Exchange Rate Policies at the Zero Lower Bound

Manuel Amador Javier Bianchi

U Minnesota and Minneapolis Fed Minneapolis Fed

Luigi Bocola Fabrizio Perri

Northwestern University Minneapolis Fed

IMF/SNB/IMFER Conference June 25 2016

Motivation

- Global financial crisis of 2008, shift toward safe assets
- Massive appreciations of "strong" currencies
- Exchange rate interventions to prevent those appreciations
 - Difficulties in maintaining these exchange rate objectives
- Example: the Swiss franc
 - Went from 1.6 to 1.10 francs per euro (2007-2011)
 - Swiss National Bank established a currency floor with the euro in 2011
 - Eventually abandoned the floor on January 15 2015

The Swiss Currency Floor

What are the limits/costs that a Central Bank face when trying to prevent an appreciation of its currency while at the zero lower bound?

The Swiss Currency Floor

What are the limits/costs that a Central Bank face when trying to prevent an appreciation of its currency while at the zero lower bound?

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - · Limited international arbitrage
- Consider two cases: Away from ZLB and At the ZLB
- Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma
- At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank *has to* accumulate foreign reserves, and this is *costly*
- Use framework to interpret recent events (Today: Swiss currency floor)

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - · Limited international arbitrage
- Consider two cases: Away from ZLB and At the ZLB
- Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma
- At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank *has to* accumulate foreign reserves, and this is *costly*
- Use framework to interpret recent events (Today: Swiss currency floor)

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - · Limited international arbitrage
- Consider two cases: Away from ZLB and At the ZLB
- Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma
- At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank *has to* accumulate foreign reserves, and this is *costly*
- Use framework to interpret recent events (Today: Swiss currency floor)

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - · Limited international arbitrage
- Consider two cases: Away from ZLB and At the ZLB
- Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma
- At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank has to accumulate foreign reserves, and this is costly
- Use framework to interpret recent events (Today: Swiss currency floor)

- Simple model of exchange rate policy
 - Zero lower bound (ZLB) constraint on nominal interest rates
 - · Limited international arbitrage
- Consider two cases: Away from ZLB and At the ZLB
- Away from ZLB: country can implement exchange rate objective, loses monetary independence. Mundellian Trilemma
- At the ZLB: country can implement exchange rate objective, but interest rates cannot adjust. Interest rate parity violated, capital inflows
 - Central Bank has to accumulate foreign reserves, and this is costly
- Use framework to interpret recent events (Today: Swiss currency floor)

Environment

- Two period small open monetary economy
- Three agents (excluding fiscal authority)
 - 1 Households: have endowments, standard consumption/saving problem, utility benefits for holding money (m), money satiation
 - 2 Foreign investors: They have limited wealth \overline{w} , buy domestic/foreign assets
 - 3 Central Bank: issues money (M), buys domestic/foreign assets (A, F). Assume no fiscal support from government in period 1
- Central bank has a plan for the exchange rate, (s_1, s_2)
 - For simplicity, think $s_1 > s_2$
- We ask under what conditions the Central bank can implement its plan, and the implications of such policy

Environment

- Two period small open monetary economy
- Three agents (excluding fiscal authority)
 - 1 Households: have endowments, standard consumption/saving problem, utility benefits for holding money (m), money satiation
 - 2 Foreign investors: They have limited wealth \overline{w} , buy domestic/foreign assets
 - 3 Central Bank: issues money (M), buys domestic/foreign assets (A, F). Assume no fiscal support from government in period 1
- Central bank has a plan for the exchange rate, (s_1, s_2)
 - For simplicity, think $s_1 > s_2$
- We ask under what conditions the Central bank can implement its plan, and the implications of such policy

Environment

- Two period small open monetary economy
- Three agents (excluding fiscal authority)
 - 1 Households: have endowments, standard consumption/saving problem, utility benefits for holding money (m), money satiation
 - 2 Foreign investors: They have limited wealth \overline{w} , buy domestic/foreign assets
 - 3 Central Bank: issues money (*M*), buys domestic/foreign assets (*A*, *F*). Assume no fiscal support from government in period 1
- Central bank has a plan for the exchange rate, (s_1, s_2)
 - For simplicity, think $s_1 > s_2$
- We ask under what conditions the Central bank can implement its plan, and the implications of such policy

Interest Rate Parity

Domestic households can borrow/save in domestic assets a. They can also save in foreign assets f. Hence, in any equilibrium we must have

$$(1+i) \geq (1+i^*)\frac{s_2}{s_1},$$

When holding with equality, we have the standard interest rate parity

$$(1+i) = (1+i^*)\frac{s_2}{s_1}.$$
 ([IP])

If inequality strict, domestic interest rates high relative to foreign

- Households buy only domestic bonds (f = 0)
- Foreigners invest all their wealth \overline{w} in domestic assets (bonds and/or money) and make arbitrage profits

Interest Rate Parity

Domestic households can borrow/save in domestic assets a. They can also save in foreign assets f. Hence, in any equilibrium we must have

$$(1+i) \geq (1+i^*)\frac{s_2}{s_1},$$

When holding with equality, we have the standard interest rate parity

$$(1+i) = (1+i^*)\frac{s_2}{s_1}.$$
 ([IP])

If inequality strict, domestic interest rates high relative to foreign

- Households buy only domestic bonds (f = 0)
- Foreigners invest all their wealth \overline{w} in domestic assets (bonds and/or money) and make arbitrage profits

Consolidating households, government, and central bank budget constraint

$$c_1 - y_1 = \underbrace{\frac{m^* + a^*}{s_1}}_{\text{Foreign liabilities}} - \underbrace{[f + F]}_{\text{Foreign asset}}$$

$$c_2 - y_2 = (1 + i^*)(f + F) - \frac{m^* + a^*(1 + i)}{s_2}$$

Substituting for a^* and assuming that foreigners have no liquidity benefit from domestic currency ($m^* = 0$), we obtain

$$\underbrace{\left(c_1 + \frac{c_2}{(1+i)\frac{s_1}{s_2}}\right)}_{\text{Present value of consumption}} = \underbrace{\left(y_1 + \frac{y_2}{(1+i)\frac{s_1}{s_2}}\right)}_{\text{Present value of income}} - \underbrace{\left[1 - \frac{(1+i^*)\frac{s_2}{s_1}}{(1+i)}\right]}_{\text{Intervention losses}} F \quad \text{([IRC])}$$

If [IP] holds, last term disappears (classic [IRC])

Consolidating households, government, and central bank budget constraint

$$c_1 - y_1 = \underbrace{\frac{m^* + a^*}{s_1}}_{\text{Foreign liabilities}} - \underbrace{[f + F]}_{\text{Foreign asset}}$$

$$c_2 - y_2 = (1 + i^*)(f + F) - \frac{m^* + a^*(1 + i)}{s_2}$$

Substituting for a^* and assuming that foreigners have no liquidity benefit from domestic currency ($m^* = 0$), we obtain

$$\underbrace{\left(c_1 + \frac{c_2}{(1+i)\frac{s_1}{s_2}}\right)}_{\text{Present value of consumption}} = \underbrace{\left(y_1 + \frac{y_2}{(1+i)\frac{s_1}{s_2}}\right)}_{\text{Present value of income}} - \underbrace{\left[1 - \frac{(1+i^*)\frac{s_2}{s_1}}{(1+i)}\right]F}_{\text{Intervention losses}} \quad \text{([IRC])}$$

If [IP] holds, last term disappears (classic [IRC])

Consolidating households, government, and central bank budget constraint

$$c_1 - y_1 = \underbrace{\frac{m^* + a^*}{s_1}}_{\text{Foreign liabilities}} - \underbrace{[f + F]}_{\text{Foreign asset}}$$

$$c_2 - y_2 = (1 + i^*)(f + F) - \frac{m^* + a^*(1 + i)}{s_2}$$

Substituting for a^* and assuming that foreigners have no liquidity benefit from domestic currency ($m^* = 0$), we obtain

$$\underbrace{\left(c_1 + \frac{c_2}{(1+i)\frac{s_1}{s_2}}\right)}_{\text{Present value of consumption}} = \underbrace{\left(y_1 + \frac{y_2}{(1+i)\frac{s_1}{s_2}}\right)}_{\text{Present value of income}} - \underbrace{\left[1 - \frac{(1+i^*)\frac{s_2}{s_1}}{(1+i)}\right]F}_{\text{Intervention losses}} \quad \text{([IRC])}$$

If [IP] holds, last term disappears (classic [IRC])

Consolidating households, government, and central bank budget constraint

$$c_1 - y_1 = \underbrace{\frac{m^* + a^*}{s_1}}_{\text{Foreign liabilities}} - \underbrace{[f + F]}_{\text{Foreign asset}}$$

$$c_2 - y_2 = (1 + i^*)(f + F) - \frac{m^* + a^*(1 + i)}{s_2}$$

Substituting for a^* and assuming that foreigners have no liquidity benefit from domestic currency ($m^* = 0$), we obtain

$$\underbrace{\left(c_1 + \frac{c_2}{(1+i)\frac{s_1}{s_2}}\right)}_{\text{Present value of consumption}} = \underbrace{\left(y_1 + \frac{y_2}{(1+i)\frac{s_1}{s_2}}\right)}_{\text{Present value of income}} - \underbrace{\left[1 - \frac{(1+i^*)\frac{s_2}{s_1}}{(1+i)}\right]F}_{\text{Intervention losses}} \quad \text{([IRC])}$$

If [IP] does not hold, accumulation of foreign reserves entails resource costs

Suppose that $(1+i^*)\frac{s_2}{s_1} > 1$. There exists an i > 0 that makes [IP] hold

Theorem

If \overline{w} large enough, [IP] holds in every monetary equilibrium

Idea ⇒ Away from ZLB, the Central Bank cannot sustain [IP] deviations

 Foreign investors strictly prefer bonds to money. Central Bank cannot issue interest paying liabilities and balance sheet limited by domestic money satiation

Exchange rate policy (s_1, s_2) can be sustained

Suppose that $(1+i^*)\frac{s_2}{s_1} > 1$. There exists an i > 0 that makes [IP] hold

Theorem

If \overline{w} large enough, [IP] holds in every monetary equilibrium

Idea ⇒ Away from ZLB, the Central Bank cannot sustain [IP] deviations

 Foreign investors strictly prefer bonds to money. Central Bank cannot issue interest paying liabilities and balance sheet limited by domestic money satiation

Exchange rate policy (s_1, s_2) can be sustained

Suppose that $(1+i^*)\frac{s_2}{s_1} > 1$. There exists an i > 0 that makes [IP] hold

Theorem

If \overline{w} large enough, [IP] holds in every monetary equilibrium

Idea ⇒ Away from ZLB, the Central Bank cannot sustain [IP] deviations

 Foreign investors strictly prefer bonds to money. Central Bank cannot issue interest paying liabilities and balance sheet limited by domestic money satiation

Exchange rate policy (s_1, s_2) can be sustained

Suppose that $(1+i^*)\frac{s_2}{s_1} > 1$. There exists an i > 0 that makes [IP] hold

Theorem

If \overline{w} large enough, [IP] holds in every monetary equilibrium

Idea ⇒ Away from ZLB, the Central Bank cannot sustain [IP] deviations

 Foreign investors strictly prefer bonds to money. Central Bank cannot issue interest paying liabilities and balance sheet limited by domestic money satiation

Exchange rate policy (s_1, s_2) can be sustained

Suppose that $(1+i^*)\frac{s_2}{s_1} \leq 1$. No i > 0 that make [IP] hold

Theorem

The unique equilibrium features i = 0, and deviations from [IP]

Idea ⇒ At the ZLB, the Central Bank can sustain deviations from [IP]

 Foreign investors indifferent between bonds and money. Central Bank can expand balance sheet without limits

- Capital inflows as foreigners chase arbitrage profits
- Resource costs

$$\left[1 - \frac{(1+i^*)\frac{s_2}{s_1}}{(1+i)}\right] \times F$$

Suppose that $(1+i^*)\frac{s_2}{s_1} \le 1$. No i > 0 that make [IP] hold

Theorem

The unique equilibrium features i = 0, and deviations from [IP]

 $Idea \Rightarrow At$ the ZLB, the Central Bank can sustain deviations from [IP]

 Foreign investors indifferent between bonds and money. Central Bank can expand balance sheet without limits

- Capital inflows as foreigners chase arbitrage profits
- Resource costs

$$\left[1 - \frac{(1+i^*)\frac{s_2}{s_1}}{(1+i)}\right] \times F$$

Suppose that $(1+i^*)\frac{s_2}{s_1} \le 1$. No i > 0 that make [IP] hold

Theorem

The unique equilibrium features i = 0, and deviations from [IP]

Idea ⇒ At the ZLB, the Central Bank can sustain deviations from [IP]

 Foreign investors indifferent between bonds and money. Central Bank can expand balance sheet without limits

- Capital inflows as foreigners chase arbitrage profits
- Resource costs

$$\left[1 - \frac{(1+i^*)\frac{s_2}{s_1}}{(1+i)}\right] \times F$$

Suppose that $(1+i^*)\frac{s_2}{s_1} \le 1$. No i > 0 that make [IP] hold

Theorem

The unique equilibrium features i = 0, and deviations from [IP]

Idea ⇒ At the ZLB, the Central Bank can sustain deviations from [IP]

 Foreign investors indifferent between bonds and money. Central Bank can expand balance sheet without limits

- Capital inflows as foreigners chase arbitrage profits
- Resource costs

$$\left[1 - \frac{(1+i^*)\frac{s_2}{s_1}}{(1+i)}\right] \times F$$

Some Interesting Results

- 1 An increase in \overline{w} or a decline in i^* while economy is at the ZLB
 - Increases foreign reserves of the Central Bank under the current exchange rate policy
 - · Always welfare reducing

Idea: interest rate fixed by exchange rate policy and ZLB. More financial integration raises capital inflows and intervention losses

- 2 Suppose i = 0. Then, a tax on money allows the Central Bank to achieve (s_1, s_2) without [IP] deviations
 - Negative nominal interest rates allow the Central Bank to restore [IP]
 - Rationale for negative rates: avoid capital inflows and intervention losses

Some Interesting Results

- 1 An increase in \overline{w} or a decline in i^* while economy is at the ZLB
 - Increases foreign reserves of the Central Bank under the current exchange rate policy
 - · Always welfare reducing

Idea: interest rate fixed by exchange rate policy and ZLB. More financial integration raises capital inflows and intervention losses

- 2 Suppose i = 0. Then, a tax on money allows the Central Bank to achieve (s_1, s_2) without [IP] deviations
 - Negative nominal interest rates allow the Central Bank to restore [IP]
 - Rationale for negative rates: avoid capital inflows and intervention losses

Measuring the Losses from Exchange Rate Policies

Sufficient statistic to measure losses associated to exchange rate policies

Losses_t =
$$\underbrace{\left[1 - \frac{\left(1 + i_t^*\right)^{\frac{S_{t+1}}{S_t}}}{\left(1 + i_t\right)}\right]}_{\text{Deviations from [IP]}} \times \underbrace{F_t}_{\text{Foreign reserves}}$$

- We construct empirical counterparts to both terms
 - Measure daily deviations from covered interest rate parity (CIP) as a proxy to arbitrage profits
- Questions
 - Do we observe deviations from CIP?
 - Are deviations from CIP associated to strong demand for assets denominated in Swiss franc?
 - How sizable are the measured losses?

Deviations from CIP

- Starting from 2008, persistent CIP deviations (Du et al., 2016)
- Positive deviations → investing in Swiss denominated assets profitable

CIP Deviations and Demand for Swiss Francs

- SNB accumulates foreign reserves when CIP deviations are large
- Demand for assets denominated in francs sensitive to CIP deviations

Measuring the Losses

- We can measure losses as the product of CIP deviations and reserves
- Flow cost of 0.2%-1% of real GDP

Conclusion

- Mundellian Trilemma at the zero lower bound
- Exchange rate objectives can be implemented, but
 - Expect capital inflows and costs from FX interventions
- Simple sufficient statistic to measure costs of interventions
 - In the case of Switzerland, flow losses between 0.2%-1% of GDP
- Framework for understanding recent events
 - · Costs of intervention increase in foreign capital
 - Swiss currency floor abandoned just before the ECB QE was announced
 - Negative nominal interest rates could complement exchange rate policies
 - Switzerland and Denmark first to experience with negative rates