled cars.
- ⇒ ambiguous net effect on demand for US workers and capital in car industry.

Max Corden (1966): The Effective Rate of Protection

Classic formula: $\frac{1}{1-s} [t_{output} - s \times t_{inputs}]$, where s is the input share.

- seeks to measure net protection offered by output and input tariffs;
- push/pull forces on resource allocation across sectors.

Good idea, lingering problems of implementation.

- Strong assumptions!
 - Corden's ERP assumes Home and Foreign goods are perfect substitutes, so all goods prices are essentially exogenous.
 - ⇒ Shuts off key transmission channels; runs afoul of modern quantitative models.
- ▶ What about the global value chain?
 - The entire ERP literature predates the rise of GVCs.
 - We seek to update ERP theory and practice for the GVC age.

What We Do

- 1. Update theory for ERP measurement.
 - Leverage a "value-added approach."
 - ightharpoonup Define ERP \equiv shift in demand for sectoral value added induced by tariffs.
 - Or, the effective subsidy to (or tax on) buyers of sectoral value added.
- 2. Build the GVC-ERP using world input-output data.
 - First-order (log-linear) approximation to gravity trade model.
 - OECD ICIO data + calibrated elasticities + tariff data.
 - Two versions: one country (SOE) vs. many countries.
- 3. Compute changes in effective protection due to US tariffs in 2025.
 - ▶ Even uniform tariffs → uneven effects; US ERP increases most in upstream sectors.
 - ► GVC linkages shape effective protection in complex ways:
 - upstream sectors are protected by downstream tariffs;
 - downstream sectors are taxed by upstream tariffs.

Demand for Value Added

Real value added \rightarrow real net output; quantity index of primary factors.

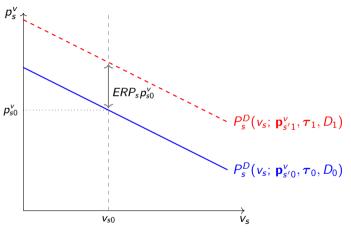
Derived demand for real value added from sector s:

$$v_s = D_s(p_s^v; \mathbf{p}_{s'}^v, \boldsymbol{\tau}, D)$$

 v_s is quantity, p_s^v is price, τ are tariffs, and $\{\mathbf{p}_{s'}^v, D\}$ are demand shifters.

Inverse demand curve: $p_s^v = P_s^D(v_s; \mathbf{p}_{s'}^v, \boldsymbol{\tau}, D)$

Effective Protection


Tariffs change from τ_0 to τ_1 .

$$ERP_s = \frac{P_s^D(v_{s0}; \mathbf{p}_{s'1}^v, \tau_1, D_1)}{P_s^D(v_{s0}; \mathbf{p}_{s'0}^v, \tau_0, D_0)} - 1$$

 ERP_s is the %-change in willingness to pay, induced by tariff changes.

This aligns with Corden's original objective: to measure "the proportional increase in the effective price [of real value added] made possible by tariffs." [Corden (2016)]

Tariff-Induced Shift in Demand for Value Added

ERP measures the vertical shift in inverse demand for value added. **Public finance interpretation**: $ERP_s > 0$ is 'as if' purchases are subsidized.

Comments

1. What about $\mathbf{p}_{s'}^{v}$ and D?

- ▶ In baseline analysis, we hold $\mathbf{p}_{s'}^{v}$ and D constant.
- **E**xtensions allow $\mathbf{p}_{s'}^{\nu}$ to adjust when tariffs change.
- ▶ D includes macro-effects: changes in real final expenditure and real exchange rates. We hold these constant throughout, so ERP is measured in partial equilibrium.

2. What about the supply side?

- Derived demand embeds supply-side features (production functions, input linkages).
- ▶ We do not specify supply functions for value added: ERP is a 'demand-side' concept.

Clarifying Interpretation

To head off mis-interpretation, the analysis does not tell us about:

- general equilibrium effects of tariffs.
- the welfare effects of tariffs.

It does tell us about the push/pull of resources across sectors.

- Primary factors should flow toward sectors with higher ERPs.
- ▶ Bhagwati and Srinivasan (1973): the ERP should rank sectors to predict changes in primary factor allocation and real value added.
- ▶ With specific factors, the ERP predicts changes in rents [Anderson (1998)].

Nuts and Bolts

Start with "small open economy."

- ► Take import prices and export demand schedule as given.
- Isolate the roles of imported inputs and domestic production network.

Standard multisector-CES structure:

- Production takes place under perfect competition.
 - ▶ Gross output combines real value added (primary factors) and intermediate inputs.
 - ► Composite input: CES across upstream sectors, CES between H/F within sectors.
 - Output price = marginal cost, which depends on input tariffs.
- Output allocated to consumption, input use, and exports.
- ► Consumption: CES across sectors, CES between H/F within sectors.

Manipulate log-linear approximation to form the ERP index.

Defining the ERP

Inverse Demand:
$$\hat{p}_V(s) = \Omega(s) + \frac{1}{\sigma(s,s)} \left[\mathsf{R}_{V1}(s) \hat{\tau}_C + \mathsf{R}_{V2}(s) \hat{\tau}_M \right] - \frac{1}{\sigma(s,s)} \hat{v}(s)$$
,

- $ightharpoonup \Omega(s)$ collects non-tariff determinants of the demand intercept.
- $ightharpoonup \mathbf{R}_{V1}(s)$ and $\mathbf{R}_{V2}(s)$ are matrices that depend on:
 - (a) substitution elasticities;
 - (b) input-output data for the initial equilibrium.
- $ightharpoonup \sigma(s,s) = |\ln \hat{v}(s)/\ln \hat{p}_V(s)|$ is the own-price elasticity of demand.

Approximate ERP:
$$ERP(s) = \Omega(s) + \underbrace{\frac{1}{\sigma(s,s)} \left[R_{V1}(s) \hat{\tau}_C + R_{V2}(s) \hat{\tau}_M \right]}_{\text{direct effect of tariffs}}$$

Many Countries with GVCs

Multi-sector, multi-country gravity model with full global input-output structure.

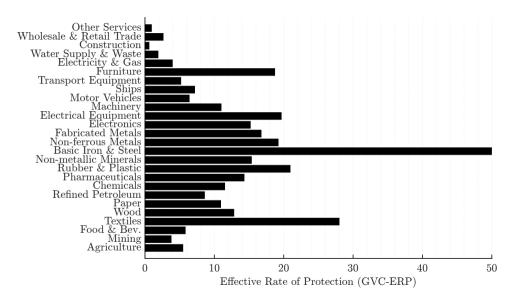
Messy matrix math, but the gist is the same.

Approximate GVC-ERP:
$$ERP_i(s) = \Omega_i(s) + \frac{1}{\sigma_i(s,s)} \left[\mathsf{R}_{V1(i,s)} \left(\hat{\boldsymbol{\tau}}_C \right) + \mathsf{R}_{V2(i,s)} \left(\hat{\boldsymbol{\tau}}_M \right) \right].$$

- $ightharpoonup \hat{ au}_C$ and $\hat{ au}_M$ include tariff changes in *all* countries.
 - \triangleright ERP_i(s) depends on both country i's own tariffs and foreign tariffs.
- $ightharpoonup \mathbf{R}_{V1(i,s)}(\hat{\tau}_C)$ and $\mathbf{R}_{V2(i,s)}(\hat{\tau}_M)$ are matrix operations to feed tariffs through GVCs.
 - Final goods tariffs propagate backward, via upstream input demand.
 - Input tariffs propagate both backward (via demand for inputs to inputs) and forward (via downstream price changes, which trigger substitution).

Numbers

OECD Inter-Country Input-Output tables (2025 edition).


Elasticity parameters:

- ▶ Trade elasticities by sector and end use from Fontagnè et al. (2022).
 - ▶ Long-run elasticities estimated using cross-sectional tariff variation.
 - Median elasticity \approx 6.
- ► Cross-sector EOS for input use calibrated to 0.5, based on Atalay (2017).
- ► Cross-sector EOS in consumption also 0.5, as in structural change literature.

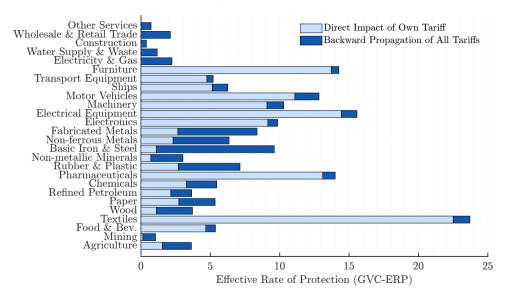
US tariff changes:

- Start with applied bilateral tariffs in 2022 from CEPII MAcMap database.
- ▶ Apply announced bilateral and sector-specific changes from executive orders. Good summary by Congressional Research Service (2025).

Effective Protection in the US

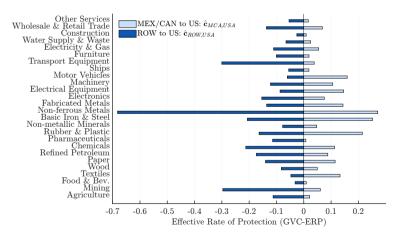
Under the Hood: Final Goods Tariffs

- 1. Final goods tariffs raise demand for domestic final goods: $\hat{\mathbf{c}}_{HH} > 0$.
 - Direct impacts on demand for value added from Home sectors with increased tariffs.
 - ▶ Plus indirect impacts via backward propagation.
 - US auto tariffs raise demand for US steel.
 - ▶ US auto tariffs raise demand for Foreign auto parts.

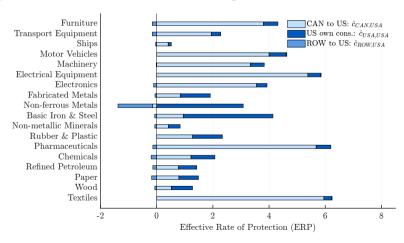

Under the Hood: Final Goods Tariffs

- 1. Final goods tariffs raise demand for domestic final goods: $\hat{\mathbf{c}}_{HH} > 0$.
 - Direct impacts on demand for value added from Home sectors with increased tariffs.
 - ▶ Plus indirect impacts via backward propagation.
 - US auto tariffs raise demand for US steel.
 - US auto tariffs raise demand for Foreign auto parts.
- 2. Final goods tariffs lower demand for foreign final goods: $\hat{\mathbf{c}}_{FH} < 0$.
 - Direct impacts on demand for value added from Foreign sectors hit by increased tariffs.
 - Plus indirect impacts via backward propagation.
 - Lower US auto imports reduce Foreign demand for US auto parts.

Under the Hood: Final Goods Tariffs


- 1. Final goods tariffs raise demand for domestic final goods: $\hat{\mathbf{c}}_{HH} > 0$.
 - Direct impacts on demand for value added from Home sectors with increased tariffs.
 - ▶ Plus indirect impacts via backward propagation.
 - ▶ US auto tariffs raise demand for US steel.
 - US auto tariffs raise demand for Foreign auto parts.
- 2. Final goods tariffs lower demand for foreign final goods: $\hat{\mathbf{c}}_{FH} < 0$.
 - Direct impacts on demand for value added from Foreign sectors hit by increased tariffs.
 - Plus indirect impacts via backward propagation.
 - Lower US auto imports reduce Foreign demand for US auto parts.
- 3. USMCA Twist: Mexico & Canada still receive preferences on most goods.
 - ▶ US tariffs on ROW switch expenditure toward Mexico & Canada: $\hat{\mathbf{c}}_{MEX/CAN,US} > 0$.
 - Effective protection in Mexico & Canada increases.

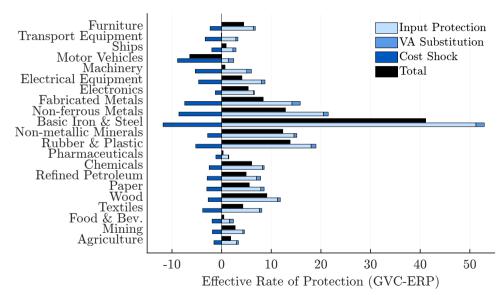
US ERP: Final Goods Tariffs Only


GVC Spillovers: From US Final Goods Imports to US Input Suppliers

US final goods tariffs depress imports from ROW ($c_{ROW,US} < 0$), but raise imports from Mexico & Canada ($c_{MCA,US} > 0$). Backward spillovers to US input suppliers are weak.

GVC Spillovers: Effective Protection in Canada

US tariffs switch expenditure toward CAN ($c_{CAN,US} > 0$), raising Canada's ERP. US cons. of its own goods ($c_{US,US} > 0$) spills backward, also raising Canada's ERP. Backward spillovers from US to Canada are strongest for metals.



Under the Hood: Input Tariffs

Input tariffs work through three offsetting channels:

- 1. Input protection: τ_M raises demand for domestic inputs: $\hat{\mathbf{m}}_{HH} > 0$.
 - Input demand propagates backwards, like changes in final goods tariffs.
 - Analysis of GVC channels mimics previous results.
- 2. VA substitution: au_M raises cost of composite input and demand for value added.
 - ► This channel is relatively weak, due to low EOS.
- 3. Cost shock: τ_M increases downstream costs, lowering demand for value added.
 - ▶ e.g., US metals (input) tariffs: $ERP_{metals}(s) \uparrow \text{ and } ERP_{autos}(s) \downarrow$.
 - ▶ The metals tariff is a net tax on auto production.

Effective Protection in the US: Input Tariffs

Conclusion

The ERP is alive and well, now up to date with gravity & GVCs.

Yet, more to do:

- Needed: applications of the toolkit.
 - ► Tariff changes in other countries: retaliation matters for the ERP too.
 - ► Tariff changes in other periods: analyzing historical reforms.
 - Export taxes and quantity restrictions.
- Additional theoretical concerns:
 - Endogenous markups & pro-competitive effects.
 - Increasing returns to scale (upstream or downstream?).
 - ► Adding the supply side to evaluate tariff incidence.

And much more to say about welfare...

References

- Anderson, James E., "Effective Protection Redux," Journal of International Economics, 1998, 44, 21-44.
- **Atalay, Enghin**, "How Important Are Sectoral Shocks?," *American Economic Journal: Macroeconomics*, October 2017, *9* (4), 254–80.
- **Bhagwati, Jagdish N. and T.N. Srinivasan**, "The General Equilibrium Theory of Effective Protection and Resource Allocation," *Journal of International Economics*, 1973, 3, 259–282.
- Congressional Research Service, "Presidential 2025 Tariff Actions: Timeline and Status," 2025. Updated September 16, 2025.
- Corden, W. Max, "The Structure of a Tariff System and the Effective Protection Rate," *The Journal of Political Economy*, 1966, LXXIV (3), 221–237.
- __ , "Effective Protection," in "The New Palgrave Dictionary of Economics," London: Palgrave Macmillan UK, 2016, pp. 1–6.
- **Fontagnè, Lionel, Houssein Guimbard, and Gianluca Orefice**, "Tariff-based Product-level Trade Elasticities," *Journal of International Economics*, 2022, *137*, 103593.