Trade Costs and Inflation Dynamics Cuba-Borda, Queralto, Reyes-Heroles, Scaramucci

Discussion by Doireann Fitzgerald¹

Federal Reserve Bank of Minneapolis

September 2025

¹The views expressed here are those of the author and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Timely question

What is the impact on inflation (and output) of:

- ▶ 2018-19 trade war
- Trade cost spikes around Covid
- ▶ tariffs redux??

Summary

Part I

- Recover proxy for trade costs from bilateral trade data
- ► Use local projections to estimate impulse-responses of inflation and GDP to trade cost shocks
- Contrast inflation impact of intermediates trade costs with final goods trade costs

Takeaway:

 Bigger & more persistent inflation responses to intermediate than final goods trade costs

Part II

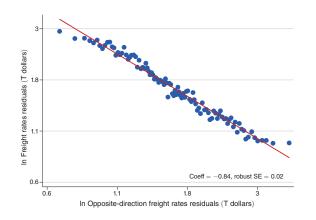
- Calibrate multi-country New Keynesian model with roundabout structure
- ► Compare model & data responses to trade cost shocks
- How did 2018-19 tariffs affect inflation and output?
- ▶ How much did trade costs contribute to Covid inflation?

Measuring bilateral trade costs

Assume CES demand:

$$C^{ik} = \left(\frac{\kappa^{ik} d^{ik} P^i}{P_C^k}\right)^{-\eta} C^k$$

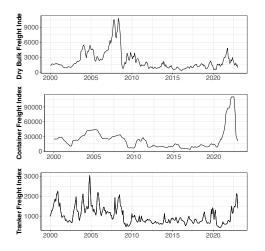
Then


$$\omega^{ik} = \frac{X^{ik}}{X^k} = \frac{\kappa^{ik} d^{ik} P^i C^{ik}}{P_C^k C^k} = \left(\frac{\kappa^{ik} d^{ik} P^i}{P_C^k}\right)^{1-\eta}$$

and

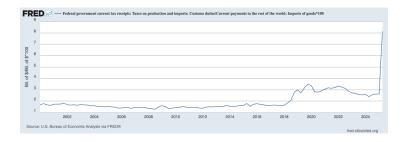
$$\mathscr{T}^{ik} = \left(\frac{\omega^{ik}\omega^{ki}}{\omega^{ii}\omega^{kk}}\right)^{\frac{1}{2(1-\eta)}} = \sqrt{\kappa^{ik}\kappa^{ki}d^{ik}d^{ki}}$$

Are trade costs and tariffs symmetric?


- Asymmetric zeros in ω^{ik} : clear violation of symmetry
- Measured tariffs are asymmetric
- Measured container freight rates are asymmetric: Wong (2022)

Source: Wong (2022)

Are trade costs exogenous to trade?


▶ Brancaccio, Kalouptsidi & Papageorgiou (2020), Wong (2022): freight rates endogenous to trade volumes

Source: Brancaccio, Kalouptsidi & Papageorgiou (2025)

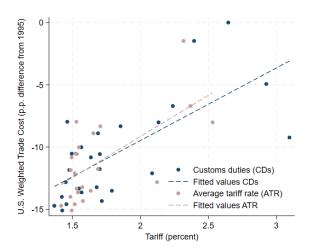
Does it matter what is in τ ?

- When frictions induce forward-looking behavior, shock process matters for responses
- ▶ e.g. very different passthrough of exchange rates & tariffs
- ► Trade costs, tariffs: very different processes

Aggregating bilateral trade costs

Remember bilateral wedge

$$\mathscr{T}^{ik} = \left(\frac{\omega^{ik}\omega^{ki}}{\omega^{ii}\omega^{kk}}\right)^{\frac{1}{2(1-\eta)}} = \sqrt{\kappa^{ik}\kappa^{ki}d^{ik}d^{ki}}$$

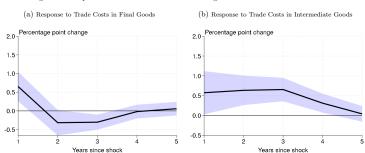

Aggregate across import sources using import weights to get importer-level trade cost:

$$\tau^k = \sum_{i=1}^N \frac{X^{ik}}{\sum_{j \neq i}^N X^{jk}} \mathscr{T}^{ik}$$

What do these importer-level trade costs pick up?

▶ Related to tariffs, but a lot of measurement error?

Figure 3: Trade Costs and Effective Tariffs in the U.S.



Local projections

▶ Estimate for h = 1, ...5:

$$\frac{P_h^i}{P_{h-1}^i} = \delta_h^i + \delta_{h,t} + \beta_h \Delta \tau_t^i + \Gamma' Z_{t-1}^i + \varepsilon_{h,t}^i$$

Figure 4: Response of Inflation to a 10 Percentage Point Increase in Trade Costs

Are the magnitudes reasonable?

- First-order approximation: use Domar weight to infer impact of supply shock on aggregates
- Scaling issue here?
 - Some countries more open than others
 - Countries may have different shares of imports accounted for by final vs intermediates
- ▶ But difference in persistence across final and intermediate shocks is very striking

Conclusion

- Super-interesting result contrasting responses to trade cost shocks to intermediates & final goods
- Would be nice relate to supporting evidence based on better-measured shocks, especially with more granularity
- Model is nice, could also connect with closed economy literature emphasizing heterogeneous price stickiness, input-output linkages
- e.g. La'O & Tahbaz-Salehi (2022), Rubbo (2023), Afrouzi & Bhattarai (2025)