THE OPTIMAL MONETARY POLICY RESPONSE TO TARIFFS

Javier Bianchi¹ Louphou Coulibaly²

¹Federal Reserve Bank of Minneapolis

²University of Wisconsin-Madison and NBER

Motivation

• How should a central bank respond to import tariffs?

Motivation

- How should a central bank respond to import tariffs?
 - ▶ Tighten monetary policy to contain inflationary pressures, or...
 - ▶ Maintain monetary stance ("look-through") and allow one-time jump in CPI?

Top Federal Reserve official calls for rate cuts as soon as July Governor Chris Waller says US has yet to see an inflation 'shock' from Donald Trump's tariffs

Motivation

- How should a central bank respond to import tariffs?
 - ▶ Tighten monetary policy to contain inflationary pressures, or...
 - ▶ Maintain monetary stance ("look-through") and allow one-time jump in CPI?

This paper:

Optimal monetary policy response to tariffs is expansionary

• Open-economy New Keynesian model with home and importable goods

- Open-economy New Keynesian model with home and importable goods
 - ▶ Macroeconomic effects depend on monetary policy

flex-price allocation ("look-through")

PPI targeting: tariffs generally contractionary—always fall for small tariffs

```
flex-price allocation ("look-through")
```

- PPI targeting: tariffs generally contractionary—always fall for small tariffs
- Optimal policy: overheating positive PPI inflation & positive output gap

- flex-price allocation ("look-through")
- PPI targeting: tariffs generally contractionary—always fall for small tariffs
- Optimal policy: **overheating** positive PPI inflation & positive output gap
 - ▶ Wedge between internal and international price
 - ► Fiscal externality ⇒ Depress inefficiently imports

≠ terms-of-trade shock

- flex-price allocation ("look-through")
- PPI targeting: tariffs generally contractionary—always fall for small tariffs
- Optimal policy: overheating positive PPI inflation & positive output gap
 - ▶ Wedge between internal and international price
 - $\,\,{}^{}_{}$ Fiscal externality \Rightarrow Depress in efficiently imports

Tariffs can lead to an expansion or contraction in output

≠ textbook cost-push shock

- flex-price allocation ("look-through")
- PPI targeting: tariffs generally contractionary—always fall for small tariffs
- Optimal policy: overheating positive PPI inflation & positive output gap
 - ▶ Wedge between internal and international price
 - $\,\,{}^{}_{}$ Fiscal externality \Rightarrow Depress in efficiently imports
 - Tariffs can lead to an expansion or contraction in output
 - Trade surplus and exchange-rate depreciation

Weak dollar post Liberation Day

- flex-price allocation ("look-through")
- PPI targeting: tariffs generally contractionary—always fall for small tariffs
- Optimal policy: overheating positive PPI inflation & positive output gap
 - ▶ Wedge between internal and international price
 - $\,\,{}^{}_{}$ Fiscal externality \Rightarrow Depress in efficiently imports
 - Tariffs can lead to an expansion or contraction in output
 - Trade surplus and exchange-rate depreciation
- Extensions: temporary/anticipated, ex/endogenous TOT, supply chains

Literature on Tariffs in International Macro

- Classic question: Are tariffs expansionary or contractionary? Keynes vs. Mundell
- Recent studies: Auray, Devereux, Eyquem (2022,2024); Eichengreen (2019); Barattieri, Cacciatore and Ghironi (2021); Comin and Johnson (2021); Jeanne (2021); Bergin and Corsetti (2021); Erceg, Prestipino and Raffo (2023); Lloyd and Marin (2024)

Focus literature: positive analysis and joint optimal tariffs-monetary policy

• Bergin-Corsetti (2023): Optimal cooperative is contractionary for tariff-imposing

Our contribution:

- Non-cooperative: optimal policy is expansionary
 - ▶ Fiscal externality ⇒ tariff ≠ TOT shock
- Analytical conditions for tariffs expansionary/contractionary

Active agenda!

Environment

- Deterministic SOE, infinite horizon, representative household
- Two final consumption goods: home-produced (h) and foreign-produced (f)
 - Prices of domestic inputs are sticky in domestic currency
- Monetary authority: sets monetary policy optimally, taking as given tariffs $\{\tau_t\}$

Environment

- Deterministic SOE, infinite horizon, representative household
- Two final consumption goods: home-produced (h) and foreign-produced (f)
 - Prices of domestic inputs are sticky in domestic currency
- Monetary authority: sets monetary policy optimally, taking as given tariffs $\{\tau_t\}$
- Country is small ⇒ no market power in goods or capital markets
 - ▶ No role for terms-of-trade manipulation:
 - Optimal tariff is zero
 - Monetary policy does not affect terms of trade

Environment

- Deterministic SOE, infinite horizon, representative household
- Two final consumption goods: home-produced (h) and foreign-produced (f)
 - ▶ Prices of domestic inputs are sticky in domestic currency
- Monetary authority: sets monetary policy optimally, taking as given tariffs $\{\tau_t\}$
- Country is small ⇒ no market power in goods or capital markets
 - ▶ No role for terms-of-trade manipulation:
 - Optimal tariff is zero
 - Monetary policy does not affect terms of trade

Households

$$\sum_{t=0}^{\infty} \beta^{t} \Big[U(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t}) \Big]$$

$$t=0$$

$$U(c_t^h, c_t^f) = \frac{\sigma}{\sigma - 1} \left[\omega(c_t^h)^{1 - \frac{1}{\gamma}} + (1 - \omega)(c_t^f)^{1 - \frac{1}{\gamma}} \right]^{\frac{\gamma}{\gamma - 1}} \frac{\sigma - 1}{\sigma}, \quad v(\ell_t) = \omega \frac{\ell_t^{1 + \psi}}{1 + \psi}$$

Households

$$\sum_{t=0}^{\infty} \beta^{t} \left[U(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t}) \right]$$

$$U(c_t^h, c_t^f) = \frac{\sigma}{\sigma - 1} \left[\omega(c_t^h)^{1 - \frac{1}{\gamma}} + (1 - \omega)(c_t^f)^{1 - \frac{1}{\gamma}} \right]^{\frac{\gamma}{\gamma - 1} \frac{\sigma - 1}{\sigma}}, \quad v(\ell_t) = \omega \frac{\ell_t^{1 + \psi}}{1 + \psi}$$

• Budget constraint:

$$P_t^h c_t^h + P_t^f (1 + \mathbf{\tau_t}) c_t^f + \frac{e_t b_{t+1}}{R^*} + \frac{B_{t+1}}{R_t} = e_t b_t + B_t + W_t \ell_t + T_t + D_t$$

• Law of one price (before tariffs): $P_t^h = e_t P_t^{h*}$, $P_t^f = e_t P_t^{f*}$

Households

$$\sum_{t=0}^{\infty} \beta^{t} \left[U(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t}) \right]$$

$$U(c_t^h, c_t^f) = \frac{\sigma}{\sigma - 1} \left[\omega(c_t^h)^{1 - \frac{1}{\gamma}} + (1 - \omega)(c_t^f)^{1 - \frac{1}{\gamma}} \right]^{\frac{\gamma}{\gamma - 1} \frac{\sigma - 1}{\sigma}}, \quad v(\ell_t) = \omega \frac{\ell_t^{1 + \psi}}{1 + \psi}$$

• Budget constraint:

$$P_t^h c_t^h + P_t^f (1 + \mathbf{\tau_t}) c_t^f + \frac{e_t b_{t+1}}{R^*} + \frac{B_{t+1}}{R_t} = e_t b_t + B_t + W_t \ell_t + T_t + D_t$$

- Law of one price (before tariffs): $P_t^h = e_t P_t^{h*}$, $P_t^f = e_t P_t^{f*}$
- Terms-of-trade exogenous $p \equiv \frac{P_{t}^{f*}}{P_{t}^{h*}} \leftarrow \text{Limit case w/ export elasticity} = \infty$

Firms

• Production of final home good is competitive

$$Y_t = \left(\int_0^1 y \frac{\varepsilon - 1}{i} dj\right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

• Intermediate good varieties

$$y_{jt} = \ell_{jt}$$

Firms

• Production of final home good is competitive

$$Y_t = \left(\int_0^1 y_{jt}^{\frac{\varepsilon - 1}{\varepsilon}} dj \right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

• Intermediate good varieties

$$y_{it} = \ell_{it}$$

Monop. competitive w/ Rotemberg price adjustment costs φ

$$\max_{\left\{y_{jt}, P_{jt}\right\}} \sum_{t=0}^{\infty} \Lambda_{t+1} \left[(1+s)P_{jt}y_{jt} - W_t y_{jt} - \frac{\varphi}{2} \left(\frac{P_{jt}}{P_{j,t-1}} - 1 \right)^2 P_t^h y_t \right]$$
s.t.
$$y_{jt} = \left(\frac{P_{jt}}{P_t^h} \right)^{-\varepsilon} y_t$$
Constant subsidy to correct markup distortion

Firms

Production of final home good is competitive

$$Y_t = \left(\int_0^1 y_{jt}^{\frac{\varepsilon - 1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

• Intermediate good varieties

$$y_{jt} = \ell_{jt}$$

▶ NK Phillips Curve

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{W_t}{P_t^h} - 1 \right] + \beta \frac{u_h(c_{t+1}^h, c_{t+1}^f)}{u_h(c_t^h, c_t^f)} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1}$$

where $\pi_t \equiv P_t^h/P_{t-1}^h - 1$ denotes Producer Price Index PPI inflation

Competitive Equilibrium

 \bullet Optimization (households and firms) + govt. budget + labor mk. clearing.

$$\tau_t P_t^f c_t^f = T_t + s P_t^h y_t$$

Competitive Equilibrium

 \bullet Optimization (households and firms) + govt. budget + labor mk. clearing.

$$\tau_t P_t^f c_t^f = T_t + s P_t^h y_t$$

 \bullet Assume fraction $1-\Upsilon$ of price adjustment costs are rebated (rest is a deadweight loss)

$$\underbrace{\left(1 - \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h}_{\text{exports}} - \underbrace{pc_t^f}_{\text{imports}} = \underbrace{\frac{b_{t+1}}{R^*} - b_t}_{\text{capital outflows}}$$
 (Country budget constraint)

▶ If $\Upsilon = 0$, sticky prices distort employment but have no resource costs

Competitive Equilibrium

 \bullet Optimization (households and firms) + govt. budget + labor mk. clearing.

$$\tau_t P_t^f c_t^f = T_t + s P_t^h y_t$$

 \bullet Assume fraction $1-\Upsilon$ of price adjustment costs are rebated (rest is a deadweight loss)

$$\underbrace{\left(1 - \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h}_{\text{exports}} - \underbrace{pc_t^f}_{\text{imports}} = \underbrace{\frac{b_{t+1}}{R^*} - b_t}_{\text{capital outflows}}$$
 (Country budget constraint)

- ▶ If $\Upsilon = 0$, sticky prices distort employment but have no resource costs
- Portfolio undetermined, assume $B_0 = 0$ \Leftarrow Abstract from valuation effects

Efficient Allocation

$$\max_{\left\{b_{t+1}, c_{t}^{f}, c_{t}^{h}, \ell_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t} \left[u(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t})\right],$$
s.t $c_{t}^{h} + pc_{t}^{f} + \frac{b_{t+1}}{R^{*}} = b_{t} + \ell_{t}.$

Competitive equilibrium

$$-(1+\pi_{t+1})\pi_{t+1}$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1 + \mathbf{\tau}_t)$$

$$(1 + \tau_t)$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f)$$

 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} -$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Competitive equilibrium

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1 + \mathbf{\tau}_t)$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{P^*} - b_t$$

- Tariffs: distort MRS = p constraint
- Sticky prices: labor wedge & inflation costs

$$\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

 $\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{D^*} - b_t$

Competitive equilibrium $\tau = 0$

$$\frac{1}{\ell_{*}}\frac{\ell_{t+1}}{\ell_{t}}(1+\pi)$$

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$u_{\ell}(c_{\ell}^{h}, c_{\ell}^{f})$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f)$$

 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$

$$\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Competitive equilibrium
$$\tau = 0$$
 (with $\pi_t = 0$)

 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$

$$0 = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right]$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Efficient allocation

$$\frac{v'(\ell_t)}{v(c^h c^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$a_h(c_t, c_t) = \beta R \quad u_h(c_{t+1}, c_{t+1})$$

$$c_t^h - nc^f = \frac{b_{t+1}}{a_{t+1}} - h_t$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Competitive equilibrium $\tau > 0$

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1 + \tau_t)$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^b - p c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Efficient allocation

$$\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Definition: A policy of **look-through** targets PPI inflation, $\pi_t = 0$ for all t

Definition: A policy of **look-through** targets PPI inflation, $\pi_t = 0$ for all t

• Closes labor wedge and replicates flex-price allocation

→ Absent tariffs, this is optimal ← Divine coincidence

Definition: A policy of **look-through** targets PPI inflation, $\pi_t = 0$ for all t

• Closes labor wedge and replicates flex-price allocation

$$\rightarrow$$
 Absent tariffs, this is optimal \Leftarrow Divine coincidence

Proposition. Assume that $\beta R^* = 1, \tau_t = \tau$. Then, employment is given by

$$\ell_{t}(\tau) = \left[\frac{\Theta_{\tau} + \tau}{1 + \tau} \left(\omega\Theta_{\tau}\right)^{\frac{\sigma - \gamma}{\gamma - 1}}\right]^{\frac{1}{1 + \sigma\psi}}, \qquad \Theta_{\tau} \equiv 1 + \left(\frac{1 - \omega}{\omega}\right)^{\gamma} \left(p(1 + \tau)\right)^{1 - \gamma} > 1$$

Definition: A policy of **look-through** targets PPI inflation, $\pi_t = 0$ for all t

• Closes labor wedge and replicates flex-price allocation

Absent tariffs, this is optimal ← Divine coincidence

Proposition. Assume that $\beta R^* = 1, \tau_t = \tau$. Then, employment is given by

$$\ell_{t}(\tau) = \left[\frac{\Theta_{\tau} + \tau}{1 + \tau} \left(\omega\Theta_{\tau}\right)^{\frac{\sigma - \gamma}{\gamma - 1}}\right]^{\frac{1}{1 + \sigma\psi}}, \qquad \Theta_{\tau} \equiv 1 + \left(\frac{1 - \omega}{\omega}\right)^{\gamma} \left(p(1 + \tau)\right)^{1 - \gamma} > 1$$

and

$$c_t^h(\tau) = \frac{1+\tau}{\Theta_{\tau} + \tau} \ell_t(\tau), \qquad c_t^f(\tau) = \frac{\Theta_{\tau} - 1}{p(\Theta_{\tau} + \tau)} \ell_t(\tau)$$

Are Tariffs Expansionary or Contracionary?

$$\frac{d \log \ell(\tau)}{d \tau} = - \frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} [\sigma \Theta_{\tau} + (\sigma - \gamma)\tau]$$

Are Tariffs Expansionary or Contracionary?

$$\frac{d \log \ell(\tau)}{d\tau} = -\frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} \left[\sigma \Theta_{\tau}\right] < 0$$

- ▶ For small τ , increase in tariffs are always contractionary (even absent TOT or exchange rate movements)
 - Consumption rebalancing towards c^h leads to $\downarrow u_h$, which implies in a flex-price eqm. a lower level of employment

Are Tariffs Expansionary or Contracionary?

$$\frac{d \log \ell(\tau)}{d \tau} = - \frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} \left[\sigma \Theta_{\tau} + (\sigma - \gamma)\tau \right]$$

- ▶ For small τ , increase in tariffs are always contractionary (even absent TOT or exchange rate movements)
 - Consumption rebalancing towards c^h leads to $\downarrow u_h$, which implies in a flex-price eqm. a lower level of employment
- ▶ For large τ , ambiguous.

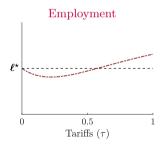
Are Tariffs Expansionary or Contracionary?

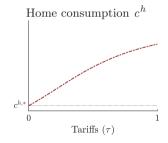
$$\frac{d \log \ell(\tau)}{d \tau} = - \frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} \left[\sigma \Theta_{\tau} + (\sigma - \gamma)\tau \right]$$

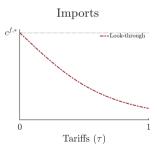
- Three goods, two changes in relative prices:
 - 1. Substitution (c^f, ℓ)
 - Tariff reduces the real wage in terms of $c^f \Rightarrow$ substitution away from labor
 - 2. Substitution (c^f, c^h)
 - $-\sigma > \gamma$ goods are Hicksian complements \Rightarrow labor unambiguously falls
 - $-\sigma < \gamma$ goods are Hicksian substitutes \Rightarrow labor increases for large τ

Illustration: Hicksian Substitutes

$$\sigma = 1/2, \gamma = 4$$







$$\sum_{k=0}^{\infty} a^{k} \left[\left(\begin{array}{cc} h & f \\ h & f \end{array} \right) \right]$$

$$\sum_{k=0}^{\infty} \beta^{t} \left[u(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t}) \right].$$

$$\max_{\pi_t, b_{t+1}, \ell_t, c_t^f, c_t^h} \sum_{t=0}^{\infty} \beta^t \left[u(c_t^h, c_t^f) - v(\ell_t) \right],$$

$$\sum_{k=0}^{\infty} \beta_{k} \left[v(c_{k}^{h}, c_{k}^{f}) - v(\ell_{k}) \right]$$

 $(1+\pi_t)\,\pi_t = \frac{\varepsilon}{\omega} \left| \frac{v'(\ell_t)}{v_t(\ell_t)} - 1 \right| + \frac{\ell_{t+1}}{\ell_t} \, \frac{(1+\pi_{t+1})\pi_{t+1}}{R^*}.$

s.t. $c_t^h + p c_t^f + \frac{b_{t+1}}{R^*} = b_t + \ell_t \left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2 \right),$

 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f).$

 $\frac{1-\omega}{\omega} \left(\frac{c_t^h}{c_t^f} \right)^{\frac{1}{\gamma}} = p \left(1 + \mathbf{\tau_t} \right),$

$$\max_{\pi_{t}, b_{t+1}, \ell_{t}, c_{t}^{f}, c_{t}^{h}} \sum_{t=0}^{\infty} \beta^{t} \left[u(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t}) \right], \qquad \Upsilon = 0,$$
s.t.
$$c_{t}^{h} + p c_{t}^{f} + \frac{b_{t+1}}{R^{*}} = b_{t} + \ell_{t},$$

$$\frac{1 - \omega}{\omega} \left(\frac{c_{t}^{h}}{c_{t}^{f}} \right)^{\frac{1}{\gamma}} = p \left(1 + \tau_{t} \right),$$

$$u_{h}(c_{t}^{h}, c_{t}^{f}) = \beta R^{*} u_{h}(c_{t+1}^{h}, c_{t+1}^{f}),$$

$$(1 + \pi_{t}) \pi_{t} = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_{t})}{u_{t}(c_{t}^{h}, c_{t}^{f})} - 1 \right] + \frac{\ell_{t+1}}{\ell_{t}} \frac{(1 + \pi_{t+1})\pi_{t+1}}{R^{*}}.$$

$$\max_{b_{t+1},\ell_t,c_t^f,c_t^h} \sum_{t=0}^{\infty} \beta^t \left[u(c_t^h, c_t^f) - v(\ell_t) \right], \qquad \Upsilon = 0$$

s.t.
$$c_t^h + p c_t^f + \frac{b_{t+1}}{P^*} = b_t + \ell_t$$
,

$$\frac{1}{t} = b_t + \ell$$

$$\frac{1-\omega}{\omega} \left(\frac{c_t^h}{c_t^f} \right)^{\frac{1}{\gamma}} = p \left(1 + \tau_t \right),$$

$$(c_t^J)^T$$
 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f),$

$$\max_{\ell, c^f, c^h} \sum_{t=0}^{\infty} \beta^t \left[u(c^h, c^f) - v(\ell) \right], \qquad \Upsilon = 0, \ \tau_t = \tau, \ \beta R^* = 1$$

s.t.
$$c^h + p c^f + \frac{b}{R^*} - b = \ell$$
,

$$\frac{1-\omega}{\omega} \left(\frac{c^h}{c^f}\right)^{\frac{1}{\gamma}} = p\left(1+\tau\right),$$

$$\max_{\substack{\ell \in \mathcal{E}^f \in \mathcal{E}^h \\ \ell = 0}} \sum_{t=0}^{\infty} \beta^t \left[u(c^h, c^f) - v(\ell) \right], \quad \text{Assume } \Upsilon = 0, \ \tau_t = \tau, \ \beta R^* = 1$$

s.t.
$$c^h + p c^f + \frac{b}{R^*} - b = \ell$$
, Planner picks ℓ ; Households choose c^h , c^f

$$\frac{1 - \omega}{\omega} \left(\frac{c^h}{c^f}\right)^{\frac{1}{\gamma}} = p \left(1 + \tau\right),$$

$$\max_{\ell, c^f, c^h} \sum_{t=0}^{\infty} \beta^t \left[u(c^h, c^f) - v(\ell) \right], \quad \text{Assume } \Upsilon = 0, \ \tau_t = \tau, \ \beta R^* = 1$$

s.t.
$$c^h + p c^f + \frac{b}{R^*} - b = \ell$$
, Planner picks ℓ ;

Households choose c^h , c^f

$$\frac{1 - \omega}{\omega} \left(\frac{c^h}{c^f}\right)^{\frac{1}{\gamma}} = p (1 + \tau),$$

Proposition: Under optimal monetary policy, the level of employment is

$$\ell_t^{opt}(\tau) = \left(\frac{1+\tau}{1+\Theta_\tau^{-1}\tau}\right)^{\frac{\sigma}{1+\sigma\psi}} \left[\frac{\Theta_\tau + \tau}{1+\tau} \left(\omega\Theta_\tau\right)^{\frac{\sigma-\gamma}{\gamma-1}}\right]^{\frac{1}{1+\sigma\psi}} > \ell_t^{\text{look}}(\tau).$$

$$\max_{\ell = c^f, c^h} \sum_{t=0}^{\infty} \beta^t \left[u(c^h, c^f) - v(\ell) \right], \quad \text{Assume } \Upsilon = 0, \ \tau_t = \tau, \ \beta R^* = 1$$

s.t.
$$c^h + p c^f + \frac{b}{R^*} - b = \ell$$
,

Planner picks ℓ ;

Households choose c^h , c^f

$$\frac{1-\omega}{\omega} \left(\frac{c^h}{f}\right)^{\frac{1}{\gamma}} = p(1+\tau),$$

Proposition: Under optimal monetary policy, the level of employment is

$$\ell_t^{opt}(\tau) = \left(\frac{1+\tau}{1+\Theta_{\tau}^{-1}\tau}\right)^{\frac{\sigma}{1+\sigma\psi}} \left[\frac{\Theta_{\tau}+\tau}{1+\tau}\left(\omega\Theta_{\tau}\right)^{\frac{\sigma-\gamma}{\gamma-1}}\right]^{\frac{1}{1+\sigma\psi}} > \ell_t^{\text{look}}(\tau).$$

$$c_t^h(\tau) = \left(\frac{1+\tau}{1+\Theta_\tau^{-1}\tau}\right) \qquad \left[\frac{1+\tau}{1+\tau}\left(\omega\Theta_\tau\right)^T\right] \qquad \mathcal{C}_t^h(\tau) = \frac{1+\tau}{\Theta_\tau + \tau}\ell_t^{opt}(\tau), \qquad c_t^f(\tau) = \frac{\Theta_\tau - 1}{\eta\left(\Theta_\tau + \tau\right)}\ell_t^{opt}(\tau)$$

Households "indirect utility" as a function of c^f

$$\mathbf{W}(c^f; \tau) \equiv u \left(\mathbf{L}(c^f) + \mathbf{T}(c^f) - p(1+\tau)c^f, c^f \right) - v \left(\mathbf{L}(c^f) \right)$$
employment $\frac{\Theta_{\tau} + \tau}{\Theta_{\tau} - 1} pc^f$
revenue $p\tau c^f$

Households "indirect utility" as a function of c^f

$$\mathbf{W}(c^f;\tau) \equiv u\left(\mathbf{L}(c^f) + \mathbf{T}(c^f) - p(1+\tau)c^f, c^f\right) - v\left(\mathbf{L}(c^f)\right)$$
 employment $\frac{\Theta_{\tau} + \tau}{\Theta_{\tau} - 1}pc^f$ revenue $p\tau c^f$

Optimality

labor wedge must be negative
$$-\frac{\partial \mathbf{L}}{\partial c^f} \left[1 - \frac{v'(\ell)}{u_h(c^h, c^f)} \right] = \frac{\partial \mathbf{T}}{\partial c^f}$$
fiscal externality>0

Households "indirect utility" as a function of c^f

$$\mathbf{W}(c^f;\tau) \equiv u\left(\mathbf{L}(c^f) + \mathbf{T}(c^f) - p(1+\tau)c^f, c^f\right) - v\left(\mathbf{L}(c^f)\right)$$
employment $\frac{\Theta_{\tau} + \tau}{\Theta_{\tau} - 1}pc^f$ revenue $p\tau c^f$

Optimality

$$\underbrace{-\frac{\partial \mathbf{L}}{\partial c^f}}_{\leq 0} \left[1 - \frac{v'(\ell)}{u_h(c^h, c^f)} \right] = \underbrace{\frac{\partial \mathbf{T}}{\partial c^f}}_{\text{fiscal externality} > 0}$$

- Households do not internalize that $\uparrow c^f$ raises tariff revenue and agg. income
 - Optimal policy tries to mitigate externality by stimulating employment

Households "indirect utility" as a function of c^f

$$\mathbf{W}(c^f;\tau) \equiv u\left(\mathbf{L}(c^f) + \mathbf{T}(c^f) - p(1+\tau)c^f, c^f\right) - v\left(\mathbf{L}(c^f)\right)$$
 employment $\frac{\Theta_{\tau} + \tau}{\Theta_{\tau} - 1}pc^f$ revenue $p\tau c^f$

Optimality

labor wedge must be negative
$$-\frac{\partial \mathbf{L}}{\partial c^f} \left[1 - \frac{v'(\ell)}{u_h(c^h, c^f)} \right] = \underbrace{\frac{\partial \mathbf{T}}{\partial c^f}}_{\text{fiscal externality} > 0}$$
fiscal externality > 0

- Households do not internalize that $\uparrow c^f$ raises tariff revenue and agg. income
 - ▶ Optimal policy tries to mitigate externality by stimulating employment
- Without fiscal rebate: flex-price allocation is efficient \Rightarrow zero labor wedge and $\pi_t = 0$

Competitive equilibrium

$$(1+\pi_{t})\pi_{t} = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_{t})}{u_{h}(c_{t}^{h}, c_{t}^{f})} - 1 \right] + \frac{1}{R^{*}} \frac{\ell_{t+1}}{\ell_{t}} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_{t})}{u_{h}(c_{t}^{h}, c_{t}^{f})} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1+\tau) \qquad \frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$\frac{u_h(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1 + c_t^h)$$

 $\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - \left(p(1+\tau)\right) c_t^f = \frac{b_{t+1}}{R^*} - b_t$

$$\begin{aligned} c_t^h, c_t^f) &= p \\ c_t^h, c_t^f) &= \beta \end{aligned}$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$u_{h}(c_{t}^{h}, c_{t}^{f}) = \beta R^{*} u_{h}(c_{t+1}^{h}, c_{t+1}^{f})$$
$$\ell_{t} - c_{t}^{h} - p c_{t}^{f} = \frac{b_{t+1}}{R^{*}} - b_{t}$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h$$

Same eqm. conditions as with TOT shock $\rightarrow \widehat{p} \equiv p(1+\tau)$

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{v'(\ell_t)}{(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = \widehat{p}$$

$$u_h(c_t^h, c_t^f) = 6H$$

$$\frac{c_t^f)}{c_t^f)} =$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f) \qquad u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$u_{h}(c_{t}^{h}, c_{t}^{f}) = \beta R^{*} u_{h}(c_{t+1}^{h}, c_{t+1}^{f})$$

$$\ell_{t} - c_{t}^{h} - p c_{t}^{f} = \frac{b_{t+1}}{R^{*}} - b_{t}$$

$$\frac{u_f(c_t^h, c_t^h)}{u_h(c_t^h, c_t^f)} = \widehat{p}$$

 $\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - \widehat{p} c_t^f = \frac{b_{t+1}}{R^*} - b_t$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = \mathbf{p}$$

$$\frac{g'(\ell_t)}{gh(g^f)} = 1$$

$$(\ell_t)$$
 $\begin{bmatrix} 1 & \ell_{t+1} &$

same eqni. conditions as with 101 shock
$$\rightarrow p = p(1+\tau)$$

Flex-price allocation ($\pi_t = 0$) coincides with efficient with different TOT

Efficient allocation

$$0 = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = \widehat{p} \qquad \frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f) \qquad u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\ell_t - c_t^h - \qquad \widehat{p} c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$\ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

With a genuine rise in cost, optimal to let imports fall and set $\pi_t = 0$.

$$0 = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = \widehat{p} \qquad \frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f) \qquad u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\ell_t - c_t^h - \qquad \widehat{p} c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$\ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Employment under Optimal Policy

Tariffs: Expansionary or Contractionary?

$$\frac{d \log \ell^{opt}}{d\tau} = \frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} (1 - \sigma)\gamma\tau$$
No first-order effect on ℓ at $\tau = 0$

• At $\tau = 0$, no first-order effect on employment \Leftarrow Planner purely rebalances c^h . c^f

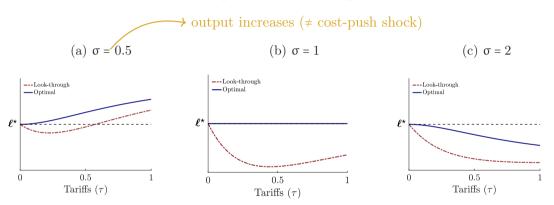
Employment under Optimal Policy

Tariffs: Expansionary or Contractionary?

$$\frac{d \log \ell^{opt}}{d\tau} = \frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} (1 - \sigma) \gamma \tau$$

- At $\tau = 0$, no first-order effect on employment \leftarrow Planner purely rebalances c^h, c^f
- For large τ , the consumption distortion reduces the marginal return to labor leading to substitution and income effects
 - \triangleright First-order effects on employment depend entirely on σ

Employment Response



Under optimal policy, output is always above natural level. With $\sigma < 1$, output exceeds efficient level as well.

Standard NK assumption: price adjustment costs are not rebated, $\Upsilon=1$

• With $\Upsilon = 0$, optimal policy generates a permanent output boom and inflation

- With $\Upsilon = 0$, optimal policy generates a permanent output boom and inflation
- With $\Upsilon > 0$, optimal policy remains expansionary:

- With $\Upsilon = 0$, optimal policy generates a permanent output boom and inflation
- With $\Upsilon > 0$, optimal policy remains expansionary:
 - ▶ Starting from $\pi = 0$, costs of stimulating are second order, but there are first-order gains from mitigating fiscal externality

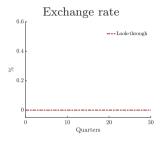
- With $\Upsilon = 0$, optimal policy generates a permanent output boom and inflation
- With $\Upsilon > 0$, optimal policy remains expansionary:
 - ▶ Starting from $\pi = 0$, costs of stimulating are second order, but there are first-order gains from mitigating fiscal externality
 - ▶ Stimulus only in the short-run ← inflation in the long-run is too costly

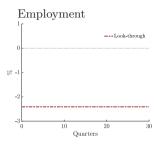
Calibration

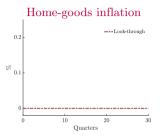
Parameter	Description	Value
β	Discount factor	0.99
γ	Elasticity between h and f	4
σ	Intertemporal elasticity	0.5
ψ	Inverse Frisch elasticity	1
ε	Elasticity of substitution (varieties)	6
φ	Price-adjustment cost	3,272

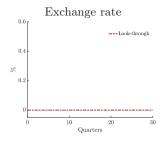
- \bullet Target: slope of PC=0.0055 (Hazell et al.) & ratio of imports to tradable GDP
- Baseline tariff: $\tau_t = 0.15$
- Non-linear impulse response

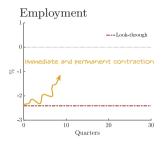
Permanent Tariff: Look-through

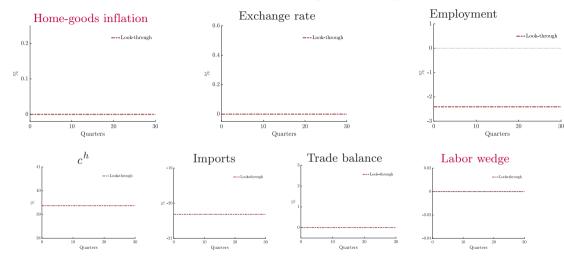


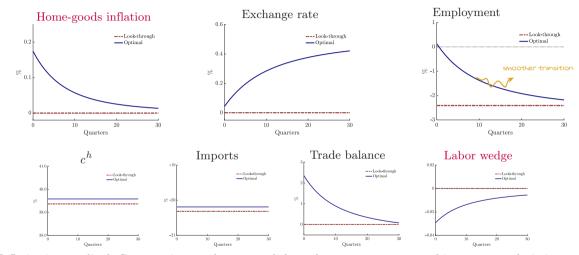


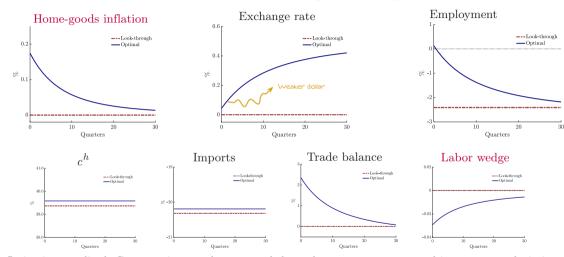


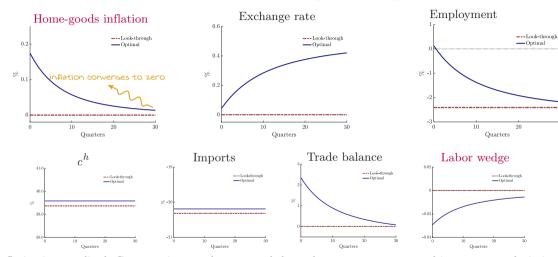




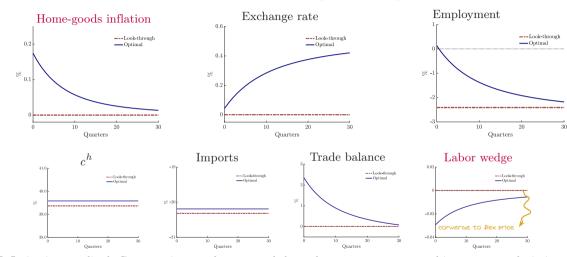








30



Additional Results in the Paper

- Permanent shocks vs transitory » Details
- Anticipated shocks: » Details
 - Respond today, but less strongly
 - ▶ Trade deficit on impact
- PPI vs. CPI Targeting » Details
- Main extensions
 - i) Imported intermediate inputs
 - ii) Endogenous terms-of-trade
 - iii) Distorted steady state
- Welfare

Additional Results in the Paper

- Permanent shocks vs transitory » Details
- Anticipated shocks: » Details
 - Respond today, but less strongly
 - ► Trade deficit on impact
- PPI vs. CPI Targeting » Details
- Main extensions
 - i) Imported intermediate inputs
 - ii) Endogenous terms-of-trade
 - iii) Distorted steady state
- Welfare

The case with distorted steady state

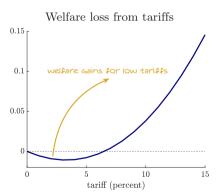
 \bullet Baseline model: labor subsidy s is set to offset markup distortion

The case with distorted steady state

- Suppose we start at s=0 and use tariff revenue to subsidize labor $P_t^f \tau_t c_t^f = s_t W_t \ell_t$
 - ▶ Unambiguous increase in employment
 - Output above natural but inflation is mitigated

The case with distorted steady state

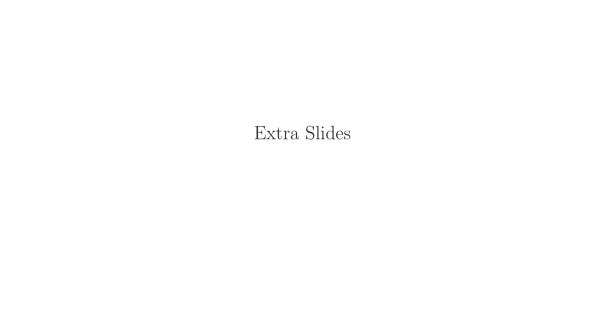
- Suppose we start at s=0 and use tariff revenue to subsidize labor $P_t^f \tau_t c_t^f = s_t W_t \ell_t$
 - ▶ Unambiguous increase in employment
 - Output above natural but inflation is mitigated



Note: All parameters are set to their baseline values.

Conclusions

- How should a monetary authority should respond to import tariffs?
- Optimal policy is to overheat economy:
 - ▶ Monetary stimulus to offset fiscal externality
 - Let inflation rise above and beyond the direct effects from tariffs



Tariffs on Imported Inputs

- Production of domestic varieties $y_{jt} = \ell_{jt}^{1-\nu} x_{jt}^{\nu}$
- NK Phillips curve:

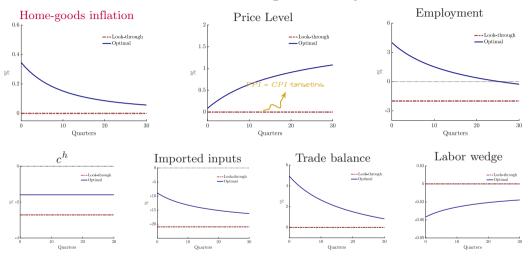
$$(1 + \pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[mc_t - 1 \right] + \beta \frac{u_h(c_{t+1}^h, c_{t+1}^f)}{u_h(c_t^h, c_t^f)} \frac{y_{t+1}}{y_t} (1 + \pi_{t+1})\pi_{t+1},$$

$$mc_t = \left[\frac{W_t}{(1 - \nu)P_t^h} \right]^{1 - \nu} \left[\frac{p(1 + \tau_t^x)}{\nu} \right]^{\nu}$$

Same as baseline: firms perceive cost of imported inputs to be larger than social one
 ⇒ Optimal policy is stimulative

Quantitatively, larger welfare gains and increase in employment

Tariff on Inputs Only



Note: Calibrate ν , ω to match: (i) share of intermediate inputs in total imports; (ii) imports-tradable GDP (%).

Endogenous TOT

• Continuum of SOE where c^f is a CES composite of goods produced abroad

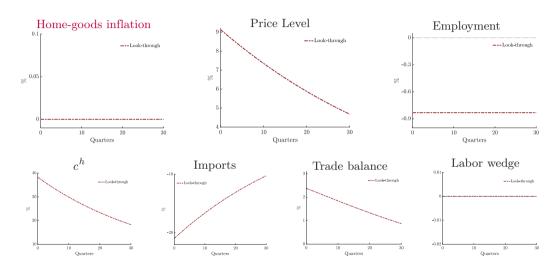
$$c_{it} = \left[\omega\left(c_{it}^{h}\right)^{1-\frac{1}{\gamma}} + (1-\omega)\left(c_{it}^{f}\right)^{1-\frac{1}{\gamma}}\right]^{\frac{\gamma}{\gamma-1}}, \quad c_{it}^{f} = \left(\int_{0}^{1}\left(c_{it}^{k}\right)^{1-\frac{1}{\theta}}dk\right)^{\frac{\theta}{\theta-1}}$$

• Export demand for home good

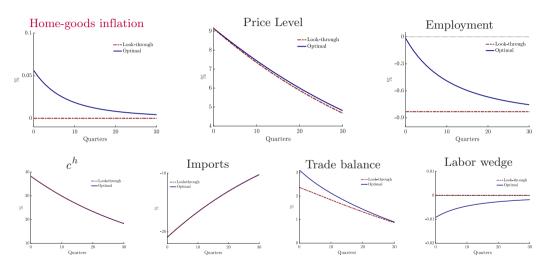
$$p_t = A(y_t - c_t^h)^{\frac{1}{\theta}}$$
 Baseline $\theta = \infty$

- Optimal tariff is positive $\tau^* = \frac{1}{\theta 1}$ with $\theta > 1$
 - ▶ Same results as baseline as long as $\tau > \tau^*$
- Quantitatively, modest attenuation » Results

Temporary Tariff $\tau_t = 0.97 \cdot \tau_{t-1} \rightarrow \text{back}$

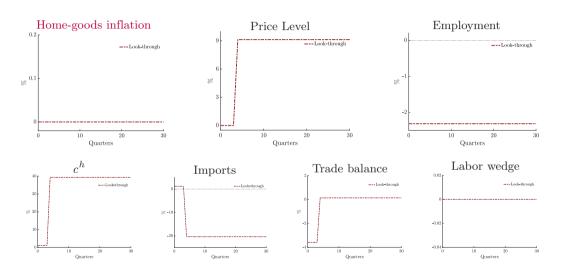


Temporary Tariff $\tau_t = 0.97 \cdot \tau_{t-1} \rightarrow \text{back}$

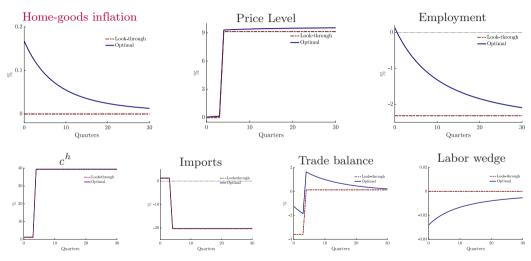


As in the case of a permanent tariff, optimal MP stimulates the economy

Anticipation Effects - back

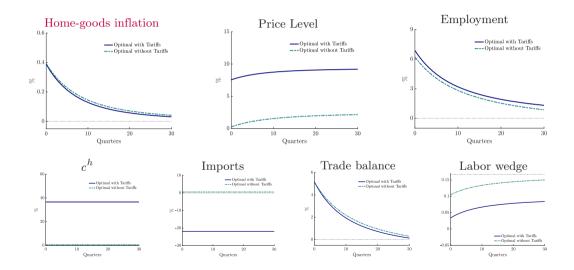


Anticipation Effects - back

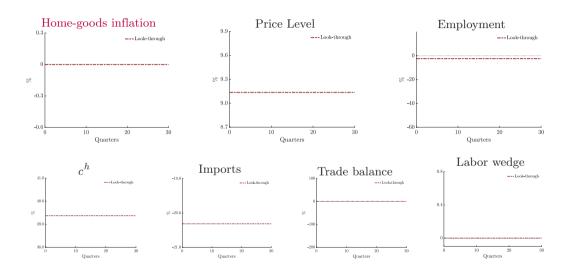


MP less expansionary: imports inefficiently high before tariff takes place

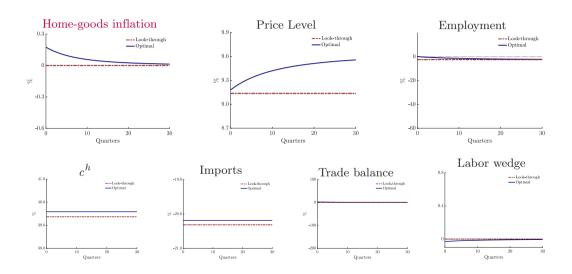
The Case with Distorted Steady State back



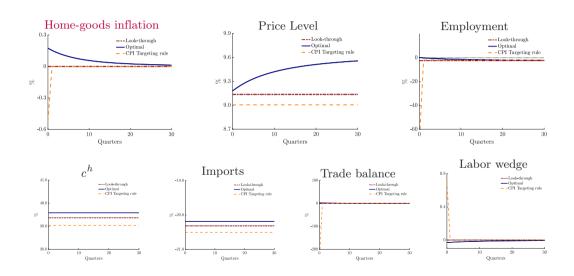
Permanent Tariff



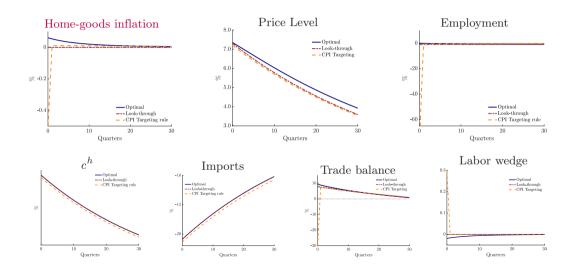
Permanent Tariff



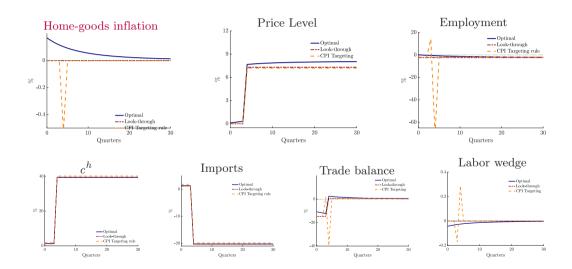
Permanent Tariff



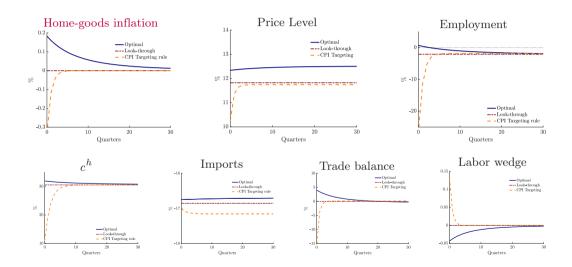
Temporary Tariff $\tau_t = 0.97 \cdot \tau_{t-1}$



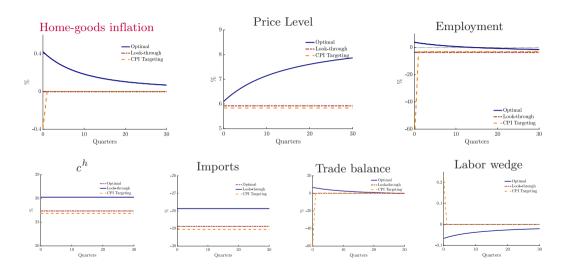
Anticipation Effects



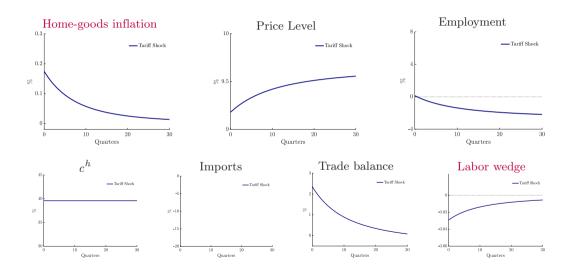
Endogenous Terms of Trade



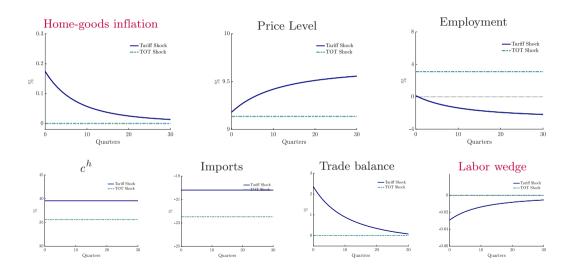
Model with Imported Inputs



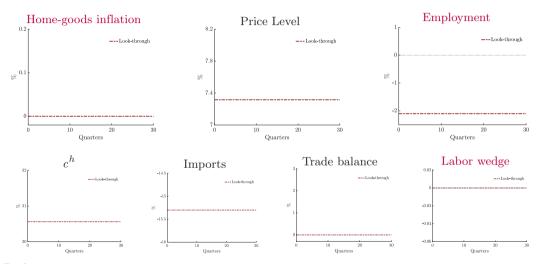
Tariffs vs. Terms-of-Trade Shocks



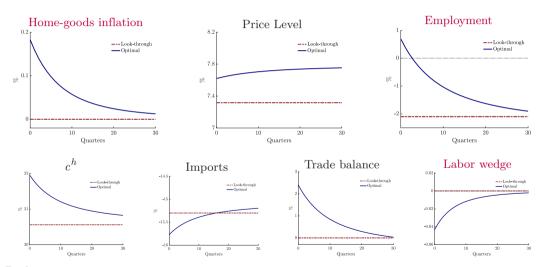
Tariffs vs. Terms-of-Trade Shocks



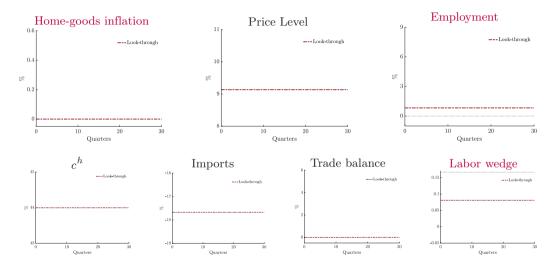
Endogenous Terms-of-Trade



Endogenous Terms-of-Trade

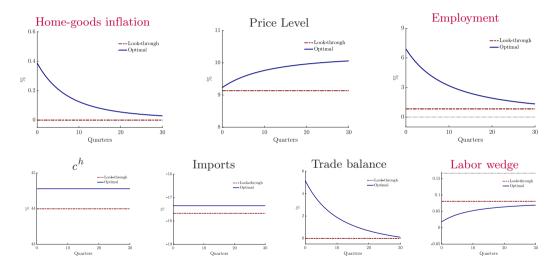


Distorted Steady State: Tariff Revenue to Subsidize Wage Bill



Employment rises under look-through Tariffs vs. No tariffs

Distorted Steady State: Tariff Revenue to Subsidize Wage Bill



Effect of tariff and labor subsidy cancel out approx. on inflation Tariffs vs. No tariffs