Exchange Rate Policies at the Zero Lower Bound

Manuel Amador
U Minnesota and Minneapolis Fed

Javier Bianchi
Minneapolis Fed

Luigi Bocola
Northwestern University

Fabrizio Perri
Minneapolis Fed

IMF/SNB/IMFER Conference
June 25 2016
Motivation

• Global financial crisis of 2008, shift toward safe assets

• Massive appreciations of “strong" currencies

• Exchange rate interventions to prevent those appreciations
 • Difficulties in maintaining these exchange rate objectives

• Example: the Swiss franc
 • Went from 1.6 to 1.10 francs per euro (2007-2011)
 • Swiss National Bank established a currency floor with the euro in 2011
 • Eventually abandoned the floor on January 15 2015
What are the limits/costs that a Central Bank face when trying to prevent an appreciation of its currency while at the zero lower bound?
What are the limits/costs that a Central Bank face when trying to prevent an appreciation of its currency while at the zero lower bound?
What we do

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - Limited international arbitrage

- Consider two cases: Away from ZLB and At the ZLB

- Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma

- At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank *has to* accumulate foreign reserves, and this is *costly*

- Use framework to interpret recent events (Today: Swiss currency floor)
What we do

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - Limited international arbitrage

- Consider two cases: Away from ZLB and At the ZLB
 - Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma
 - At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank *has to* accumulate foreign reserves, and this is costly
 - Use framework to interpret recent events (Today: Swiss currency floor)
What we do

• Simple model of exchange rate policy
 • Zero lower bound (ZLB) constraint on nominal interest rates
 • Limited international arbitrage

• Consider two cases: Away from ZLB and At the ZLB

• Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma

• At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 • Central Bank has to accumulate foreign reserves, and this is costly

• Use framework to interpret recent events (Today: Swiss currency floor)
What we do

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - Limited international arbitrage

- Consider two cases: Away from ZLB and At the ZLB

- Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma

- At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank *has to* accumulate foreign reserves, and this is *costly*

- Use framework to interpret recent events (Today: Swiss currency floor)
What we do

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - Limited international arbitrage

- Consider two cases: Away from ZLB and At the ZLB

- Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma

- At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank *has to* accumulate foreign reserves, and this is *costly*

- Use framework to interpret recent events (Today: Swiss currency floor)
Environment

- Two period small open monetary economy

- Three agents (excluding fiscal authority)

 1. **Households**: have endowments, standard consumption/saving problem, utility benefits for holding money \((m)\), money satiation

 2. **Foreign investors**: They have limited wealth \(\overline{w}\), buy domestic/foreign assets

 3. **Central Bank**: issues money \((M)\), buys domestic/foreign assets \((A, F)\). Assume no fiscal support from government in period 1

- Central bank has a plan for the exchange rate, \((s_1, s_2)\)

 - For simplicity, think \(s_1 > s_2\)

- We ask under what conditions the Central bank can implement its plan, and the implications of such policy
Environment

- Two period small open monetary economy

- Three agents (excluding fiscal authority)

 1. **Households**: have endowments, standard consumption/saving problem, utility benefits for holding money \((m)\), money satiation

 2. **Foreign investors**: They have limited wealth \(\overline{w}\), buy domestic/foreign assets

 3. **Central Bank**: issues money \((M)\), buys domestic/foreign assets \((A, F)\).
 Assume no fiscal support from government in period 1

- Central bank has a plan for the exchange rate, \((s_1, s_2)\)

 - For simplicity, think \(s_1 > s_2\)

- We ask under what conditions the Central bank can implement its plan, and the implications of such policy
Environment

- Two period small open monetary economy

- Three agents (excluding fiscal authority)
 1. **Households**: have endowments, standard consumption/saving problem, utility benefits for holding money \((m)\), money satiation
 2. **Foreign investors**: They have limited wealth \(w\), buy domestic/foreign assets
 3. **Central Bank**: issues money \((M)\), buys domestic/foreign assets \((A, F)\).
 Assume no fiscal support from government in period 1

- Central bank has a plan for the exchange rate, \((s_1, s_2)\)
 - For simplicity, think \(s_1 > s_2\)

- We ask under what conditions the Central bank can implement its plan, and the implications of such policy
Interest Rate Parity

Domestic households can borrow/save in domestic assets a. They can also save in foreign assets f. Hence, in any equilibrium we must have

$$(1 + i) \geq (1 + i^*) \frac{S_2}{S_1},$$

When holding with equality, we have the standard interest rate parity

$$(1 + i) = (1 + i^*) \frac{S_2}{S_1}. \quad ([IP])$$

If inequality strict, domestic interest rates high relative to foreign

- Households buy only domestic bonds ($f = 0$)
- Foreigners invest all their wealth \bar{w} in domestic assets (bonds and/or money) and make arbitrage profits
Interest Rate Parity

Domestic households can borrow/save in domestic assets a. They can also save in foreign assets f. Hence, in any equilibrium we must have

$$ (1 + i) \geq (1 + i^*) \frac{s_2}{s_1}, $$

When holding with equality, we have the standard interest rate parity

$$ (1 + i) = (1 + i^*) \frac{s_2}{s_1}. $$

([IP])

If inequality strict, domestic interest rates high relative to foreign

- Households buy only domestic bonds ($f = 0$)
- Foreigners invest all their wealth \bar{w} in domestic assets (bonds and/or money) and make arbitrage profits
Intertemporal Resource Constraint

Consolidating households, government, and central bank budget constraint

\[c_1 - y_1 = \frac{m^* + a^*}{s_1} - [f + F] \]

\[c_2 - y_2 = (1 + i^*)(f + F) - \frac{m^* + a^*(1 + i)}{s_2} \]

Substituting for \(a^* \) and assuming that foreigners have no liquidity benefit from domestic currency \((m^* = 0)\), we obtain

\[\left(c_1 + \frac{c_2}{(1 + i)^{s_1/s_2}} \right) = \left(y_1 + \frac{y_2}{(1 + i)^{s_1/s_2}} \right) - \left[1 - \frac{(1 + i^*)^{s_2/s_1}}{(1 + i)^{s_2/s_2}} \right] F \quad ([IRC]) \]

Present value of consumption \quad Present value of income \quad Intervention losses

If [IP] holds, last term disappears (classic [IRC])
Intertemporal Resource Constraint

Consolidating households, government, and central bank budget constraint

\[c_1 - y_1 = \frac{m^* + a^*}{s_1} - [f + F] \]

Foreign liabilities

\[c_2 - y_2 = (1 + i^*)(f + F) - \frac{m^* + a^*(1 + i)}{s_2} \]

Substituting for \(a^* \) and assuming that foreigners have no liquidity benefit from domestic currency \((m^* = 0)\), we obtain

\[\left(\frac{c_1}{(1 + i)\frac{s_1}{s_2}} \right) = \left(\frac{y_1}{(1 + i)\frac{s_1}{s_2}} \right) - \left[1 - \frac{(1 + i^*)\frac{s_2}{s_1}}{(1 + i)} \right] F \]

Present value of consumption

Present value of income

Intervention losses

If [IP] holds, last term disappears (classic [IRC])
Intertemporal Resource Constraint

Consolidating households, government, and central bank budget constraint

\[c_1 - y_1 = \frac{m^* + a^*}{s_1} - \left[f + F \right] \]

\[\text{Foreign liabilities} \]

\[c_2 - y_2 = (1 + i^*)(f + F) - \frac{m^* + a^*(1 + i)}{s_2} \]

Substituting for \(a^* \) and assuming that foreigners have no liquidity benefit from domestic currency \((m^* = 0)\), we obtain

\[\left(c_1 + \frac{c_2}{(1 + i)\frac{s_1}{s_2}} \right) = \left(y_1 + \frac{y_2}{(1 + i)\frac{s_1}{s_2}} \right) - \left[1 - \frac{(1 + i^*)\frac{s_2}{s_1}}{(1 + i)} \right] F \]

\[\text{Present value of consumption} \]

\[\text{Present value of income} \]

\[\text{Intervention losses} \]

If [IP] holds, last term disappears (classic [IRC])
Intertemporal Resource Constraint

Consolidating households, government, and central bank budget constraint

\[
c_1 - y_1 = \frac{m^* + a^*}{s_1} - [f + F] \quad \text{Foreign liabilities}
\]

\[
c_2 - y_2 = (1 + i^*)(f + F) - \frac{m^* + a^*(1 + i)}{s_2} \quad \text{Foreign assets}
\]

Substituting for \(a^*\) and assuming that foreigners have no liquidity benefit from domestic currency \((m^* = 0)\), we obtain

\[
\left(c_1 + \frac{c_2}{(1 + i)^{\frac{s_1}{s_2}}} \right) = \left(y_1 + \frac{y_2}{(1 + i)^{\frac{s_1}{s_2}}} \right) - \left[1 - \frac{(1 + i^*)^{\frac{s_2}{s_1}}}{(1 + i)} \right] F \quad \text{[[IRC]]}
\]

If [IP] does not hold, accumulation of foreign reserves entails resource costs
Away from ZLB: The Trilemma

Suppose that \((1 + i^*) \frac{s_2}{s_1} > 1\). There exists an \(i > 0\) that makes [IP] hold

Theorem

If \(w\) large enough, [IP] holds in every monetary equilibrium

Idea ⇒ Away from ZLB, the Central Bank cannot sustain [IP] deviations

- Foreign investors strictly prefer bonds to money. Central Bank cannot issue interest paying liabilities and balance sheet limited by domestic money satiation

Exchange rate policy \((s_1, s_2)\) can be sustained

- Central Bank loses monetary independence
Away from ZLB: The Trilemma

Suppose that \((1 + i^*) \frac{s_2}{s_1} > 1\). There exists an \(i > 0\) that makes [IP] hold.

Theorem

If \(w\) large enough, [IP] holds in every monetary equilibrium

Idea ⇒ Away from ZLB, the Central Bank cannot sustain [IP] deviations

- Foreign investors strictly prefer bonds to money. Central Bank cannot issue interest paying liabilities and balance sheet limited by domestic money satiation.

Exchange rate policy \((s_1, s_2)\) can be sustained

- Central Bank loses monetary independence.
Away from ZLB: The Trilemma

Suppose that \((1 + i^*) \frac{s_2}{s_1} > 1\). There exists an \(i > 0\) that makes \([IP]\) hold

Theorem

If \(\bar{w}\) large enough, \([IP]\) holds in every monetary equilibrium

Idea ⇒ Away from ZLB, the Central Bank cannot sustain \([IP]\) deviations

- Foreign investors strictly prefer bonds to money. Central Bank cannot issue interest paying liabilities and balance sheet limited by domestic money satiation

Exchange rate policy \((s_1, s_2)\) can be sustained

- Central Bank loses monetary independence
Away from ZLB: The Trilemma

Suppose that \((1 + i^*) \frac{s_2}{s_1} > 1\). There exists an \(i > 0\) that makes [IP] hold

Theorem

If \(\bar{w}\) large enough, [IP] holds in every monetary equilibrium

Idea ⇒ Away from ZLB, the Central Bank cannot sustain [IP] deviations

- Foreign investors strictly prefer bonds to money. Central Bank cannot issue interest paying liabilities and balance sheet limited by domestic money satiation

Exchange rate policy \((s_1, s_2)\) can be sustained

- Central Bank loses monetary independence
At the ZLB: Deviations from Interest Rate Parity

Suppose that \((1 + i^*) \frac{s_2}{s_1} \leq 1\). No \(i > 0\) that make [IP] hold

Theorem

The unique equilibrium features \(i = 0\), and deviations from [IP]*

Idea ⇒ At the ZLB, the Central Bank can sustain deviations from [IP]

- Foreign investors indifferent between bonds and money. Central Bank can expand balance sheet without limits

Exchange rate policy \((s_1, s_2)\) can be sustained, but there are **costs**

- Capital inflows as foreigners chase arbitrage profits
- Resource costs

\[
\left[1 - \frac{(1 + i^*) \frac{s_2}{s_1}}{(1 + i)} \right] \times F
\]
At the ZLB: Deviations from Interest Rate Parity

Suppose that \((1 + i^*) \frac{s_2}{s_1} \leq 1\). No \(i > 0\) that make [IP] hold.

Theorem

The unique equilibrium features \(i = 0\), *and deviations from [IP]*

Idea \(\Rightarrow\) At the ZLB, the Central Bank can sustain deviations from [IP]

- Foreign investors indifferent between bonds and money. Central Bank can expand balance sheet without limits

Exchange rate policy \((s_1, s_2)\) can be sustained, but there are **costs**

- Capital inflows as foreigners chase arbitrage profits
- Resource costs

\[
1 - \frac{(1 + i^*) \frac{s_2}{s_1}}{(1 + i)} \times F
\]
At the ZLB: Deviations from Interest Rate Parity

Suppose that \((1 + i^*) \frac{s_2}{s_1} \leq 1\). No \(i > 0\) that make [IP] hold

Theorem

The unique equilibrium features \(i = 0\), and deviations from [IP]*

Idea ⇒ At the ZLB, the Central Bank can sustain deviations from [IP]

- Foreign investors indifferent between bonds and money. Central Bank can expand balance sheet without limits

Exchange rate policy \((s_1, s_2)\) can be sustained, but there are **costs**

- Capital inflows as foreigners chase arbitrage profits
- Resource costs

\[
\left[1 - \frac{(1 + i^*) \frac{s_2}{s_1}}{(1 + i)} \right] \times F
\]
At the ZLB: Deviations from Interest Rate Parity

Suppose that \((1 + i^*) \frac{s_2}{s_1} \leq 1\). No \(i > 0\) that make [IP] hold

Theorem

The unique equilibrium features \(i = 0\), and deviations from [IP]

Idea ⇒ At the ZLB, the Central Bank can sustain deviations from [IP]

- Foreign investors indifferent between bonds and money. Central Bank can expand balance sheet without limits

Exchange rate policy \((s_1, s_2)\) can be sustained, but there are **costs**

- Capital inflows as foreigners chase arbitrage profits
- Resource costs

\[
\left[1 - \frac{(1 + i^*) \frac{s_2}{s_1}}{(1 + i)} \right] \times F
\]
Some Interesting Results

1. An increase in \bar{w} or a decline in i^* while economy is at the ZLB

 - Increases foreign reserves of the Central Bank under the current exchange rate policy
 - Always welfare reducing

 Idea: interest rate fixed by exchange rate policy and ZLB. More financial integration raises capital inflows and intervention losses

2. Suppose $i = 0$. Then, a tax on money allows the Central Bank to achieve (s_1, s_2) without [IP] deviations

 - Negative nominal interest rates allow the Central Bank to restore [IP]
 - Rationale for negative rates: avoid capital inflows and intervention losses
Some Interesting Results

1. An increase in \bar{w} or a decline in i^* while economy is at the ZLB
 - Increases foreign reserves of the Central Bank under the current exchange rate policy
 - Always welfare reducing

 Idea: interest rate fixed by exchange rate policy and ZLB. More financial integration raises capital inflows and intervention losses

2. Suppose $i = 0$. Then, a tax on money allows the Central Bank to achieve (s_1, s_2) without [IP] deviations
 - Negative nominal interest rates allow the Central Bank to restore [IP]
 - Rationale for negative rates: avoid capital inflows and intervention losses
Measuring the Losses from Exchange Rate Policies

- Sufficient statistic to measure losses associated to exchange rate policies

\[\text{Losses}_t = \left[1 - \frac{(1 + i_t^*)^{s_t+1}}{(1 + i_t)} \right] \times F_t \]

- We construct empirical counterparts to both terms
 - Measure daily deviations from covered interest rate parity (CIP) as a proxy to arbitrage profits

- Questions
 - Do we observe deviations from CIP?
 - Are deviations from CIP associated to strong demand for assets denominated in Swiss franc?
 - How sizable are the measured losses?
Starting from 2008, persistent CIP deviations (Du et al., 2016)

Positive deviations → investing in Swiss denominated assets profitable
- SNB accumulates foreign reserves when CIP deviations are large
- Demand for assets denominated in francs sensitive to CIP deviations
We can measure losses as the product of CIP deviations and reserves.

Flow cost of 0.2%-1% of real GDP
Conclusion

- Mundellian Trilemma at the zero lower bound
- Exchange rate objectives can be implemented, but
 - Expect capital inflows and costs from FX interventions
- Simple sufficient statistic to measure costs of interventions
 - In the case of Switzerland, flow losses between 0.2%-1% of GDP
- Framework for understanding recent events
 - Costs of intervention increase in foreign capital
 - Swiss currency floor abandoned just before the ECB QE was announced
 - Negative nominal interest rates could complement exchange rate policies
 - Switzerland and Denmark first to experience with negative rates