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ABSTRACT. This paper studies a macroeconomic model in which financial experts borrow 

from less productive agents in order to invest in financial assets. We pursue three set of 

results: (i) Going beyond a steady state analysis, we show that adverse shocks cause 

amplifying price declines not only through the erosion of net worth of the financial 

sector, but also through increased price volatility, leading to precautionary hoarding and 

fire sales.  (ii) Financial sector’s leverage and maturity mismatch is excessive, since it 

does not internalize externalities it imposes on the labor sector and other financial experts 

due to a fire-sale externality. (iii) Securitization, which allows the financial sector to 

offload some risk, exacerbates the excessive risk-taking.  
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1. Introduction 

 

In many standard macroeconomic models, households directly invest without financial 

intermediaries.  This approach can only yield realistic macroeconomic predictions if, in 

reality, there are no frictions in the financial sector.  Yet, following the Great Depression, 

economists such as Fisher (1933), Keynes (1936) and Minsky (1986) have attributed the 

economic downturn to the failure of financial markets.  The current financial crisis has 

underscored once again the importance of the financial sector for the business cycles.   

 

We propose a model in which agents are heterogeneous and differ in their ability and/or 

willingness to invest in productive assets.  Specifically, we assume that some agents, 

whom we call experts, are more productive - better at learning the creditworthiness of 

borrowers, better at making sure borrowers pay back, have special knowledge to do 

venture capital financing, better at picking stocks, etc.  Alternatively, we could assume 

that experts are natural buyers because either they have a special skill that other agents do 

not have (as in Bernanke and Gertler (1989) and Kiyotaki (1998)) or they are more 

optimistic than everybody else (as in Geanakoplos (2003)).  We interpret the experts as 

financial institutions - banks, hedge funds, private equity funds, insurance companies, etc 

- and study the role that the financial system plays in business cycles.  

 

Because experts are more productive, they borrow from non-experts (households) to hold 

and manage assets.  Leverage amplifies risks.  In particular, negative macro shocks that 

hurt the collateral value of experts’ assets can cause long lasting adverse feedback loops 

(Kiyotaki and Moore (1997)) and liquidity spirals as higher margins and haircuts force 

banks to delever (Brunnermeier and Pedersen (2009)).  Deteriorating balance sheets lead 

to shifts of assets from experts to households, depressing prices and hurting further the 

experts’ balance sheets.  In our setting, borrowing is limited due to financial frictions in 

the form of moral hazard, and when experts lever up they are worried that they might be 

forced to fire-sell their assets in the future. This precautionary motive leads to hoarding 

of “dry powder”, especially during crises periods when price volatility is high. In short, 

both price and volatility effects amplify initial macro shocks in our model.  

 

We pursue three sets of results, and the first one concerns equilibrium dynamics.  

Traditionally, macro models have analyzed these amplifications primarily through 

steady-state analysis.  In this paper, we derive full equilibrium dynamics, not just near the 

steady state, and argue that steady-state analysis misses important effects.  Specifically, 

volatility effects and precautionary hoarding motives lead to a deleveraging phenomenon 

which makes the system significantly less stable and more volatile.  As these effects 

significantly amplify initial shocks, a steady-state analysis severely underestimates the 

prominence of crisis episodes.  In terms of asset pricing, we show in the time-series that 

asset prices are predictable, exhibit excess (and stochastic) volatility. In the cross-section, 

we show that asset price correlations increase in times of crisis.  This property of the 

correlation of asset prices is important for risk models that are used by banks and for 

regulatory purposes.  
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Second, we study externalities, and find that generally experts lever up too much by 

taking on too much risk and by paying out funds too early.  Experts impose an externality 

on the labor sector since when choosing their leverage they do not take fully into account 

the costs of adverse economic conditions that result in crises.  Also, there are ‘firesale’ 

externalities within the financial sector when households can provide a limited liquidity 

cushion by absorbing some of the assets in times of crises.  When levering up, experts do 

not take into account that they hurt other experts’ ability to sell to households in times of 

crises.  On top of it, low fire-sale prices also lower the fraction of outside equity financial 

experts can raise from households in times of crisis.  Put together, this can also lead to 

overcapacity.  

 

Third, we study the effects of securitization and financial innovation.  Securitization of 

home loans into mortgage-backed securities allows institutions that originate loans to 

unload some of the risks to other institutions.  More generally, institutions can share risks 

through contracts like credit-default swaps, through integration of commercial banks and 

investment banks, and through more complex intermediation chains (e.g. see Shin 

(2010)).  To study the effects of these risk-sharing mechanisms on equilibrium, we add 

idiosyncratic shocks to our model.  We find that when expert can hedge idiosyncratic 

shocks among each other, they become less financially constrained and take on more 

leverage, making the system less stable.  Thus, while securitization is in principle a good 

thing - it reduces the costs of idiosyncratic shocks and thus interest rate spreads - it ends 

up amplifying systemic risks in equilibrium.    

 

Literature review.  Financial crises are common in history - having occurred at roughly 

10-year intervals in Western Europe over the past four centuries, according Kindleberger 

(1993).  Crises have become less frequent with the introduction of central banks and 

regulations that include deposit insurance and capital requirements (see Allen and Gale 

(2009) and Cooper (2008)).  Yet, the stability of the financial system has been brought 

into the spotlight again by the events of the current crises, see Brunnermeier (2009). 

 

The existence of the financial system is premised on the heterogeneity of agents in the 

economy – lenders and borrowers.  In Bernanke and Gertler (1989), entrepreneurs have 

special skill and borrow to produce. In Kiyotaki (1998), more productive agents lever up 

by borrowing from the less productive ones, in Geanakoplos (2003) more optimistic and 

in Garleanu and Pedersen (2009) less risk-averse investors lever up.  Intermediaries can 

facilitate lending – for example Diamond (1984) shows how intermediaries reduce the 

cost of borrowing.  Holmström and Tirole (1997, 1998) also propose a model where both 

where both intermediaries and firms are financially constrained.  Philippon (2008) looks 

at the financial system plays in helping young firms with low cash flows get funds to 

invest.  In these models, financial intermediaries are also levered.   

 

Leverage leads to amplification of shocks, and prices can play an important role in this 

process.  Negative shocks erode borrowers’ wealth, and impair their ability to perform 

their functions of production or intermediation.  Literature presents different 

manifestations of how this happens.  Shleifer and Vishny (1992) argue that when physical 

collateral is liquidated, its price is depressed since natural buyers, who are typically in the 
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same industry, are likely to be also constrained.  Brunnermeier and Pedersen (2009) study 

liquidity spirals, where shocks to institutions net worth lead to binding margin constraints 

and fire sales. The resulting increase in volatility brings about a spike in margins and 

haircuts forcing financial intermediaries to delever further.  Maturity mismatch between 

the assets that borrowers hold and liabilities can lead to runs, such as the bank runs in 

Diamond and Dybvig (1983), or more general runs on non-financial firms in He and 

Xiong (2009).  Allen and Gale (2000) and Adam Zawadowski (2009) look at network 

effects and contagion.  In Shleifer and Vishny (2009) banks are unstable since they 

operate in a market influenced by investor sentiment.  

 

These phenomena are important in a macroeconomic context – and many papers have 

studied the amplification of shocks through the financial sector near the steady state, 

using log-linearization.  Prominent examples include Bernanke, Gertler and Gilchrist 

(1999), Carlstrom and Fuerst (1997) and Kiyotaki and Moore (1997) and (2007).  More 

recently, Christiano, Eichenbaum and Evans (2005), Christiano, Motto and Rostagno 

(2005, 2007), Cordia and Woodford (2009), Gertler and Karadi (2009) and Gertler and 

Kiyotaki (2009) have studied related questions, including the impact of monetary policy 

on financial frictions.   

 

We argue that the financial system exhibits the types of instabilities that cannot be 

adequately studied by steady-state analysis, and use the recursive approach to solve for 

full equilibrium dynamics.  Our solution builds upon recursive macroeconomics, see 

Stokey and Lucas (1989) and Ljungqvist and Sargent (2004).  We adapt this approach to 

study the financial system, and enhance tractability by using continuous-time methods, 

see Sannikov (2008) and DeMarzo and Sannikov (2006). 

 

A few other papers that do not log-linearize include He and Krishnamurthy (2008 and 

2009) and Mendoza (2010).  Perhaps most closely related to our model, He and 

Krishnamurthy (2008) also model experts, but assume that only experts can hold risky 

assets.  They derive many interesting asset pricing implications and link them to risk 

aversion.  In contrast to He and Krishnamurthy (2008) we focus on the risk-neutral case 

and look at not only individual asset prices, but also in cross-section.  We also study 

system dynamics through its stationary distribution, and analyze externalities and the 

effects of securitization. 

 

Our result that pecuniary externalities lead to socially inefficient excessive borrowing, 

leverage and volatility can be related to Bhattacharya and Gale (1987) in which 

externalities arise in the interbank market and to Caballero and Krishnamurthy (2004) 

which study externalities an international open economy framework. On a more abstract 

level these effects can be traced back to inefficiency results within an incomplete markets 

general equilibrium setting, see e.g. Stiglitz (1982) and Geanakoplos and Polemarchakis 

(1986). In Lorenzoni (2007) and Jeanne and Korinek (2009) funding constraints depend 

on prices that each individual investor takes as given. Adrian and Brunnermeier (2008) 

provide a systemic risk measure and argue that financial regulation should focus on these 

externalities.  
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We build our model in steps, starting from a simple version and adding ingredients to 

illustrate externalities and the effects of securitization.  We purposefully start in Section 2 

building a basic model that has no externalities (for reasons that will become clear later), 

so that we can isolate precisely the ingredients that cause each externality in Sections 3 

and 4.  Nevertheless, the basic model exhibits amplifications and adverse feedback loops, 

and more importantly, illustrates how full equilibrium dynamics differs from steady-state 

dynamics. 

 

2. The Model 

 

The baseline model.   We consider an economy populated by households and financial 

experts.  Since, experts are better at managing capital, they find it profitable to invest in 

projects, such as productive firms, entrepreneurial ventures, home loans, etc.   

 

When an expert holds capital kt, he receives output at rate 

 

yt = a kt. 

 

where a is a parameter.  New capital can be created through investment.  At a cost of !(g), 

kt
 
capital can be made to grow at an expected rate of g.  We assume that  

 

• the marginal cost of investment !!(g) is increasing in g, 

• without investment, capital depreciates at a rate ", i.e. or !(-") = 0 

• experts can sell capital to households, who are less efficient in managing it and 

have a higher depreciation rate "*
.  This action is irreversible in the baseline 

model and so !!(-#) = a/(r + "*
), where r is the risk-free rate.  Later in the paper 

we allow households to provide a liquidity buffer by buying capital temporarily. 

• !!(r) = #. 

 

Holding capital is risky.  The quantity of capital changes due to macro shocks, and 

evolves according to  

 

dkt = g kt dt + $ kt dZt, 

 

where Z is a Brownian motion.  Note that kt reflects the “efficiency units” of capital, 

measured in output rather than in simple units of physical capital (number of machines). 

Hence, dZt also captures changes in expectations about the future productivity of capital. 

 

We assume that experts and households are risk-neutral.  Experts are financially 

constrained, and they borrow money from households at the risk-free rate r, which is 

lower than the experts’ own discount rate %.  We are imagining a story in which 

households hold money to ensure themselves against future shocks (large purchases, 

accidents, etc).  Because of the option value of holding money, households are willing to 

lend it to experts (banks) at rate r, which is lower than their discount rate. Hence, the 
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assumption % > r is natural.  For simplicity, we do not model money explicitly and 

assume that r is the households’ discount rate.
1
      

 

Experts’ balance sheets.  For most of the paper, we work with balance sheets that 

consist of assets, debt and equity as shown in Figure 1. 

 

 
 

Figure 1.  Expert balance sheet. 

 

Debt is risk-free, and experts take on all of the risk of the assets they hold.  In the next 

several paragraphs we justify balance sheets as an outcome of contracting, subject to 

informational problems, and get a slightly more general form of balance sheets (with 

inside and outside equity).  However, exposition is much easier and all results hold with a 

simpler form of balance sheets, so we focus on them for the rest of the paper.
2
  

 

Experts finance their capital holdings by borrowing from households, and also by selling 

to them a fraction of realized returns in the form of outside equity.  Informational 

problems limit the fraction 1-&t of risk that the experts can offload. For convenience, we 

model informational asymmetry as moral hazard, and assume that if the agent does not 

put effort, then capital depreciates at a higher rate.  The expert gets a benefit of b per unit 

of capital that disappears.  The expert puts effort if he is liable for a fraction &t of this loss 

such that  

 

&t pt ' b, 

 

where pt is the equilibrium endogenous price of capital. This constraint is the one-shot 

deviation condition.  Appendix A justifies this constraint formally using the theory of 

optimal dynamic contracting, in which the contracting variable is the market value of 

assets kt pt.  By assuming that contracts depend on market value instead of kt directly, we 

allow for an amplification channel in which market prices affect the expert’s net worth.  

This assumption is consistent with what we see in the real world, and with the models of 

Kiyotaki and Moore (1997) and Bernanke, Gertler and Gilchrist (1999).  We are 

imagining that contracting on kt directly is difficult because it is not something objective 

like the number of machines, but something much more forward looking, like the 

                                                
1
 Of course, in a model with money rate r will depend on the banks’ demand for deposits and the point in 

the economic cycle.  We ignore these effects in our model.  
2
 Balance sheets with inside and outside equity offer a new amplification channel, and, of course, the ratio 

of inside and outside equity would matter for calibration.  
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expected NPV of assets under a particular management strategy.  Moreover, even though 

in our model there is a one-to-one correspondence between kt and output, in a more 

general model this relationship could be different for different types of project, and 

private information of the expert.  Moreover, output can be manipulated, e.g. by 

underinvestment.  In extensions of our model, we relax the contracting assumption by 

allowing expert to hedge some of the risks of ktpt (e.g. see the Section 4 on 

securitization). 

 

With inside and outside equity and debt, the experts’ balance sheets look as shown in 

Figure 2.   

 
 

Figure 2.  Expert balance sheet with inside and outside equity. 

 

The contracting problem pins down the cash flows that go to inside equity nt and implies 

a solvency constraint that the expert can operate only as long as nt ' 0.  In contrast, cash 

flows to outside investors can be split arbitrarily between debt and equity-holders, by 

Modigliani and Miller (1959).  We choose a particular capital structure that makes debt 

risk-free, because it simplifies exposition.   

 

Note that the incentive constraint requires a higher &t in downturns, when equilibrium 

prices pt are depressed. This observation is consistent with higher informational 

asymmetry and lower liquidity in downturns.
3
  This property of &t also creates an 

additional reason why experts find it harder to hold assets in downturns - because they 

must retain a greater fraction of risk.
4
   

 

However, aside from this amplification channel, almost all results in the paper hold in a 

simpler model where we assume that moral hazard effects are large such that &t = 1.  We 

focus on this case for the rest of the paper. 

 

Experts as dynamic optimizers and the evolution of balance sheets.  The equilibrium 

                                                
3
 See Leland and Pyle (1977) where managers must retain a greater fraction of equity when the 

informational asymmetry is greater, or DeMarzo and Duffie (1999) where informational sensitivity leads to 

lower liquidity. 
4
 In a version of our model where &t = b/pt and households can provide liquidity support by buying assets 

temporarily in downturns (see Section 3), the equilibrium exhibits procyclical leverage in the region where 

households hold some of the assets.  The reason is that &t increases when pt falls, making it harder for the 

financial sector to hold assets.  Procyclical leverage is consistent with what we observe about financial 

firms in practice.  In contrast, existing models, such as those of Bernanke, Gertler and Gilchrist (1999) and 

He and Krishnamurthy (2009), have countercyclical leverage.    
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in our economy is driven by exogenous shocks Zt.  These shocks affect the experts’ 

balance sheets in the aggregate, and market prices of capital pt are determined 

endogenously through supply and demand.  That is, experts determine the sizes of their 

balance sheets by trading capital among each other at price pt.  They may also liquidate 

capital to households when pt = a/(r + "*
).  Note that until Section 3.2 we assume that 

while households can buy assets from expert, they cannot sell them back. Hence, since 

capital in the hands of households depreciates at rate "*
, they value a unit of capital at a/(r 

+ "*
) (by the Gordon growth formula).  We denote the endogenous equilibrium law of 

motion of prices by  

 

dpt = µt
p
 dt + $t

p
 dZt. 

 

We assume that experts are small and act competitively, so individually they take prices 

pt as given, but they affect prices in the aggregate through their leverage decisions.   

 

Experts choose dynamic trading strategies to maximize their payoffs.  They choose how 

much to lever up.  There is a trade-off that greater leverage leads to both higher profit and 

greater risk.  Greater risk means that experts will suffer greater losses exactly in the 

events when they value funds the most - after negative shocks when prices become 

depressed and profitable opportunities arise.  We will see how this trade-off leads to an 

equilibrium choice of leverage.  

 

Using Ito’s lemma, without any sales or purchases of new capital the value of the assets 

on the balance sheet evolves according to  

 

d(ktpt) = kt (g pt + µt
p
 + $$t

p
) dt + kt ($pt + $t

p
) dZt, 

 

where growth g is generated through internal investment.  The term, $$t
p
, is due to Ito’s 

lemma and reflects the positive covariance between the Zt-shock to capital and price 

volatility.
5
 . Debt evolves according to  

 

ddt = (r dt - a kt + !(g) kt) dt - dct, 

 

where a kt is output, !(g) kt is internal investment and dct are payouts (e.g. bonuses that 

experts pay themselves to consume).  As a result, the expert’s net worth nt = ptkt - dt 

changes according to  

 

dnt = r nt dt + kt [(a - !(g) - (r - g)pt + µt
p 
+ $$t

p
) dt + ($pt + $t

p
) dZt] - dct. 

 

Note that the optimal level of internal investment g is determined by the price through 

!!(g) = pt.   

 

Equilibrium.  Our strategy for solving for the equilibrium is to combine the experts’ 

dynamic optimization problems (expressed via Bellman equations) with the market 

                                                
5
 The version of Ito’s lemma we use is the product rule d(XtYt) = dXt Yt + Xt dYt + $X $Y dt. 
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clearing conditions. 

 

In our economy, the key state variables are the aggregate expert net worth Nt and the 

aggregate amount of capital Kt.  Because everything is proportionate with respect to Kt, 

we get scale invariance and the key state variable is the ratio 

 

(t = Nt/Kt. 

 

Lemma 1.  The equilibrium law of motion of (t is  

 

d(t = (r - g + $2
) (t dt + (a - !(g) - (r - g + $2

)pt + µt
p
) dt + ($pt + $t

p
 - $t (t) dZt - d)t, 

 

where d)t = dCt/Kt and dCt is aggregate consumption. 

 

Proof.  Aggregating over all experts, the law of motion of Nt is  

 

dNt = r Nt dt + Kt [(a - !(g) - (r - g)pt + µt
p 
+ $$t

p
) dt + ($pt + $t

p
) dZt] - dCt, 

 

where Ct is are aggregate payouts, and the law of motion of Kt is 

 

dKt = g Kt dt + $ Kt dZt. 

 

Combining the two equations, and using Ito’s lemma, we get a desired expression for (t. 

QED 

 

We look for an equilibrium that is Markov in (t, and formally justify in Proposition 2 that 

this equilibrium is unique (among all equilibria, Markov or not).  Denote by  

 

p((t)  

 

the market price of capital in equilibrium and by  

 

f((t) nt 

 

the value function of an expert with net worth nt.  Note that the value function is 

proportional to net worth, because an expert with twice the net worth as another expert 

can replicate the strategy of the former, times two, and get twice the utility.  

 

When choosing asset holdings kt experts affect only the law of motion of their own net 

worth, and take the law of motion of (t as given.  Their value functions satisfy the 

Bellman equation 

 

%f((t)nt dt = maxk,dc E[dc + d(f((t)nt)] = dct + µt
f
 nt dt +  

 

f((t) (r nt dt + kt (a - !(g) - (r - g)pt + µt
p 
+ $$t

p
) dt - dct) + $t

f
 kt  ($pt + $t

p
) dt. 
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The first-order condition with respect to kt is  

 

a - !(g) - (r - g)pt + µt
p 
+ $$t

p
 + $t

f
/f((t)  ($pt + $t

p
) = 0, 

 

and the expert consumes only when f((t) = 1 (when f((t) > 1, then choosing dct = 0 is 

optimal).  The first-order condition with respect to g is an equation that we already saw,  

 

!!(g) = pt. 

 

Together, the Bellman equation and the two first-order conditions are sufficient to find 

three functions of (t that characterize the equilibrium, f((t), p((t) and g((t).  Proposition 

1 expresses our characterization in terms of differential equations, using Ito’s lemma, and 

provides appropriate boundary conditions. 

 

Proposition 1.  Functions f((t) and p((t) solve the differential equations 

 

(% - r) f((t) = f!((t) µt
( + " f!!((t) ($t

()
2
  and 

 

a - !(g) - (r - g)pt + p!((t) µt
( + " p!!((t)($t

()
2 
+ $p!((t) $t

( + f!((t)/f((t) $t
( ($pt + $t

p
) = 0, 

 

where !!(g) = pt, and µt
(, $t

( are given by Lemma 1.  In equilibrium (t evolves over the 

range [0, (*
], where (*

 is a reflecting point where the experts consume and 0 (if ever 

reached) is an absorbing point.  Experts do not consume when (t < (*
. 

 

The boundary conditions are  

 

p(0) = a/(r + "*
), p!((*

) = 0, f((*
) = 1 and  f!((*

) = 0. 

 

Note that when experts’ net wealth reaches the point (*
, the marginal value of an extra 

dollar for them is simply one dollar and hence they start consuming. Since experts 

consume any extra wealth at (t = (*
, payouts fully adjust for the shocks to balance sheets, 

and so the price volatility is 0, i.e. p!((*
) = 0. The boundary condition, f!((*

) = 0 states 

that there are no kinks in experts’ value function. Finally, the first boundary conditions 

follows simple from the fact that households are willing to absorb all assets at a price of 

a/(r + "*
), given their discount rate of r and the fact that assets in their hands depreciate at 

the rate of "*
.  

 

Figure 3 shows an example, in which we computed functions f(() and p(() numerically.  

As expected, asset prices p((t) increase when experts have more net worth.  At the same 

time, experts get more value per dollar of net worth when prices are depressed and they 

can buy assets cheaply, so function f((t) is decreasing.  
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Figure 3. The marginal component of experts’ value function and the price of capital as 

functions of (.  

 

For completeness, we show that the equilibrium characterized in Proposition 1 is unique 

not only among equilibria that are Markov in (t but among all competitive rational 

expectations equilibria. 

 

Proposition 2.  Our economy has a unique equilibrium, which is described by 

Proposition 1. 

 

We defer the proof until Section 3 - this proposition is a corollary of Proposition 4. 

 

Unstable dynamics.  Let us compare full system dynamics in our model to log-linearized 

steady-state dynamics in traditional models like Kiyotaki and Moore (1997) or Bernanke, 

Gertler and Gilchrist (1999).  Standard steady-state dynamics involves a mean-reverting 

process, which pushes the state variable towards the steady state with a drift that is 

proportional to the distance away from steady state.  Shocks are small, and volatility is 

constant in the neighborhood near the steady state.  The stationary distribution is normal 

around the steady state, as illustrated on the left panel of Figure 4.  The right panel 

stylistically illustrates impulse response functions that illustrate how various components 

of the system return to the steady state following a negative macro shock. 

 

      
 

Figure 4.  Steady-state dynamics around steady state. 

 

In our model, the steady state is at (t = (*
.  The state variable is pushed towards the 

steady state from the left by positive drift, and reflected from the right.  It is somewhat 

non-standard because of a reflecting boundary.  However, a modification of our model 

with an exogenous exit rate of experts (as in Bernanke, Gertler and Gilchrist (1999)) 
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would reproduce a more typical steady state.
6
   

 

The system is very stable near the steady state in our model, where the price volatility $t
p
 

= p!((t) $t
(

 is close to 0.  Recall that p!((*
) = 0 is one of the boundary conditions in 

Proposition 1, which is related to the reflecting nature of the boundary.  However, below 

the steady state prices fall and p!(() becomes larger.  This leads to adverse feedback 

loops, in which a negative shock to kt erodes expert capital (t, leading to a drop in prices, 

further erosion of expert capital and so on.  As a result, shocks to kt are amplified and the 

resulting volatility of (t satisfies  

 

 

 

since by Lemma 1, $t
( = $(pt - (t) + $t

p
 = $(pt - (t) + p!((t) $t

(.  Note that as p!((t) * 1, 

the adverse feedback loop becomes completely unstable and never converges, leading to 

infinite volatility.  Of course, in equilibrium we always have p!((t) < 1.  Figure 5 

illustrates the drift and volatility of the full system dynamics of (t: 

 

 

Figure 5.  The drift and volatility of ( in equilibrium. 

 

Since the volatility is greatest below the steady state, in the middle range of (, it means 

that the system moves through that region very fast and does not spend much time there.  

At the same time, it also means that the system is likely to end up in the range of very 

low (t occasionally, despite profit-making and the positive drift of (t.  This high positive 

drift for low (t values is consistent with the sizable profits banks made in the spring and 

summer 2009.  

 

Figure 6 shows the stationary distribution of (t.  As we expected, it is thin in the middle 

range of (t and has two peaks.  There is a large mass near the steady state, and also a 

                                                
6
 By exogenous exit, we mean that with Poisson intensity # experts are hit by a shock that makes them lose 

their expertise.  In that case, they unwind their positions to other experts, retire, and just consume their net 

worth.  Exogenous exit adds a negative term to the drift of (t, which produces an internal point where the 

drift of (t is 0 (i.e. steady state).  If the sole purpose of our paper were to compare steady-state and full 

dynamics, then we would write our model in this way, but because our aim is much broader (externalities, 

securitization, regulations) we assume instead that % > r.  We find this assumption much more natural. 
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smaller mass in the range of very low (t.  It is typical for the system to dip below the 

steady state and enter volatile destructive eposides, which occasionally lead to very large 

downturns.  

 

 

Figure 6.  The stationary distribution of (t. 

 

Proposition A1 in the appendix provides equations that characterize this stationary 

distribution. 

 

Asset-pricing implications.  Our equilibrium analysis implies interesting results for asset 

pricing - predictability, excess volatility, etc.  More importantly, however, by 

reinterpreting our model to allow multiple assets we get a conclusion that cross-

sectionally, prices of different assets become more correlated in crises.  This phenomenon 

is important in practice, and it has been pointed out that risk models used by many 

financial institutions have failed in recent crisis because they did not take these 

correlation effects into account.
7
  These important effects are also absent from asset 

pricing model - to our knowledge we are the first to offer a fully dynamic model that 

exhibits increased correlation of asset prices in crises.
8
   

 

Regarding asset pricing, the Bellman equation and the first-order condition with respect 

to k imply that the value nt of any portfolio of risky capital and cash satisfies

  

%f((t)nt dt = E[d(f((t)nt)] 

 

when internal investment is done optimally, according to !!(g) = pt.  It follows that any 

portfolio held by an expert can be priced using the stochastic discount factor  

 

e
-%t

 f((t)/f((0). 

 

In contrast, households have a different stochastic discount factor in our model, e
-rt

, 

because they get a different return from holding risky capital.   

 

                                                
7
 See “Efficiency and Beyond” in The Economist, July 16, 2009. 

8
 For example see Erb, Harvey and Viskanta (1994). 
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Our model predicts excess volatility.  The volatility of ptkt is $ + $t
p
/pt, where $ is the 

volatility of earnings (per dollar invested).  Our model also implies that asset returns are 

predictable.  From the first-order condition, the expected return from investing a dollar 

into the risky asset is  

 

 (a - !(g) + gpt + µt
p 
+ $$t

p
)/pt = r - $t

f
/f((t)  ($ + $t

p
/pt), 

 

where -$t
f
/f((t)($ + $t

p
/pt) is the risk premium, which is time-varying.  The risk premium 

is zero at (*
, since $t

f
 = f!((t) $t

( and f!((*
) = 0.  Below (*

, the risk premium is positive. 

 

To look at asset prices in cross section, we reinterpret the model to allow for multiple 

assets.  Suppose that there are many types of capital, and each is hit by aggregate and 

type-specific shocks.  Specifically, capital of type j evolves according to  

 

dkt
j
 = g kt

j
 dt + $ kt

j
 dZt + $! dZt

j
, 

 

where dZt
j
 is type-specific Brownian shock uncorrelated with the aggregate shock dZt.   

 

In aggregate, idiosyncratic shocks cancel out and the total amount of capital in the 

economy still evolves according to  

 

dKt = g Kt dt + $ Kt dZt. 

 

Then, in equilibrium experts hold fully diversified portfolio and experience only 

aggregate shocks.  The equilibrium looks identical to one in the single-asset model, with 

price of capital of any kind given by pt per unit of capital.   

 

Then 

 

d (ptkt
j
) = drift + ($ ptkt

j
 + $t

p
 kt

j
) dZt + $! ptkt

j
 dZt

j
. 

 

The correlation between assets i and j is  

 

Cov(ptkt
i
, ptkt

j
)/(Var(ptkt

i
)Var(ptkt

j
)) = ($ + $t

p
/pt)

2
/((($ + $t

p
/pt)

2
 + ($!)2

). 

 

Near the steady state (t = (*
, there is only as much correlation between the prices of 

assets i and j as there is correlation between shocks.  Specifically, $t
p
 = 0 near the steady 

state, and so the correlation is  

 

$2
/($2

 + ($!)2
). 

 

Away from (*
, correlation increases as $t

p
 increases.  Asset prices become most 

correlated in prices when $t
p
 is the largest, and as $t

p
 * #, the correlation coefficient 

tends to 1. 
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3. Externalities 

So far, we set up our baseline model intentionally in a way that has no externalities.  In 

this section we add ingredients to our model to isolate externalities.  We show that there 

can be externalities both between the financial sector and households, and within the 

financial sector.  To illustrate the former, we add a labor market, in which households’ 

labor income depends on the amount of capital in the economy.  When levering up and 

choosing bonus payouts, experts do not take internalize the damages that crises bring 

onto the labor market.  This externality does not depend on competition within the 

financial sector - a fact that we illustrate by a class of model in which the competitive 

equilibrium is identical to the optimal policy with a monopolist financial institution.  

Within the financial sector, we identify a firesale externality, which is an inefficient 

pecuniary externality in an incomplete markets setting.  This externality does not exist in 

our baseline setting because experts disinvest internally in the event of crises.  The 

firesale externality appears when in the event of crises (1) experts are able to sell assets to 

another sector (e.g. vulture investors or the government) and (2) the new asset buyers 

provide a downward-sloping demand function.
9
  In this case, when levering up in good 

times financial institutions do not take into account that in the event of crises, its own fire 

sales will depress prices that other institutions are able to sell at.  This effect leads to 

excess leverage due to competition among the financial institution - a monopolist expert 

would lever up less. 

No externalities in the baseline model.  We show that the competitive rational 

expectations equilibrium in our baseline model coincides with a policy that a monopolist 

expert would choose.   

Consider a monopolist with discount rate %, who can borrow from households at rate r.  

His debt and the total amount of capital in the economy evolve according to  

dDt = (r Dt - a Kt + !(g) Kt) dt - dCt and dKt = gKt dt + $Kt dZt, 

where dCt is the monopolist’s consumption.  It is convenient to express the monopolist’s 

value function as h(+t)Kt, where +t = -Dt/Kt.
10

  The value function is homogenous in Dt 

and Kt of degree 1 because of scale invariance.  From the liquidation value of assets, the 

monopolist’s debt capacity is Dt , aKt/(r+"
*
), and so +t ' -a/(r+"*

). 

Using Ito’s lemma  

d+t = ((r - g + $2
) +t + a - !(g)) dt - $+t dZt - dCt/Kt. 

                                                
9
 He, Khang and Krishnamurthy (2009) document that government support for commercial banks allowed 

them to buy mortgage and other asset-backed securities during the great liquidity and credit crunch of 

2007-09. Warren Buffet also provided additional funds to Goldman Sachs and Wells Fargo. 
10

 It convenient to analyze the monopolist’s behavior using +t, instead of the more economically 

meaningful variable (t = Nt/Kt, because (t depends on market prices, which are endogenous in equilibrium.  

Proposition 4 provides a one-to-one map between variables +t and (t in equilibrium. 
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The following proposition summarizes the Bellman equation and the optimal policy of 

the monopolist.   

Proposition 3.  The monopolist’s value function solves equation  

(% - g) h(+) = h!(+) [(r - g) + + a - !(g)] + " h!!(+)($+)
2
  

with boundary conditions h(-a/(r+"*
)) = 0, h!(+*

) = 1 and h!!(+*
) = 0.  The optimal policy 

has investment with !(g) with (+ + !!(g)) h!(+) = h(+).  Payouts occur exactly when +t 

reaches +*
, and prevent +t from exceeding +*

.  Thus, technically, +*
 is the reflecting 

boundary for the process +t.
11

 

Proof.  The value function must satisfy the Bellman equation 

%h(+)K dt = maxg,dC  dC + E[d(h(+)K)] =  

dC + h!(+) ((r - g + $2
) + + a - !(g) - dC) K + " h!!(+)($+)

2
 K + h(+) gK - h!(+) $2+ K. 

When h!(+) > 1, then dC = 0 is optimal and the equation reduces to (*).  The optimal 

choice of g is determined by (+ + !!(g)) h!(+) = h(+).   

To justify the boundary conditions, we extend function h(+) that satisfies them beyond 

+*
 according to h(+) = h(+*

) + + - +*
, and show that the Bellman equation holds on the 

entire domain [-a/(r+"*
), #).  For + < +*

, it holds because h!(+) > 1 and so dC = 0 is the 

optimal choice.  The value function for + ' +*
 can be attained by making a one-time 

payment of dC/K = + - +*
, and moreover, dC = 0 is suboptimal since      

h(+*
) = 1, h!!(+*

) = 0 - (% - g) h(+*
) = (r - g) +*

 + a - !(g) 

- (% - g) h(+) < (r - g) + + a - !(g) for all + > +*
, 

since % > r. QED 

Figure 7 illustrates the monopolist’s value function.   

                                                
11

 Our analysis here can be related to Bolton, Chen and Wang (2009).  They study optimal investment and 

payouts of a single firm, which faces output shocks (rather than capital shocks, as in our setting). 
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Figure 7.  The value function of a monopolist expert. 

For a monopolist expert, the optimal payout point +*
 is determined by the trade-off 

between the benefits of being able to borrow at rate r, which is less than his discount rate, 

to consume, and the liquidation costs that are incurred when +t gets close to -a/(r+"*
).  It 

is optimal to pay out when there is a sufficient amount of financial slack +*
, which 

determined by Proposition 3. 

Proposition 4 shows that in our baseline model, the outcome with a monopolist investor 

is identical to that under competition.  The intuition is that even though in a competitive 

equilibrium experts do affect prices in the aggregate by their choices of compensation 

and investment, they are isolated from market prices because they do not trade in 

equilibrium (due to symmetry).
12

 

Proposition 4.  The competitive equilibrium in our baseline economy is equivalent to the 

outcome with a monopolist.  The following equations summarize the map between the 

two: 

(t = h(+t)/h!(+t), pt = h(+t)/h!(+t) - +t,  and ft = h!(+t). 

 

Proof.  First, since the monopolist chooses g and dCt to maximize his payoff, the sum of 

all experts’ utilities in the competitive equilibrium cannot be greater than that of a 

monopolist.  On the other hand, each expert can guarantee his fraction of the 

monopolist’s utility (weighted by his net worth) by trading to a fraction of the aggregate 

portfolio at time 0, and by copying the monopolist’s policy in isolation thereafter.  Thus, 

the sum of all experts’ utilities in the competitive equilibrium must equal the 

monopolist’s payoff.   

 

                                                
12

 The argument of Proposition 4 can be easily generalized to show that in the baseline model, the 

equilibrium is the same under oligopolistic competition as well.   
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It follows that the aggregate behavior in the competitive equilibrium is equivalent to the 

monopolist’s optimal policy.  In particular, since growth chosen by the monopolist 

satisfies (+ + !!(g)) h!(+) = h(+), the competitive equilibrium has prices  

 

pt = h(+t)/h!(+t) - +t. 

 

Under these prices, (t = Nt/Kt = (ptKt - Dt)/Kt = pt - +t = h(+t)/h!(+t).  Finally, the sum of 

the experts’ utilities is ft Nt = h(+t) Kt - ft = h(+t)/(t = h!(+t). QED 

 

As a corollary of Proposition 4, we conclude that the competitive equilibrium in our 

baseline model is unique.  

Corollary.  In our baseline model, equilibrium prices, expert value function ft nt, and the 

law of motion of (t are uniquely determined.    

 

Proof.  Note that the proof of Proposition 4 does not assume any properties of the 

competitive equilibrium (such as that it is Markov in (t).  Uniqueness follows from the 

uniqueness of the monopolist’s optimal policy. QED 

 

Proposition 4 provides an alternative convenient way to compute equilibria in our 

baseline setting, by solving a singe equation for h(+) instead of a system of equations for 

p(() and f((). 

 

In our baseline setting, there are no externalities only because we do not model 

households, and their welfare, explicitly.  In the following section we introduce a labor 

market with wages that depend on the aggregate amount of capital in the economy, and 

illustrate externalities between the financial sector and households. 

 

Externalities between the financial sector and labor sector.  We can use the baseline 

model directly to illustrate externalities, by modeling a labor market in a way that does 

not directly interfere with the equilibrium among financial intermediaries.   

 

As Bernanke and Gertler (1989), suppose that households in the economy supply a fixed 

and inelastic amount of labor L.  The production function is Cobb-Douglas in labor and 

capital, and it depends on the aggregate amount of capital in the economy,  

 

yt = A lt
& kt

1-& Kt
&. 

 

The total amount of capital Kt in the production function reflects the idea from 

endogenous growth literature that technological progress increases productivity of 

everyone in the economy (e.g. see Romer (1986)).  Recall that we do not measure capital 

kt as the number of machines, but rather kt is the cash-flow generating potential of capital 

under appropriate management.  That is why it is difficult quantify kt and contract on it 

directly - the quantification of kt involves something intangible.  Therefore, a part of Kt is 

the level of knowledge and technological progress of the economy as a whole, and that 

part enters the production function of everyone.   



 19 

 

In equilibrium capital and labor is used for production proportionately, with lt = kt (L/Kt).  

Wages per unit of labor and in the aggregate are given by  

 

wt = & A/L
1-& Kt and Wt = & A L& Kt. 

 

Capital owners receive output net of wages, which is  

 

a kt = (1 - &) A L& kt. 

 

We see immediately that there are externalities between households, who supply labor, 

and the financial sector.  Financial experts receive only a fraction 1-& of total output.  

Therefore, when they take actions that increase the likelihood or a downturn, such as 

taking on too much risk for the sake of short-term profits or paying out bonuses, they do 

not take into account the full extent of the damage of these downturns to the labor 

market.  

 

To illustrate this point most clearly, we assume a constant marginal cost of capital 

production of .!(g) = a/(r + "*
) for g , g

*
, take .(g) = # for g > g

*
, and normalize .(g

*
) = 

0.  That is, without investment capital grows according to  

 

dkt = g
*
 kt dt + $ kt dZt, 

 

it cannot be made to grow any faster, but it can be liquidated in any amount at a constant 

price of a/(r + "*
) per unit of capital.  Under these assumptions, the experts’ investment 

decisions are totally passive - and capital grows at rate g
*
 - whenever pt > a/(r + "*

).  The 

only active decision involves bonus payouts.  We call it the passive investment economy.  

The following proposition characterizes the equilibrium, which is the same with 

competitive investors and with a monopolist.   

 

Proposition 5.  In the passive investment economy, the equilibrium law of motion of +t 

= -Dt/Kt is given by  

 

d+t = ((r - g
*
 + $2

) +t + a) dt - $+t dZt - dCt/Kt 

 

on the interval [-a/(r+"*
), +*

], with a reflecting boundary at +*
 at which bonuses are paid 

out.  The aggregate expert payoff function h(+t)Kt and point +*
 can be found from the 

equation 

 

(% - g) h(+)
 
= ((r - g

*
) + + a) h!(+) + " ($+)

2
 h!!(+) 

 

with boundary conditions h(-a/(r+"*
)) = 0, h!(+*

) = 1 and h!!(+*
) = 0. 

 

Proof.  The desired conclusions follow directly from Proposition 3, which characterizes 

the optimal policy of a monopolist, and Proposition 4, which shows that the monopolist 

solution coincides with the competitive equilibrium.  QED 
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We would like to argue that a regulator can improve social welfare by a policy that limits 

bonus payouts within the financial sector.  Specifically, suppose that experts are not 

allowed to pay themselves as long as financial experts are not sufficiently capitalized. 

Formally, as long as +t reaches some level +**
 > +*

.  This type of a regulation keeps 

capital within the financial system longer, and makes it more stable.  The following 

proposition characterizes the equilibrium with such a regulatory policy, and the value 

functions of the experts and the households.   

 

Proposition 6.  If experts are not allowed to pay out bonuses until +t reaches +**
 = +*

, 

they will pay at +**
. The process +t

 
follows the same equation, but with a reflecting 

boundary at +**
.  Expert value function is given by  

 

, 

 

where h(+) is as in Proposition 5.  Household value function is H(+t)Kt, where H(+) 

solves equation  

 

(r - g) H(+) = &AL& + ((r - g) + + a) H!(+) + " ($+)
2
 H!!(+),  (**) 

 

with boundary conditions H(-a/(r+"*
)) = AL&/(r+"*

) and H!(+**
) = -1. 

 

Proof.  Then the household value function H(+t)K satisfies  

r H(+t)
 
Kt = (a + b) K + ((r - g + $2

) +t + a) H’(+) K + " ($+t)
2
 H’’(+t) K +  

H(+) g K - H’(+) $2
 + - 

 

To be completed. 

 

How does such a regulatory policy affect welfare?  For experts, note that h!(+**
) > 1 for 

+**
 > +*

.  Therefore, for a fixed level of +t, a restriction on compensation practices 

reduces expert welfare.  However, since h!!(+*
) = 0, h!(+**

) increases very little with +** 

near +*
, and the effect on expert welfare is second-order.   

 

For households, for welfare analysis it is convenient to write H(+) as a linear 

combination of the solutions of the homogeneous equation  

  

(r - g) hi(+t) = ((r - g) + + a) hi’(+) + " ($+)
2
 hi’’(+). 

 

Denote by h1 and h2 the functions that solve it with boundary conditions  

 

h1(-a/(r+"*
)) = 0,  h1!(-a/(r+"*

)) = 1,  h2(-L) = AL&/(r + "*
) - &AL&/(r - g)  and  h2(0) = 0. 

 

Functions h1 and h2 are illustrated in Figure 8. 
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Figure 8: Solutions to the homogenous version of the household Bellman equation. 

 

Lemma 2.  Household welfare function under the policy that limits compensation for +t 

< +**
 is given by  

H(+) = &AL&/(r - g) + q h1(+) + h2(+),  

 

with q = -(h2!(+
**

) + 1)/h1!(+
**

).   As +**
 increases, q increases. 

 

Proof.  It is easy to see that any function of the form &AL&/(r - g) + q1 h1(+) + q2 h2(+) 

satisfies the non-homogenous equation (**).  Coefficient q2 = 1 follows from the 

boundary condition H(-a/(r+"*
)) = AL&/(r+"*

), since h1(-a/(r+"*
)) = 0.  Coefficient q1 can 

be found from the boundary condition H!(+**
) = -1.   

 

Since h2 and h1 are concave functions and h2!(+) < 1 for + > -a/(r+"*
), … to be 

completed.  QED 

 

Because q is increasing in +**
, the effect of +**

 on household welfare is first-order.  

Figure 9 shows the experts’ and households’ value functions for various choices of +**
 

by the social planner.   
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Figure 9: Value functions experts and households for different regulatory policies; the 

blue functions corresponds to +**
 = +*

. 

 

We see that the central planner can improve efficiency by setting +**
 > +*

.  When +**
 is 

close to +*
, the effect of policy on expert welfare is second-order, but the effect on 

households is first-order.  Relative to the equilibrium without regulation, a social planner 

can implement a Pareto improvement by a policy that combines a transfer from 

households to the financial sector together with a regulation that limits bonus payouts.  

When +t is small, such a transfer can be interpreted as a bailout.   

 

Without an accompanying transfer, regulation always hurts the financial experts in our 

baseline model.  However, next we modify our baseline model to highlight possible 

externalities within the financial sector.  In such a context, regulation can be welfare-

improving even without accompanying transfers.   

 

Pecuniary externalities within the financial sector.  Externalities within the financial 

sector are pecuniary externalities in an incomplete market setting.
13

  They arise whenever 

experts’ welfare depends directly on market prices, which are affected by the actions of 

other experts.  In our baseline model there are no pecuniary externalities because in 

equilibrium experts do not trade with each other at market prices, and prices do not enter 

the experts’ payoffs or action sets through contracts.  However, there are many natural 

extensions that give rise to externalities.  There are externalities when experts trade, e.g. 

if they invest not internally but by buying capital from capital producers, and if they 

liquidate assets by selling them to households gradually.  Externalities may exist even 

without trade when the experts’ contracts depend on prices, such as in the following 

examples: 

 

• when experts can unload a fraction 1-&t or risk to outside investors, there are 

                                                
13

 Bhattacharya and Gale (1987) were among the first to highlight the inefficiency of a pecuniary 

externality. A recent application of this inefficiency within a finance context, see Lorenzoni (2007).  
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externalities because &t = b/pt depends on prices 

• the terms of borrowing - the spread between the interest rate experts need to pay 

and the risk-free rate - may depend on prices.  For example, there are externalities 

in the setting of Section 4, where experts face idiosyncratic shocks. 

• experts may be bound by margin requirements, which may depend both on price 

level and price volatility 

• in asset management, the willingness of investors to keep money in the fund 

depends on short-term returns, and thus market prices 

 

Overall, it may be hard to quantify the effects of many of these externalities directly, 

because each action has rippling effects through future histories, and there can be a mix 

of good and bad effects.  To see how this can happen, let us explore how increased 

internal investment by one expert affects future values of &t for everybody.  Since 

volatility increases with higher leverage, investment leads to higher values of pt and 

lower values of &t in good states and vice versa in bad states.  Given the mix of effects, it 

is best to study the overall significance of various externalities, as well as the welfare 

effects of possible regulatory policies, numerically on a calibrated model.  

 

However, one type of an externality seems very prominent - the firesale externality.  This 

externality arises when households offer a downward-sloping demand function for asset 

purchases from the financial sector in the event of crises.  Firesale externality arises 

because, when levering up, experts do not take into account that their fire sale will 

depress prices at which other experts sell.  We extend our model to illustrate the effects 

of fire sales in the remainder of this section.     

 

Equilibrium when households provide liquidity support.  So far, we assumed that the 

sale of assets from experts to households in the event of crises is irreversible.  However, 

in practice the economy has resources to pick up some of the functions of the traditional 

financial sector in times of crises.  In the spring of 2009, the Fed introduced the Term 

Asset-Backed Securities Loan Facility in order to entice hedge funds to buy some of the 

asset-backed securities. Investors like Warren Buffet has helped institutions like 

Goldman Sachs and Wells Fargo with capital infusions.  More generally, governments 

have played a huge role in providing capital to financial institutions in various ways.    

 

We extend the model to allow household sector to provide some liquidity support to the 

financial sector, by buying assets at depressed prices and holding them until the economy 

comes back.  This model can have many uses, such as studying shifts in asset holdings in 

times of crises (see He, Khang and Krishnamurthy (2009)).  In this section specifically, 

we use the model to study fire sale externalities.  These stem from the fact that the 

economy has a bounded capacity to absorb assets when the financial sector fails.  When 

investing and levering up in good times, experts do not take into account that in the event 

of a crisis their fire-sales would depress prices at which other institutions are able to sell 

assets.   

 

Specifically, suppose that some households are sophisticated enough so they can buy 

assets from experts, and sell them back.  Sophisticated households have discount rate r.  
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Capital held by households depreciates at a higher rate "*
 > ".  For simplicity, assume 

that households cannot invest internally.  Then the law of motion for capital held by 

households is  

 

dkt = -"*
 kt dt + $ kt dZt. 

 

If the value function of a sophisticated household with net worth nt! is given by ft!nt!, with 

 

dft! = µt
f! dt + $t

f! dZt, 

 

then the first-order condition for the optimal investment strategy of sophisticated 

households is  

 

a - (r + "*
) pt + µt

p 
+ $$t

p
 + $t

f!/ft! ($pt + $t
p
) = 0.  (***) 

 

Denote by Nt! the total amount of sophisticated household capital in the economy.  Then 

equilibrium dynamics is characterized by two state variables, (t = Nt/Kt and (t! = Nt!/Kt.  

The following proposition extends our equilibrium characterization to a model with 

sophisticated households. 

 

Proposition 7.  If households can provide liquidity support, then aggregate capital in the 

economy follows 

 

dKt = (/t gt - (1 - /t) "
*
) Kt dt + $ Kt dZt, 

 

where /t is the fraction of capital held by households.  The state variables (t and (t! 

follow 

 

d(t = (r - /t gt + (1 - /t) "
*
 + $2

) (t dt + /t (a - $(g) - (r - g + $2
)pt + µt

p
) dt +  

(/t($pt + $t
p
) - $t (t) dZt - d)t  and 

 

d(t! = (r - /t gt + (1 - /t) "
*
 + $2

) (t dt + (1 - /t) (a - (r + "*
 + $2

)pt + µt
p
) dt +  

((1 - /t)($pt + $t
p
) - $t (t!) dZt. 

 

The equilibrium is characterized by four functions of ((t,(t!), pt, ft, ft! and /t, which are 

determined by the equations (***) 

 

a - (r + "*
) pt + µt

p 
+ $$t

p
 + $t

f!/ft! ($pt + $t
p
) = 0, (% - r)ft = µt

f
  and     µt

f! = 0. 

  

Proof.  To be completed.  

 

We illustrate the equilibrium for the case when sophisticated households are not 

financially constrained, so ft! = 1.  Figure 10 illustrates functions ft, pt and asset holdings 

/t by the financial sector. 
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Figure 10:  Equilibrium when households provide liquidity support. 

 

We see that when (t becomes small, then experts sell assets to households at market 

prices, and /t < 1.  Unlike in our baseline setting, experts do not just hold assets, and so 

market prices directly enter the experts’ welfare.   There are pecuniary externalities 

within the financial sector.  However, when households are not financially constrained, 

the effect of these externalities is unclear: when the economy and the financial sector 

expand, the households’ willingness to pick up assets also expands.  When Kt grows, in 

equilibrium households start absorbing assets at a larger value of Nt, and their capacity 

expands proportionately to the size of the economy.  On the other hand, if households are 

financially constrained, then firesale externalities become prominent. 

 

Firesale externalities and overcapacity.  Financial expansion is connected with the 

debate on trade-offs between growth and volatility.  In our model, experts have superior 

ability to make assets more productive, but their ability to function and absorb shocks 

depends on price levels.  When prices become depressed more easily then shocks are 

amplified and the financial system becomes less stable.  On the other hand, when 

households can add liquidity to the financial markets picking up risky assets off of the 

financial institutions’ balance sheets in times when the institutions become constrained, 

then the financial system is more stable. 

 

We want to argue that when households have a limited capacity to provide liquidity, then 

when levering up, financial institutions impose externalities on one another.  They do not 

take into account that their fire-sales in the event of a crisis would depress prices at which 

other institutions would be able to sell.  We call this phenomenon a fire-sale externality.  

A monopolist financial institution would take the households’ limited capacity to provide 



 26 

liquidity into account, and expand more slowly.  In contrast, competition leads to 

overexpansion and instabilities. 

  

4. Idiosyncratic Shocks and Securitization 

By securitization/hedging, we refer to various mechanisms by which financial institutions 

can share risks among each other.  These mechanisms include pooling and tranching, by 

which the issuer can diversify and slice risks.  Credit default swaps, and various options 

and futures contracts allow financial institutions to hedge specific risks.  Furthermore, 

more efficient risk-sharing can be attained by longer intermediation chains between 

households and borrowers (e.g. see Shin (2010)). 

A model with idiosyncratic shocks.  A natural simple way to capture these phenomena, 

is to augment our baseline model to allow idiosyncratic shocks, which may be hedged 

within the financial sector, in the same spirit as BGG.  Specifically assume that capital kt 

managed by expert i evolves according to  

 

dkt = g kt dt + $ kt dZt + kt dJt
i
, 

 

where dJt
i
 is an idiosyncratic Poisson loss process.  As BGG we make the simplifying 

assumption that when experts get bigger, their idiosyncratic shocks are amplified 

proportionately, that is, there is no diversification of idiosyncratic shocks within any 

expert.   

 

Losses after an idiosyncratic jump are characterized by the distribution function F : [0, 1] 

* [0, 1], which describes the percentage of capital that is recovered in the event of a loss.  

We can capture additional volatility effects by allowing the intensity of losses 0($t
p
) to 

depend on the volatility asset prices pt. This assumption is consistent with the general 

idea that interest rate spreads and margins are set by debt holders who worry about 

potential losses (which depend on volatility).  It can be justified through an informal story 

that idiosyncratic shocks have to do with liquidity (such as the difficulty to find an 

acceptable buyer and having to sell assets at fire-sale prices).  Note that this assumption 

would be vacuous under steady-state analysis, since price volatility is constant near the 

steady state. 

 

To extend our agency model to idiosyncratic losses, we assume that an expert may 

generate losses for benefit extraction, getting b units of private financial benefit from a 

single unit of lost physical capital.  While the expert’s stake &t in the assets prevents 

losses of size nt/b or less, we assume that costly state verification is possible to prevent 

larger losses.
14

  We assume that if verification is immediate when an expert simulates a 

loss in order to steal money, the fraud is revealed and the expert cannot get any private 

benefit.  As in BGG, we assume that the verification cost is a fraction c 1 (0,1) of the 

                                                
14

 It is optimal to trigger verification if and only if kt
i
 drops below nt/b because, as we will see later, in 

equilibrium the expert is risk-neutral towards idiosyncratic risk that does not lead to default.   
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amount of capital recovered.
15

 

 

Default and costly state verification occur when the value of the assets v = ptkt falls 

below the value of debt d = v - nt/&t i.e. kt falls by more than nt/(&tpt) = nt/&t.  Note that 

the expected loss in the event of default is  

 

 

 

where x is the fraction of assets left after loss.  Default occurs in the event that x < d/v.  

The expected verification cost is  

  

  

 

To break even, households who lend money to the expert must get not only the interest 

rate %, but also compensation for the possible losses and verification costs at a total rate 

of 0($t
p
) V (L(d/v) + C(d/v)).  This quantity defines the spread that the expert needs to 

pay to borrow from households.   

 

As in the remainder of the paper, we now narrow down analysis to the case when &t = 1, 

which occurs when the agent is able to fully extract the value of lost capital from the 

losses he generates.   

 

As before, the equilibrium is characterized by the state variable (t, and prices pt = p((t) 

and the expert’s value function ft = f((t) are functions of (t.  The net worth of an 

individual expert evolves according to  

 

dnt = r nt dt + 

 

kt [(a - !(g) - (r + 0($t
p
) (L(2t) + C(2t)) - g + dJt

i
) pt + µt

p 
+ $$t

p
) dt + ($pt + $t

p
) dZt] - dct, 

 

where 2t = 1 - nt/(ptkt) is the expert’s leverage ratio.   

 

In the aggregate, idiosyncratic losses cancel out and total expert capital evolves according 

to  

 

                                                
15

 The basic costly state verification framework, developed by Townsend (1979) and adopted by Bernanke-

Gertler and Gilchrist (1999) is a two-period contracting framework.  At date 0, the agent requires 

investment I from the principal, and at date 1 he receives random output y distributed on the interval 

 The agent privately observes output y, but the principal can verify it at a cost.  The optimal contract 

under commitment is a standard debt contract.  If the agent receives y ' D, the face value of debt, then he 

pays the principal D and there is no verification.  If y < D, the agent cannot pay D and costly state 

verification (bankruptcy) is triggered, and debtholders receive all of output.  
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dNt = rNt dt + Kt [(a - !(g) - (r + 0($t
p
)C(2t) - g)pt + µt

p 
+ $$t

p
) dt + ($pt + $t

p
) dZt] - dCt, 

 

where the term L(2t) disappears because of limited liability. The modified law of motion 

of (t = Nt/Kt is  

 

d(t = (r - g + $2
) (t dt + (a - !(g) - (r + 0($t

p
)C(2t) - g + $2

)pt + µt
p
) dt  

 

+ ($pt + $t
p
 - $t (t) dZt - d)t. 

 

The Bellman equation and the first-order condition with respect to kt are now 

 

(% - r) f((t)(t  = µt
f
 (t + f((t) (a - !(g) - (r + 0($t

p
)C(2t) - g)pt + µt

p 
+ $$t

p
)) + $t

f
 ($pt +$t

p
) 

  

and a - !(g) - (r + 0($t
p
)(C(2t) + (1-2t)C!(2t)) - g)pt + µt

p 
+ $$t

p
 + $t

f
/f((t)  ($pt +$t

p
) = 0. 

 

As before, in equilibrium (t evolves on the range [0, (*
], with a different boundary (*

.  

Experts pay themselves bonuses only when (t is at (*
. 

 

In equilibrium experts borrow at a rate higher than r due to verification costs - they pay 

the rate r + 0($t
p
) (L(2t) + C(2t))/2t.  This is the promised interest rate - due to limited 

liability in the event of default the actual cost of borrowing is only r + 0($t
p
)/2t.  Higher 

cost of borrowing makes equilibrium leverage relative to our baseline model without 

idiosyncratic shocks.  

 

Securitization.  We model securitization as risk-sharing within the financial sector.  

Specifically, assume that all shocks, both idiosyncratic Jt
i
 and aggregate Zt, are 

observable and contractible among the experts, but not between experts and households.   

Denote by +t the risk-premium on aggregate risk and by +t
i
 the risk premium on 

idiosyncratic risk.  A hedging contract for aggregate risk adds  

3t (+t dt + dZt) 

to the law of motion of expert i’s wealth, where 3t is the overall risk exposure.  A contract 

on expert j’s idiosyncratic risk adds  

3t
j
 (+t

j
 dt + dJt

j
) 

to the law of motion of expert i’s wealth, and may affect the verification region and 

verification costs.  The following proposition characterizes the equilibrium when hedging 

within the financial sector is possible. 

Proposition.  If hedging within the financial sector is possible, then in equilibrium 

experts will fully hedge idiosyncratic risk, which carries the risk premium of !t
i
 = 0.  

Nobody hedges aggregate risk, which carries the risk premium of +t  = -"t
f
/ ft > 0.   
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Since idiosyncratic shocks are fully hedged, the equilibrium is identical to one in a 

setting without those shocks.   

 

Proof.  It is easy to see that the idiosyncratic risks are fully hedged and that the risk 

premia are zero, since market clears when each expert optimally chooses to offload his 

own idiosyncratic risk, and take on a little bit of everybody’s risks (which cancel out).  

Once idiosyncratic risks are removed, the law of motion of individual expert’s capital is  

 

dnt = % nt dt + kt ((a - (% - g) pt + µt
p
 + $ $t

p
) dt + &t ($pt + $t

p
) dZt) - 3t (+t dt + dZt), 

 

where the optimal choice of 3t must be zero in order for hedging markets to clear.  The 

appropriate risk premium for aggregate risk can be found from the Bellman equation  

 

%ftnt = maxk,3 µt
f
 nt + ft (% nt + k (a - (% - g) pt + µt

p
 + $$t

p
) + 3+t) + $t

f
 (k&t($pt+$t

p
) + 3). 

 

In order for 3 = 0 to be optimal, we need +t  = -$t
f
/ft.  QED 

 

Experts fully hedge out idiosyncratic shocks when securitization is allowed, they face the 

cost of borrowing of only r, instead of r + 0($t
p
)/2t.  Lower cost of borrowing leads to 

higher leverage quicker payouts.  As a result, the financial system becomes less stable.  

Thus, even though in principle securitization is a good thing, as it allows financial 

institutions to share idiosyncratic risks better, it leads to greater leverage and the 

amplification of systemic risks. 

 

Remark.  By varying the verification costs and the loss distribution, our framework can 

capture several other models.  Kiyotaki-Moore assume that financial experts can borrow 

only up to fraction # of the market value of assets.  Thus, someone with net worth nt can 

hold at most 1/(1-#)nt worth of assets, by financing #/(1-#)nt of the assets with debt and 

the rest, nt, with personal wealth. This is captured in our framework by setting the 

verification costs to zero up to a certain level and infinity afterwards. Alternatively, one 

can assume that margins are set equal to the value-at-risk (VaR) as in Shin (2010).  In 

Brunnermeier and Pedersen (2009), margins increase with endogenous price volatility. 

These effects are captured in our model through the dependence of potential losses on 

price volatility.  The framework of BGG, who use the costly state verification model of 

Townsend (1979), corresponds to the assumptions that $t = 1 and %("t
p
) is a constant.  

 

 

5. Conclusions and Regulatory Implications 

Events during the great liquidity and credit crunch in 2007-09 have highlighted the 

importance of financing frictions for macroeconomics. Unlike many existing papers in 

macroeconomics, our analysis is not restricted to local effects around the steady state. 

Importantly, we show that non-linear effects in form of adverse feedback loops and 

liquidity spirals are significantly larger further away from the steady state. Especially 
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volatility effects and behavior due to precautionary motives cause these large effects. 

Second, we identify and isolate several externalities both within the financial sector and 

also from the financial sector to the real sector of the economy. Due to these externalities, 

financial experts leverage and maturity mismatch is excessive. We argue that financial 

regulation should aim to internalize these externalities. For this purpose co-risk measures 

have to be developed.  

 
 
Appendix A: Our contracting space. 
 
Consider a principal-agent environment, in which the agent generates cash flows  

 

dXt = 4(et, kt, (t) dt + $(kt, (t) dZt, 

 

where et 1 {0, -E} is the agent’s effort, kt is the scale of production and (t is the state of 

the economy that evolves according to  

 

d(t = µt
(

 dt + $t
( dZt!, 

 

and cannot be controlled by the agent or the principal.  Brownian motions Z and Z! may 

be correlated. 

 

In our model  

 

4(et, (t, kt) = kt (a - !(g) - (r - g)pt + µt
p 
+ $$t

p
 + pt et)  and  $((t, kt) = kt ($pt + $t

p
). 

 

Both the principal and the agent are risk-neutral, and the agent’s discount rate % is greater 

than the risk-free rate r.  The agent’s payoff flow is dct - h(et, kt, (t) dt, where h(e, k, () = 

b f(()ke in our setting.  We assume that b < a/(r + "*
), so it is never optimal to let the 

agent not put effort (because it is always better to liquidate capital).   

 

There is a standard way to solve these problems using the agent’s continuation value as a 

state variable, but those solutions may be challenging to relate to real world.  Much more 

intuitive is the approach of Fudenberg, Holmström and Milgrom (1990), who propose an 

implementation of the optimal contract with the agent’s wealth as a state variable, in 

which the principal breaks even at any moment of time. Such an implementation exists 

whenever the principal’s profit function F(wt, (t) is decreasing in the agent’s continuation 

value Wt, and the agent’s continuation payoff as a function of wealth nt and the state of 

the economy (t is  

 

wt = H(nt, (t),  such that F(wt, (t) = -nt. 

 

Agents enter short-term contracts with principals, characterized by variables 5t, kt and 5t!.  

Under this contract the agent collects a fraction of output 5t, the principal collects 1 - 5t 
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and pays the agent the fee  (1 - 5t) 4(et, kt, (t) (so the principal breaks even) and the agent 

hedges 5t! of aggregate risk, so that  

 

dnt = 5t dXt + (1 - 5t) 4(et, kt, (t) dt + 5t! dZt! - dct 

 

Optimal short-term contracts (5t, kt, 5t!) can be found from the Bellman equation  

 

%H(nt, (t)dt = max5, k, 5!,c,e dct - h(e, k, (t) + E [ dH(nt, (t) ] 

 

subject to the incentive-compatibility constraint that e maximizes 

 

5 H1(n,() 4(e, k, () - h(e, k, (). 

 

We do not allow the full contracting space in our paper, but limit the hedging of 

aggregate risk by forcing 5! to be 0.  With limited instruments, optimization leads to the 

value functions  

 

H(nt,(t) = f((t) nt and F(wt,(t) = -wt/f((t), 

 

with F(wt,(t) decreasing in wt as required by Fudenberg, Holmström and Milgrom 

(1990).  Thus, contracts in our paper are optimal dynamic contracts from a smaller 

contracting space, so we have contract incompleteness. 

 

In the section on securitization, we allow hedging of aggregate risk through a market 

mechanism within the financial sector.  This leads to a risk premium 0t on aggregate risk, 

so the agent’s wealth evolve according to  

 

dnt = 5t dXt + (1 - 5t) 4(et, kt, (t) dt + 5t! (dZt! + 0t dt) - dct. 

Appendix B.  

 

Proposition A1. There is a stationary distribution of +t only if the system never becomes 

absorbed at -a/(r+"*
) because assets are liquidated sufficiently fast when +t approaches -

a/(r+"*
).  In that case, the stationary density must satisfy the standard equation  

 

" d
2
/d+2

 ($+(+)
2
 d(+)) + d/d+ (µ+(+) d(+)) = 0, 

 

where µ+ = ((r - g + $2
) + + a - .(g)  and $+ = - $+.  The relevant boundary conditions 

are d!(+*
) = 0 (because it is a reflecting boundary) and  

 

Proof.  To be completed.  
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