The Macroeconomics of Debt Overhang

Thomas Philippon

New York University

November 2009
What is Debt Overhang?

- The life cycle of bankers
What is Debt Overhang?

- The life cycle of bankers
 - Stage 1: Lever up. Make a lot of deals.
What is Debt Overhang?

- The life cycle of bankers
 - Stage 1: Lever up. Make a lot of deals.
 - Stage 2: Drink away bonuses

Initial Balance Sheet (Market Values)

Assets: 100
- Mortgages, C&I loans: 100

Liabilities: 100
- Debt: 95 (par value 100)
- Equity: 5

Philippon (NYU)
What is Debt Overhang?

The life cycle of bankers

- Stage 1: Lever up. Make a lot of deals.
- Stage 2: Drink away bonuses
- Stage 3: Bonus Hangover. Ask for Ibuprofen.
What is Debt Overhang?

The life cycle of bankers

- Stage 1: Lever up. Make a lot of deals.
- Stage 2: Drink away bonuses
- Stage 3: Bonus Hangover. Ask for Ibuprofen.
- Stage 4: Debt Overhang. Stop lending and de-lever. Ask for government support.
What is Debt Overhang?

- The life cycle of bankers
 - Stage 1: Lever up. Make a lot of deals.
 - Stage 2: Drink away bonuses
 - Stage 3: Bonus Hangover. Ask for Ibuprofen.
 - Stage 4: Debt Overhang. Stop lending and de-lever. Ask for government support.

- Initial Balance Sheet (Market Values)
What is Debt Overhang?

The life cycle of bankers

- Stage 1: Lever up. Make a lot of deals.
- Stage 2: Drink away bonuses
- Stage 3: Bonus Hangover. Ask for Ibuprofen.
- Stage 4: Debt Overhang. Stop lending and de-lever. Ask for government support.

Initial Balance Sheet (Market Values)

- **Assets: 100**
What is Debt Overhang?

The life cycle of bankers

- Stage 1: Lever up. Make a lot of deals.
- Stage 2: Drink away bonuses
- Stage 3: Bonus Hangover. Ask for Ibuprofen.
- Stage 4: Debt Overhang. Stop lending and de-lever. Ask for government support.

Initial Balance Sheet (Market Values)

- Assets: 100
 - Mortgages, C&I loans: 100
What is Debt Overhang?

- The life cycle of bankers
 - Stage 1: Lever up. Make a lot of deals.
 - Stage 2: Drink away bonuses
 - Stage 3: Bonus Hangover. Ask for Ibuprofen.
 - Stage 4: Debt Overhang. Stop lending and de-lever. Ask for government support.

- Initial Balance Sheet (Market Values)
 - **Assets: 100**
 - Mortgages, C&I loans: 100
 - **Liabilities: 100**

- Initial Balance Sheet
 - Assets: 100
 - Mortgages, C&I loans: 100
 - Liabilities: 100

-清楚化
- 初期バランスシート
- 資産: 100
 - 預貸、C&Iローン: 100
- 負債: 100
What is Debt Overhang?

- The life cycle of bankers
 - Stage 1: Lever up. Make a lot of deals.
 - Stage 2: Drink away bonuses
 - Stage 3: Bonus Hangover. Ask for Ibuprofen.
 - Stage 4: Debt Overhang. Stop lending and de-lever. Ask for government support.

- Initial Balance Sheet (Market Values)

 - **Assets: 100**
 - Mortgages, C&I loans: 100

 - **Liabilities: 100**
 - Debt: 95 (par value 100)
What is Debt Overhang?

The life cycle of bankers

Stage 1: Lever up. Make a lot of deals.
Stage 2: Drink away bonuses
Stage 3: Bonus Hangover. Ask for Ibuprofen.
Stage 4: Debt Overhang. Stop lending and de-lever. Ask for government support.

Initial Balance Sheet (Market Values)

- **Assets: 100**
 - Mortgages, C&I loans: 100

- **Liabilities: 100**
 - Debt: 95 (par value 100)
 - Equity: 5
What is Debt Overhang?

New Investment Opportunity (Myers 77)

- Cost 8, expected revenue 10, financed by junior debt

- **Assets:** 110
 - Legacy assets: 100
 - New assets: 10

- **Liabilities 110**
What is Debt Overhang?

New Investment Opportunity (Myers 77)

- Cost 8, expected revenue 10, financed by junior debt

- **Assets**: 110
 - Legacy assets: 100
 - New assets: 10

- **Liabilities 110**
 - Senior Debt: $95 + 3 = 98

Conclusion:
Equity holders will oppose the project.

Macro Debt Overhang
November 2009

Philippon (NYU)
What is Debt Overhang?

New Investment Opportunity (Myers 77)
- Cost 8, expected revenue 10, financed by junior debt

- **Assets:** 110
- Legacy assets: 100
- New assets: 10

- **Liabilities 110**
- Senior Debt: $95 + 3 = 98$
- Junior debt: 8

Conclusion: Equity holders will oppose the project.
What is Debt Overhang?

New Investment Opportunity (Myers 77)
- Cost 8, expected revenue 10, financed by junior debt

- **Assets:** 110
 - Legacy assets: 100
 - New assets: 10

- **Liabilities 110**
 - Senior Debt: $95 + 3 = 98$
 - Junior debt: 8
 - Equity: $5 - 1 = 4$

Conclusion:
Equity holders will oppose the project

Philippon (NYU)
What is Debt Overhang?

New Investment Opportunity (Myers 77)

- Cost 8, expected revenue 10, financed by junior debt

- **Assets:** 110
 - Legacy assets: 100
 - New assets: 10

- **Liabilities 110**
 - Senior Debt: $95 + 3 = 98$
 - Junior debt: 8
 - Equity: $5 - 1 = 4$

Conclusion: **Equity holders will oppose the project**
Empirical corporate finance. Renegotiation is costly, investment drops. Gilson, John & Lang (90), Asquith, Gertner & Scharfstein (94)
Empirical corporate finance. Renegotiation is costly, investment drops. Gilson, John & Lang (90), Asquith, Gertner & Scharfstein (94)

Theory. Why renegotiation is costly: commitment, free-riding, contract incompleteness. Jensen & Meckling (76), Hart & Moore (95), Batthacharya & Faure-Grimaud (01)
The Relevance of Debt Overhang

- Empirical corporate finance. Renegotiation is costly, investment drops. Gilson, John & Lang (90), Asquith, Gertner & Scharfstein (94)
- Theory. Why renegotiation is costly: commitment, free-riding, contract incompleteness. Jensen & Meckling (76), Hart & Moore (95), Batthacharya & Faure-Grimaud (01)
Empirical corporate finance. Renegotiation is costly, investment drops. Gilson, John & Lang (90), Asquith, Gertner & Scharfstein (94)

Theory. Why renegotiation is costly: commitment, free-riding, contract incompleteness. Jensen & Meckling (76), Hart & Moore (95), Batthacharya & Faure-Grimaud (01)

What I do: financial overhang, macro activity, mortgage defaults.
Empirical corporate finance. Renegotiation is costly, investment drops. Gilson, John & Lang (90), Asquith, Gertner & Scharfstein (94)

Theory. Why renegotiation is costly: commitment, free-riding, contract incompleteness. Jensen & Meckling (76), Hart & Moore (95), Batthacharya & Faure-Grimaud (01)

What I do: financial overhang, macro activity, mortgage defaults.

Should governments bail out banks? How?
Empirical corporate finance. Renegotiation is costly, investment drops. Gilson, John & Lang (90), Asquith, Gertner & Scharfstein (94)

Theory. Why renegotiation is costly: commitment, free-riding, contract incompleteness. Jensen & Meckling (76), Hart & Moore (95), Batthacharya & Faure-Grimaud (01)

What I do: financial overhang, macro activity, mortgage defaults.

- Should governments bail out banks? How?
- Should government force mortgage renegotiations? How?
Empirical corporate finance. Renegotiation is costly, investment drops. Gilson, John & Lang (90), Asquith, Gertner & Scharfstein (94)

Theory. Why renegotiation is costly: commitment, free-riding, contract incompleteness. Jensen & Meckling (76), Hart & Moore (95), Batthacharya & Faure-Grimaud (01)

What I do: financial overhang, macro activity, mortgage defaults.

- Should governments bail out banks? How?
- Should government force mortgage renegotiations? How?
- Consequences of financial globalization?
Empirical corporate finance. Renegotiation is costly, investment drops. Gilson, John & Lang (90), Asquith, Gertner & Scharfstein (94)

Theory. Why renegotiation is costly: commitment, free-riding, contract incompleteness. Jensen & Meckling (76), Hart & Moore (95), Batthacharya & Faure-Grimaud (01)

What I do: financial overhang, macro activity, mortgage defaults.
- Should governments bail out banks? How?
- Should government force mortgage renegotiations? How?
- Consequences of financial globalization?

In 20 minutes and without complicated equations ...
Model

- Closed economy
- Households
 \[U = E \left[c_1 + \frac{c_2}{\delta} \right] \]
- Financial intermediaries
Fig 1: Timing, Technology and Balance Sheets

<table>
<thead>
<tr>
<th></th>
<th>t = 0</th>
<th>t = 1</th>
<th>t = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediaries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Book values
Closed Economy
Fig 1: Timing, Technology and Balance Sheets

Households

Financial Intermediaries

Households own financial firms
Fig 1: Timing, Technology and Balance Sheets

<table>
<thead>
<tr>
<th></th>
<th>t = 0</th>
<th>t = 1</th>
<th>t = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td>A</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Intermediaries</td>
<td>A</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Banks own all domestic mortgages
Fig 1: Timing, Technology and Balance Sheets

Households

\[\begin{array}{c|c}
A & L \\
\hline
b & m \\
e & \\
\end{array} \]

Financial Intermediaries

\[\begin{array}{c|c}
A & L \\
\hline
m & b \\
z & e \\
\end{array} \]

Consolidated corporate sector
Fig 1: Timing, Technology and Balance Sheets

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td>b</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Intermediaries</td>
<td>m</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prod.</th>
<th>y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td>c_i</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Intermediaries</td>
<td>b</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prod.</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Intermediaries</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>e</td>
</tr>
</tbody>
</table>

New Project
Fig 1: Timing, Technology and Balance Sheets

<table>
<thead>
<tr>
<th>t = 0</th>
<th>t = 1</th>
<th>t = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td>Endowment</td>
<td>Households</td>
</tr>
<tr>
<td>A</td>
<td>L</td>
<td>(A, L)</td>
</tr>
<tr>
<td>b</td>
<td>m</td>
<td>(b, m)</td>
</tr>
<tr>
<td>e</td>
<td>n</td>
<td>(e, n)</td>
</tr>
<tr>
<td>Financial Intermediaries</td>
<td>Prod.</td>
<td>Financial Intermediaries</td>
</tr>
<tr>
<td>A</td>
<td>L</td>
<td>(A, L)</td>
</tr>
<tr>
<td>m</td>
<td>b</td>
<td>(m, b)</td>
</tr>
<tr>
<td>z</td>
<td>e</td>
<td>(z, e)</td>
</tr>
<tr>
<td>Prod.</td>
<td>Spend.</td>
<td>Prod.</td>
</tr>
<tr>
<td>y_i</td>
<td>c_i</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>m</td>
<td>b</td>
</tr>
<tr>
<td>z</td>
<td>n</td>
<td>e</td>
</tr>
</tbody>
</table>
Fig 1: Timing, Technology and Balance Sheets

<table>
<thead>
<tr>
<th></th>
<th>t = 0</th>
<th>t = 1</th>
<th>t = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td>A</td>
<td>b</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Intermediaries</td>
<td>A</td>
<td>m</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>

Financing
Fig 1: Timing, Technology and Balance Sheets

Households

<table>
<thead>
<tr>
<th>t = 0</th>
<th>t = 1</th>
<th>t = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod.</td>
<td>Prod.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>y_1</td>
<td>A</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>m</td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Cons.</td>
<td>Cons.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>c_1</td>
<td>A</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>

Financial Intermediaries

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
<th>Prod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td>Prod.</td>
</tr>
<tr>
<td>m</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>z</td>
<td>e</td>
<td>0</td>
</tr>
<tr>
<td>Spend.</td>
<td>0</td>
<td>Spend.</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Financial Intermediaries

<table>
<thead>
<tr>
<th>Prod.</th>
<th>0</th>
<th>Prod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td>Prod.</td>
</tr>
<tr>
<td>m</td>
<td>b</td>
<td>qx\times z</td>
</tr>
<tr>
<td>z</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>e</td>
<td>0</td>
</tr>
</tbody>
</table>
Model: investment & first best

- Productivity q
 \[y_2 = z + qx \]

 with Leontieff technology

\[x \in \{0, X\} \]

First Best

- Since $q > \delta$, efficient to invest as much as possible
- Assume initial endowment large enough

\[\bar{x} = X \]

and

\[c_1 = \bar{y}_1 - X \]
Debt Overhang Assumption: The initial banks’ bonds b (resp. households’ loans m) are senior to the claims that can issued at date 1.
Debt overhang makes maximization program convex: either save everything, or consume everything.

There exist a threshold \hat{m}

$$\hat{m} \equiv (r - \delta) \left(y_1 + \frac{\bar{\rho}_b + \bar{e}}{r} \right)$$

- Excessive short term consumption when $m > \hat{m}$
- Maximum saving when $m < \hat{m}$
- Depends on rate spread and wealth
- Bad macro performance, lower wealth, higher defaults
Same idea as in simple numerical example

There is a threshold \hat{b}

$$\hat{b} \equiv z + \bar{\rho}_m + (q - r) X.$$

Banks with debt $b > \hat{b}$ do not finance new investments

Threshold depends on performance of outstanding loans

Expect non performing loans \rightarrow impaired balance sheet \rightarrow debt overhang \rightarrow less investment
Mortgage Performance Cycle

Households

Solvent:
- Save
- Repay mortgages

Insolvent:
- Short term consumption
- Default on mortgages

Banks

Solvent:
- Invest
- Pay debt + equity

Insolvent:
- No investment
- Debt recovery
Mortgage Performance Cycle

Households

Solvent:
- Save
- Repay mortgages

Insolvent:
- Short term consumption
- Default on mortgages

Banks

Solvent:
- Invest
- Pay debt + equity

Insolvent:
- No investment
- Debt recovery
Mortgage Performance Cycle

Households

Solvent:
- Save
- Repay mortgages

Insolvent:
- Short term consumption
- Default on mortgages

Banks

Solvent:
- Invest
- Pay debt + equity

Insolvent:
- No investment
- Debt recovery
Mortgage Performance Cycle

Households

Solvent:
- Save
- Repay mortgages

Insolvent:
- Short term consumption
- Default on mortgages

Banks

Solvent:
- Invest
- Pay debt + equity

Insolvent:
- No investment
- Debt recovery
Complementarities: Investment

Households

Solvent:
- Save
- Repay mortgages

Insolvent:
- Short term consumption
- Default on mortgages

Banks

Solvent:
- Invest
- Pay debt + equity

Insolvent:
- No investment
- Debt recovery
Complementarities: Investment

Households

Solvent:
- Save
- Repay mortgages

Insolvent:
- Short term consumption
- Default on mortgages

Banks

Solvent:
- Invest
- Pay debt + equity

Insolvent:
- No investment
- Debt recovery
Complementarities: Investment

Households
- **Solute**: Save, Repay mortgages
- **Insolvent**: Short term consumption, Default on mortgages

Banks
- **Solute**: Invest, Pay debt + equity
- **Insolvent**: No investment, Debt recovery
Complementarities: Savings

Closed economy: crowding out of investment by the current consumption of highly levered households

Households

Solvent: Save
- Repay mortgages

Insolvent: Short term consumption
- Default on mortgages

Banks

Solvent: Invest
- Pay debt + equity

Insolvent: No investment
- Debt recovery
The Macroeconomics of Debt Overhang

Households

- **Solvent:**
 - Save
 - Repay mortgages

- **Insolvent:**
 - Short term consumption
 - Default on mortgages

Banks

- **Solvent:**
 - Invest
 - Pay debt + equity

- **Insolvent:**
 - No investment
 - Debt recovery
Renegotiations

At cost κ, renegotiation can take place. Nash bargaining (ex-post efficient).

- **Proposition**: *If the government can influence renegotiations of household mortgages, it is optimal to favor the banks.*
Renegotiations

At cost κ, renegotiation can take place. Nash bargaining (ex-post efficient).

- **Proposition:** *If the government can influence renegotiations of household mortgages, it is optimal to favor the banks.*

 - Intuition: households own the banks. So in the aggregate, what they pay as debtors they receive as shareholders. But increasing $\bar{\rho}_m$ decreases bank debt overhang and increases aggregate investment.
At cost κ, renegotiation can take place. Nash bargaining (ex-post efficient).

- **Proposition**: *If the government can influence renegotiations of household mortgages, it is optimal to favor the banks.*

 Intuition: households own the banks. So in the aggregate, what they pay as debtors they receive as shareholders. But increasing $\tilde{\rho}_m$ decreases bank debt overhang and increases aggregate investment.

- **Proposition**: *The government is indifferent to the sharing of the surplus in the renegotiations of bank debt.*
At cost κ, renegotiation can take place. Nash bargaining (ex-post efficient).

- **Proposition**: *If the government can influence renegotiations of household mortgages, it is optimal to favor the banks.*

 Intuition: households own the banks. So in the aggregate, what they pay as debtors they receive as shareholders. But increasing $\hat{\rho}_m$ decreases bank debt overhang and increases aggregate investment.

- **Proposition**: *The government is indifferent to the sharing of the surplus in the renegotiations of bank debt.*

 Intuition: households are both bondholders and shareholders.
Bailouts

- **Financial bailouts**
 - Inject equity
 - Guarantee new debt
 - Buy back impaired assets

- Philippon & Schnabl (09): absent private information, all these programs are equivalent
 - Focus here on a pure cash transfer financed by lump-sum taxes
Bailouts

Households

<table>
<thead>
<tr>
<th>t = 0</th>
<th>t = 1</th>
<th>t = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod.</td>
<td>y₁</td>
<td>A</td>
</tr>
<tr>
<td>Cons.</td>
<td>c₁</td>
<td>L</td>
</tr>
<tr>
<td>b</td>
<td>m</td>
<td>b</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>

Financial Intermediaries

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod.</td>
<td>0</td>
<td>Spend.</td>
<td>x</td>
</tr>
<tr>
<td>m</td>
<td>b</td>
<td>m</td>
<td>b</td>
</tr>
<tr>
<td>z</td>
<td>e</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>e</td>
</tr>
</tbody>
</table>

NPV

Dilution of shareholders
Bailouts

Households

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>m</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Financial Intermediaries

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>b</td>
</tr>
<tr>
<td>z</td>
<td>e</td>
</tr>
</tbody>
</table>

Prod. y_i

Cons. c_i

A	L
b	m
n	e

Spend. x

A	L
m	b
z	$n - \tau$
x	e

Endowment

Tax τ
Proposition: *In a debt overhang equilibrium, financial bailouts increase welfare by increasing investment and increasing the fraction of solvent households.*
Global bond and equity markets: α share of foreign assets in domestic households’ portfolios.

Integration of mortgage markets: β share of foreign mortgages in domestic banks’ portfolios.

Notes: direct or indirect. MBS bought by SIVs sponsored by European banks.
Closed Economy

\[t = 0 \]
Open Economy

t = 0

Households

Financial Intermediaries

\[(1 - \alpha)b, \alpha b^*\]

\[(1 - \alpha)e, \alpha e^*\]

\[(1 - \beta)m, \beta m^*\]

\[z\]
Open Economy

t = 0

Households

Financial Intermediaries

Rest of the World

Households

Financial Intermediaries

Rest of the World

A

L

$(1 - \alpha)b, \alpha b^*$

$(1 - \alpha)e, \alpha e^*$

$(1 - \beta)m, \beta m^*$

z

m

b

e

βm

αb

αe

αb^*

αe^*

βm^*

z

βm

αb

αe
t = 0

Households

A \((1-\alpha)b, \alpha b^* \)

Financial Intermediaries

A \((1-\beta)m, \beta m^* \)

Rest of the World

\(\beta m \)

\(\alpha b \)

\(\alpha e \)
Notice: Previous analysis applies to world economy. Bailouts improve macroeconomic outcome when there is debt overhang. However:

- **Proposition**: *Domestic financial bailouts are less attractive when banks operate internationally* $$(\beta)$$, *and when households diversify their financial portfolios* $$(\alpha)$$.

- *When $$\alpha$$ is high, domestic bailouts increase mortgage defaults!*
- A new channel of international spillover
- Similar to fiscal policy in open economies
- **Corollary**: *Inefficient Nash equilibrium. Financial globalization creates the need for coordination in financial bailouts.*