Unbalanced Trade

Robert Dekle
University of Southern California, Los Angeles

Jonathan Eaton
New York University

Samuel Kortum
University of Chicago

Presentation given at the 8th Jacques Polak Annual Research Conference
Hosted by the International Monetary Fund
Washington, DC—November 15-16, 2007
Please do not quote without the permission from the author(s).
The External Deficits of the United States ($ billion in 2006)

- current account: 857
- goods and services: 764
- goods: 836
- petroleum: 271
Introduction

- The External Deficits of the United States ($ billion in 2006)
 - current account: 857
 - goods and services: 764
 - goods: 836
 - petroleum: 271

- When the inevitable adjustment happens, how bad is it going to be for the USA?
The External Deficits of the United States ($ billion in 2006)

- current account: 857
- goods and services: 764
- goods: 836
- petroleum: 271

When the inevitable adjustment happens, how bad is it going to be for the USA?

What happens to the big surplus countries (e.g., Japan, Germany, and China)
The External Deficits of the United States ($ billion in 2006)

- current account: 857
- goods and services: 764
- goods: 836
- petroleum: 271

When the inevitable adjustment happens, how bad is it going to be for the USA?

What happens to the big surplus countries (e.g., Japan, Germany, and China)

Will there be spillovers to neighbors?
<table>
<thead>
<tr>
<th>Country</th>
<th>GDP</th>
<th>Deficits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA</td>
<td>Trade</td>
</tr>
<tr>
<td>Algeria</td>
<td>85</td>
<td>-11.2</td>
</tr>
<tr>
<td>Argentina</td>
<td>153</td>
<td>-3.6</td>
</tr>
<tr>
<td>Australia</td>
<td>659</td>
<td>39.2</td>
</tr>
<tr>
<td>Austria</td>
<td>293</td>
<td>-1.2</td>
</tr>
<tr>
<td>Belgium/Luxembourg</td>
<td>392</td>
<td>-16.6</td>
</tr>
<tr>
<td>Brazil</td>
<td>604</td>
<td>-12.5</td>
</tr>
<tr>
<td>Canada</td>
<td>992</td>
<td>-22.5</td>
</tr>
<tr>
<td>Chile</td>
<td>96</td>
<td>-1.7</td>
</tr>
<tr>
<td>China/Hong Kong</td>
<td>2106</td>
<td>-87.2</td>
</tr>
<tr>
<td>Colombia</td>
<td>98</td>
<td>0.8</td>
</tr>
<tr>
<td>Denmark</td>
<td>245</td>
<td>-6.3</td>
</tr>
<tr>
<td>Egypt</td>
<td>82</td>
<td>-4.0</td>
</tr>
<tr>
<td>Finland</td>
<td>189</td>
<td>-9.9</td>
</tr>
<tr>
<td>France</td>
<td>2060</td>
<td>4.1</td>
</tr>
<tr>
<td>Germany</td>
<td>2740</td>
<td>-105.4</td>
</tr>
<tr>
<td>Greece</td>
<td>264</td>
<td>13.1</td>
</tr>
<tr>
<td>India</td>
<td>689</td>
<td>-7.8</td>
</tr>
<tr>
<td>Indonesia</td>
<td>254</td>
<td>-1.9</td>
</tr>
<tr>
<td>Ireland</td>
<td>183</td>
<td>0.8</td>
</tr>
<tr>
<td>Israel</td>
<td>122</td>
<td>-3.3</td>
</tr>
<tr>
<td>Italy</td>
<td>1720</td>
<td>13.4</td>
</tr>
<tr>
<td>Japan</td>
<td>4580</td>
<td>-178.1</td>
</tr>
<tr>
<td>Korea</td>
<td>680</td>
<td>-29.1</td>
</tr>
<tr>
<td>Malaysia</td>
<td>118</td>
<td>-15.0</td>
</tr>
<tr>
<td>Mexico</td>
<td>683</td>
<td>5.8</td>
</tr>
<tr>
<td>Netherlands</td>
<td>608</td>
<td>-55.2</td>
</tr>
<tr>
<td>New Zealand</td>
<td>98</td>
<td>6.3</td>
</tr>
<tr>
<td>Norway</td>
<td>255</td>
<td>-35.1</td>
</tr>
<tr>
<td>Pakistan</td>
<td>113</td>
<td>0.7</td>
</tr>
<tr>
<td>Peru</td>
<td>70</td>
<td>-0.1</td>
</tr>
<tr>
<td>Philippines</td>
<td>87</td>
<td>-1.7</td>
</tr>
<tr>
<td>Portugal</td>
<td>178</td>
<td>12.7</td>
</tr>
<tr>
<td>Russia</td>
<td>592</td>
<td>-59.4</td>
</tr>
<tr>
<td>Singapore</td>
<td>107</td>
<td>-26.5</td>
</tr>
<tr>
<td>South Africa</td>
<td>216</td>
<td>7.2</td>
</tr>
<tr>
<td>Spain</td>
<td>1040</td>
<td>53.5</td>
</tr>
<tr>
<td>Sweden</td>
<td>349</td>
<td>-27.9</td>
</tr>
<tr>
<td>Switzerland</td>
<td>360</td>
<td>-57.1</td>
</tr>
<tr>
<td>Thailand</td>
<td>161</td>
<td>-7.1</td>
</tr>
<tr>
<td>Turkey</td>
<td>302</td>
<td>15.2</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2150</td>
<td>32.3</td>
</tr>
<tr>
<td>United States</td>
<td>11700</td>
<td>649.7</td>
</tr>
<tr>
<td>Venezuela</td>
<td>112</td>
<td>-14.0</td>
</tr>
<tr>
<td>Rest of World</td>
<td>3025</td>
<td>-53.4</td>
</tr>
</tbody>
</table>

(US$ billions)
Introduction

What does it matter for?

- To balance current accounts what changes will be required in

Introduction
What does it matter for?

- To balance current accounts what changes will be required in
 - relative factor prices and GDP’s
To balance current accounts what changes will be required in
relative factor prices and GDP’s
which are the nominal exchange rates if nominal GDP’s don’t change
Introduction
What does it matter for?

To balance current accounts what changes will be required in

- relative factor prices and GDP’s
 - which are the nominal exchange rates if nominal GDP’s don’t change
- real wages or real exchange rates
Introduction
What does it matter for?

- To balance current accounts what changes will be required in
 - relative factor prices and GDP’s
 - which are the nominal exchange rates if nominal GDP’s don’t change
 - real wages or real exchange rates
- We use a forty-four country model of production and bilateral trade to seek answers
Introduction
What does it matter for?

- To balance current accounts what changes will be required in
 - relative factor prices and GDP’s
 - which are the nominal exchange rates if nominal GDP’s don’t change
 - real wages or real exchange rates

- We use a forty-four country model of production and bilateral trade to seek answers

- Key to some answers is the degree of internal factor mobility
Introduction

The transfer problem

- Is there a secondary burden to ending current account deficits?
- Our model is with Keynes.
- But our numbers are with Ohlin.
Introduction

More recently

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model

- Show that Keynes was right about the terms of trade
Introduction
More recently

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade
- A series of papers by Obstfeld and Rogoff (2000, 2005) with three “regions”
Introduction
More recently

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade
- A series of papers by Obstfeld and Rogoff (2000, 2005) with three “regions”
 - endowment economies
Introduction

More recently

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade
- A series of papers by Obstfeld and Rogoff (2000, 2005) with three “regions”
 - endowment economies
 - 3 world regions
More recently

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade
- A series of papers by Obstfeld and Rogoff (2000, 2005) with three “regions”
 - endowment economies
 - 3 world regions
 - focus on real exchange rates rather than relative wages and real absorption
Our framework
Manufacturing does the work

- Focus on manufactures, the largest component of trade
Our framework
Manufacturing does the work

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M, gross manufacturing absorption X_i^M, and manufacturing deficit D_i^M:

$$Y_i^M = X_i^M - D_i^M$$
Our framework
Manufacturing does the work

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M, gross manufacturing absorption X_i^M, and manufacturing deficit D_i^M:
 \[
 Y_i^M = X_i^M - D_i^M
 \]

- Manufacturing absorption:
 \[
 X_i^M = \alpha_i X_i + (1 - \gamma) (1 - \beta_i) Y_i^M
 \]
Our framework
Manufacturing does the work

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M, gross manufacturing absorption X_i^M, and manufacturing deficit D_i^M:
 \[
 Y_i^M = X_i^M - D_i^M
 \]

- Manufacturing absorption:
 \[
 X_i^M = \alpha_i X_i + (1 - \gamma)(1 - \beta_i) Y_i^M
 \]
 - α_i share of mftr in final absorption (folding in use as intermediates in non-mftr)
Our framework
Manufacturing does the work

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y^M_i, gross manufacturing absorption X^M_i, and manufacturing deficit D^M_i:
 \[Y^M_i = X^M_i - D^M_i \]

- Manufacturing absorption:
 \[X^M_i = \alpha_i X_i + (1 - \gamma)(1 - \beta_i) Y^M_i \]
 - α_i share of mftr in final absorption (folding in use as intermediates in non-mftr)
 - β_i share of value added in mftr
Our framework
Manufacturing does the work

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M, gross manufacturing absorption X_i^M, and manufacturing deficit D_i^M:
 \[Y_i^M = X_i^M - D_i^M \]

- Manufacturing absorption:
 \[X_i^M = \alpha_i X_i + (1 - \gamma)(1 - \beta_i) Y_i^M \]

- α_i share of mftr in final absorption (folding in use as intermediates in non-mftr)
- β_i share of value added in mftr
- γ share of non-mftr in mftr intermediates
Our framework

Model Ingredients I

- Input costs c_i
Our framework

Model Ingredients I

- Input costs c_i
- Efficiency making particular good $j \ z_i(j)$
Our framework
Model Ingredients I

- Input costs c_i
- Efficiency making particular good j $z_i(j)$
- Iceberg transport costs $d_{ni} \geq 1$ to deliver from i to n.
Our framework

Model Ingredients I

- Input costs c_i
- Efficiency making particular good j $z_i(j)$
- Iceberg transport costs $d_{ni} \geq 1$ to deliver from i to n.
- Cost of delivering a unit of good j from i to n (gravity):

$$p_{ni} = \frac{d_{ni} c_i}{z_i(j)}$$
Distribution for z:

$$F(z) = e^{-T_i z^{-\theta}}$$
Our framework
Model Ingredients II

- Distribution for z:
 \[F(z) = e^{-Tiz^{-\theta}} \]

- CES preferences (with elasticity of substitution σ)
Define:

$$
\Phi_n = \sum_{i=1}^{N} T_i (c_i d_{ni})^{-\theta}
$$

country n’s access to world technology adjusting for cost (input and transport)
Define:

\[\Phi_n = \sum_{i=1}^{N} T_i (c_i d_{ni})^{-\theta} \]

country \(n \)'s access to world technology adjusting for cost (input and transport)

Price Index:

\[p_i = \gamma \Phi_n^{-1/\theta} \]
Define:

\[\Phi_n = \sum_{i=1}^{N} T_i (c_i d_{ni})^{-\theta} \]

country \(n \)'s access to world technology adjusting for cost (input and transport)

Price Index:

\[p_i = \gamma \Phi_n^{-1/\theta} \]

Trade share:

\[\pi_{ni} = \frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_n} \]
Our framework

Implications

Define:

\[\Phi_n = \sum_{i=1}^{N} T_i (c_i d_{ni})^{-\theta} \]

country n's access to world technology adjusting for cost (input and transport)

Price Index:

\[p_i = \gamma \Phi_n^{-1/\theta} \]

Trade share:

\[\pi_{ni} = \frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_n} \]

World Manufacturing Equilibrium:

\[Y_i^M = \sum_{n=1}^{N} \pi_{ni} X_i^M \]
Our framework
The factor markets

- Internal factor immobility
Our framework

The factor markets

- Internal factor immobility
- Endowments L_i^M and L_i^N
Our framework
The factor markets

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N
Our framework
The factor markets

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N
 - $c_i = \kappa_i \left(w_i^M \right)^{\beta_i} \left(w_i^N \right)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$
Our framework
The factor markets

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N
 - $c_i = \kappa_i \left(w_i^M \right)^{\beta_i} \left(w_i^N \right)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$

- Internal factor mobility
Our framework

The factor markets

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N
 - $c_i = \kappa_i \left(w_i^M \right)^{\beta_i} \left(w_i^N \right)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$

- Internal factor mobility
 - Endowment $L_i = L_i^M + L_i^N$
Our framework

The factor markets

- **Internal factor immobility**
 - Endowments L^M_i and L^N_i
 - Factor rewards w^M_i and w^N_i
 - $c_i = \kappa_i \left(w^M_i \right)^{\beta_i} \left(w^N_i \right)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$

- **Internal factor mobility**
 - Endowment $L_i = L^M_i + L^N_i$
 - Factor reward w_i
Our framework

The factor markets

- **Internal factor immobility**
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N
 - $c_i = \kappa_i \left(w_i^M \right)^{\beta_i} \left(w_i^N \right)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$

- **Internal factor mobility**
 - Endowment $L_i = L_i^M + L_i^N$
 - Factor reward w_i
 - $c_i = \kappa_i w_i^{\beta_i+\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$
Calibration and Computation

Data

- Forty four countries in 2004
Calibration and Computation

Putting numbers on parameters

\[\theta \]

Eaton and Kortum (2002) \[\theta = 3.60 \]

Bernard, Eaton, Kortum, and Jensen (2003) \[\theta = 8.28 \]

\[\alpha_i, \beta_i \text{ from UNIDO production data; UN National Accounts data} \]

\[\gamma \text{ OECD input output table for USA} \]
 Calibration and Computation
Putting numbers on parameters

- θ
 - $\theta = 8.28$ Eaton and Kortum (2002)
Calibration and Computation

Putting numbers on parameters

- θ
 - $\theta = 8.28$ Eaton and Kortum (2002)
 - $\theta = 3.60$ Bernard, Eaton, Kortum, and Jensen (2003)
Calibration and Computation
Putting numbers on parameters

- θ
 - $\theta = 8.28$ Eaton and Kortum (2002)
 - $\theta = 3.60$ Bernard, Eaton, Kortum, and Jensen (2003)
- α_i, β_i from UNIDO production data; UN National Accounts data
Calibration and Computation
Putting numbers on parameters

- θ
 - $\theta = 8.28$ Eaton and Kortum (2002)
 - $\theta = 3.60$ Bernard, Eaton, Kortum, and Jensen (2003)
- α_i, β_i from UNIDO production data; UN National Accounts data
- γ OECD input output table for USA
Reformulate Equilibrium Conditions in terms of changes in GDP, value added, and trade shares from current values.
Immobile labor 1: mftr labor market equilibrium

\[\hat{w}_i^M \frac{V_i^M}{\beta_i} = \sum_{n=1}^{N} \pi'_{ni} \left(\hat{w}_n^M \frac{V_n^M}{\beta_n} + D_i^{Mf} \right) \]
non-mftr labor market equilibrium:

\[
\hat{w}_n^N v_n^N = \left[\frac{1 - \alpha_n}{\alpha_n} + \gamma \left(1 - \beta_n \right) \right] \hat{w}_n^M v_n^M + \frac{1}{\alpha_n} D_n^{M'} - D'_n
\]
trade shares:

\[
\pi'_{ni} = \frac{\pi_{ni} \left[(\hat{w}^M_i)^{\beta_i} (\hat{w}^N_i) \gamma(1-\beta_i) \hat{p}_i(1-\gamma)(1-\beta_i)^{\beta_i} \right]^{-\theta}}{\sum_{k=1}^{N} \pi_{nk} \left[(\hat{w}^M_k)^{\beta_k} (\hat{w}^N_k) \gamma(1-\beta_k) \hat{p}_k(1-\gamma)(1-\beta_k)^{\beta_k} \right]^{-\theta}}
\]
Immobile labor 4: price indices

- price index:

\[
\hat{p}_n = \left(\sum_{i=1}^{N} \pi_{ni} \left[\left(\hat{w}_i^M \right)^{\beta_i} \left(\hat{w}_i^N \right)^{\gamma(1-\beta_i)} \hat{p}_i^{(1-\gamma)(1-\beta_i)} \right]^{-\theta} \right)^{-1/\theta}.
\]
Similar, only with total GDP rather than sectoral value added
Set $D_i^{M'} = D_i^M + CA_i$ for each country, fixing D_i^O
RESULTS
TABLE 2: Exchange Rate Changes Associated with Eliminating Current Accounts
(Immobile and mobile labor)

<table>
<thead>
<tr>
<th>Country</th>
<th>CA Deficit (% of GDP)</th>
<th>Exchange Rate Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>immobile</td>
</tr>
<tr>
<td>CANADA</td>
<td>-2.27</td>
<td>1.031</td>
</tr>
<tr>
<td>CHINA/HK</td>
<td>-4.14</td>
<td>1.037</td>
</tr>
<tr>
<td>DENMARK</td>
<td>-2.56</td>
<td>1.105</td>
</tr>
<tr>
<td>GERMANY</td>
<td>-3.85</td>
<td>1.073</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>-2.72</td>
<td>1.064</td>
</tr>
<tr>
<td>JAPAN</td>
<td>-3.89</td>
<td>1.093</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>5.55</td>
<td>0.859</td>
</tr>
<tr>
<td>Country</td>
<td>Immobile Labor real wage change</td>
<td>Mobile Labor change in mfg employment shr</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>mfg</td>
<td>non-mfg</td>
</tr>
<tr>
<td>CANADA</td>
<td>0.948</td>
<td>1.013</td>
</tr>
<tr>
<td>CHINA/HK</td>
<td>0.989</td>
<td>1.007</td>
</tr>
<tr>
<td>DENMARK</td>
<td>0.922</td>
<td>1.016</td>
</tr>
<tr>
<td>GERMANY</td>
<td>0.932</td>
<td>1.017</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>0.922</td>
<td>1.012</td>
</tr>
<tr>
<td>JAPAN</td>
<td>0.922</td>
<td>1.020</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>1.231</td>
<td>0.960</td>
</tr>
</tbody>
</table>
TABLE 4: Changes in Real Exchange Rates Associated with Eliminating Current Accounts
(Immobile and Mobile Labor and Alternative Lower Trade Elasticity)

<table>
<thead>
<tr>
<th>Country</th>
<th>Change in the Real Exchange Rate</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>high trade elasticity</td>
<td>immobile</td>
<td>mobile</td>
<td>low trade elasticity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>immobile</td>
<td>mobile</td>
<td>immobile</td>
</tr>
<tr>
<td>CANADA</td>
<td>1.002</td>
<td>1.003</td>
<td></td>
<td>1.002</td>
</tr>
<tr>
<td>CHINA/HK</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>DENMARK</td>
<td>1.005</td>
<td>1.003</td>
<td></td>
<td>1.007</td>
</tr>
<tr>
<td>GERMANY</td>
<td>1.000</td>
<td>1.002</td>
<td></td>
<td>1.002</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>1.000</td>
<td>1.001</td>
<td></td>
<td>0.999</td>
</tr>
<tr>
<td>JAPAN</td>
<td>0.999</td>
<td>1.002</td>
<td></td>
<td>1.001</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>0.995</td>
<td>0.996</td>
<td></td>
<td>0.991</td>
</tr>
</tbody>
</table>
TABLE 5: CHANGES IN REAL WAGES, REAL GDP, OVERALL PRICE INDEX, AND REAL ABSORPTION (FACTOR IMMOBILITY)

<table>
<thead>
<tr>
<th>country</th>
<th>real wages</th>
<th>real aggregate</th>
<th>real absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mfg</td>
<td>non-mfg</td>
<td>GDP</td>
</tr>
<tr>
<td>ALGERIA</td>
<td>0.760</td>
<td>1.075</td>
<td>1.058</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>0.983</td>
<td>1.010</td>
<td>1.004</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>1.191</td>
<td>0.961</td>
<td>0.986</td>
</tr>
<tr>
<td>AUSTRIA</td>
<td>0.992</td>
<td>1.002</td>
<td>1.000</td>
</tr>
<tr>
<td>BELGIUM/LUXEM</td>
<td>0.959</td>
<td>1.017</td>
<td>1.008</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>0.955</td>
<td>1.014</td>
<td>1.001</td>
</tr>
<tr>
<td>CANADA</td>
<td>0.948</td>
<td>1.013</td>
<td>1.002</td>
</tr>
<tr>
<td>CHILE</td>
<td>0.962</td>
<td>1.011</td>
<td>1.003</td>
</tr>
<tr>
<td>CHINA/HK</td>
<td>0.989</td>
<td>1.007</td>
<td>1.000</td>
</tr>
<tr>
<td>COLOMBIA</td>
<td>1.019</td>
<td>0.996</td>
<td>0.999</td>
</tr>
<tr>
<td>DENMARK</td>
<td>0.922</td>
<td>1.016</td>
<td>1.005</td>
</tr>
<tr>
<td>EGYPT</td>
<td>0.937</td>
<td>1.019</td>
<td>1.004</td>
</tr>
<tr>
<td>FINLAND</td>
<td>0.906</td>
<td>1.024</td>
<td>1.000</td>
</tr>
<tr>
<td>FRANCE</td>
<td>1.004</td>
<td>0.999</td>
<td>1.000</td>
</tr>
<tr>
<td>GERMANY</td>
<td>0.932</td>
<td>1.017</td>
<td>1.000</td>
</tr>
<tr>
<td>GREECE</td>
<td>1.177</td>
<td>0.969</td>
<td>0.986</td>
</tr>
<tr>
<td>INDIA</td>
<td>0.983</td>
<td>1.003</td>
<td>1.000</td>
</tr>
<tr>
<td>INDONESIA</td>
<td>0.988</td>
<td>1.004</td>
<td>1.000</td>
</tr>
<tr>
<td>IRELAND</td>
<td>1.019</td>
<td>0.999</td>
<td>1.004</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>0.922</td>
<td>1.012</td>
<td>1.000</td>
</tr>
<tr>
<td>ITALY</td>
<td>1.013</td>
<td>0.997</td>
<td>0.999</td>
</tr>
<tr>
<td>JAPAN</td>
<td>0.922</td>
<td>1.020</td>
<td>0.999</td>
</tr>
<tr>
<td>KOREA</td>
<td>0.921</td>
<td>1.022</td>
<td>0.996</td>
</tr>
<tr>
<td>MALAYSIA</td>
<td>0.925</td>
<td>1.036</td>
<td>1.001</td>
</tr>
<tr>
<td>MEXICO</td>
<td>1.014</td>
<td>0.994</td>
<td>0.997</td>
</tr>
<tr>
<td>NETHERLANDS</td>
<td>0.826</td>
<td>1.042</td>
<td>1.015</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>1.106</td>
<td>0.967</td>
<td>0.987</td>
</tr>
<tr>
<td>NORWAY</td>
<td>0.763</td>
<td>1.067</td>
<td>1.037</td>
</tr>
<tr>
<td>PAKISTAN</td>
<td>1.012</td>
<td>0.997</td>
<td>0.999</td>
</tr>
<tr>
<td>PERU</td>
<td>0.996</td>
<td>1.001</td>
<td>1.000</td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td>0.937</td>
<td>1.013</td>
<td>0.995</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>1.163</td>
<td>0.968</td>
<td>0.994</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>0.804</td>
<td>1.054</td>
<td>1.015</td>
</tr>
<tr>
<td>SINGAPORE</td>
<td>1.060</td>
<td>0.891</td>
<td>0.936</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td>1.061</td>
<td>0.985</td>
<td>0.998</td>
</tr>
<tr>
<td>SPAIN</td>
<td>1.096</td>
<td>0.977</td>
<td>0.995</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>0.826</td>
<td>1.040</td>
<td>1.002</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>0.733</td>
<td>1.085</td>
<td>1.020</td>
</tr>
<tr>
<td>THAILAND</td>
<td>0.964</td>
<td>1.019</td>
<td>1.000</td>
</tr>
<tr>
<td>TURKEY</td>
<td>1.081</td>
<td>0.973</td>
<td>0.995</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>1.038</td>
<td>0.992</td>
<td>0.998</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>1.231</td>
<td>0.960</td>
<td>0.995</td>
</tr>
<tr>
<td>VENEZUELA</td>
<td>0.833</td>
<td>1.076</td>
<td>1.036</td>
</tr>
<tr>
<td>REST OF WORLD</td>
<td>0.953</td>
<td>1.009</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Figure 1

Change in exchange rate vs. current account deficit as a percentage of GDP.
Lessons

Large changes in relative GDPs and hence nominal exchange rates with immobile labor
Lessons

1. Large changes in relative GDPs and hence nominal exchange rates with immobile labor
2. Smaller with labor mobility
Lessons

1. Large changes in relative GDPs and hence nominal exchange rates with immobile labor
2. Smaller with labor mobility
3. The pull of gravity of large economies on the small (Canada vs. Denmark)
Lessons

1. Large changes in relative GDPs and hence nominal exchange rates with immobile labor
2. Smaller with labor mobility
3. The pull of gravity of large economies on the small (Canada vs. Denmark)
4. With immobile labor there are large redistributions toward mftr labor in deficit countries, with the reverse in surplus countries
Lessons

1. Large changes in relative GDPs and hence nominal exchange rates with immobile labor
2. Smaller with labor mobility
3. The pull of gravity of large economies on the small (Canada vs. Denmark)
4. With Immobile labor there are large redistributions toward mftr labor in deficit countries, with the reverse in surplus countries
5. In either case overall real wages and real exchange rates change very little
What’s next?

1. Model trade in nonmanufactures
What’s next?

1. Model trade in nonmanufactures
2. Nail down determinants of factor mobility to connect the two cases
What’s next?

1. Model trade in nonmanufactures
2. Nail down determinants of factor mobility to connect the two cases
3. Embed in a model that explains the reasons for current account imbalances