International Spillovers and Guidelines for Policy Cooperation¹

Anton Korinek

Johns Hopkins University and NBER

Presentation at the IMF 15th Jacques Polak Annual Research Conference

November 2014

¹ Financial support from the IMF Research Fellowship and INET/CIGI are gratefully acknowledged. 🗉 🕨 🧃 🛌 🚊

Motivation

- In a globalized world, national economic policies frequently create international spillover effects
- Examples: capital flow management, exchange rate stabilization, quantitative easing, devaluation policies, etc.
- ightarrow concerns about "global currency wars"

Main Questions

- When are spillovers from national economic policymaking inefficient?
- Which global "rules of the road" guarantee efficient outcomes?

Key Contribution 1: Develop an efficient benchmark:

Spillover effects of unilateral policymaking are efficient as long as:

- policymakers act competitively
- 2 policymakers have complete external instruments
- o imperfections in international market

\rightarrow Examples of efficient unilateral intervention:

- current account management in a liquidity trap
- exchange rate intervention to insure the tradable sector
- reserve accumulation to internalize learning externalities

all these policies generate efficient spillovers

▲ 同 ▶ → 三 ▶

Key Contribution 2: Provide guidelines for cooperation

Role for cooperation is limited to deviations from benchmark:

- ensuring competitive behavior
- 2 dealing with incomplete/imperfect policy instruments
 - create new/better instruments
 - use existing instruments more efficiently
- addressing imperfections in international markets
 - correct market imperfections
 - use existing markets more efficiently

A (10) > A (10) > A (10)

Setup of Baseline Model

- Countries i = 1, ... N of mass ω^i with $\sum_i \omega^i = 1$
- Policymaker and unit mass of domestic agents obtain utility

$$\begin{array}{ll} U^{i}(x^{i}) & \text{s.t.} & f^{i}(x^{i},X^{i},m^{i},M^{i},\zeta^{i},Z^{i}) \leq 0 \\ \\ & \frac{Q}{1-\tau^{i}} \cdot m^{i} \leq T^{i} \end{array}$$

- *xⁱ*, *Xⁱ* ... bundle of domestic variables
- *mⁱ*, *Mⁱ* ... bundle of international transactions (upper-case variables denote country aggregates)
- ζ^i ... bundle of domestic policies
- Zⁱ ... bundle of exogenous parameters
- Q ... vector of world market prices of mⁱ, Mⁱ
- au^i is full set of tax instruments on intl transactions rebated via T^i

Setup of Baseline Model

- Countries i = 1, ...N of mass ω^i with $\sum_i \omega^i = 1$
- Policymaker and unit mass of domestic agents obtain utility

$$\begin{array}{ll} U^{i}(x^{i}) & \text{s.t.} & f^{i}(x^{i},X^{i},m^{i},M^{i},\zeta^{i},Z^{i}) \leq 0 \\ \\ & \frac{Q}{1-\tau^{i}} \cdot m^{i} \leq T^{i} \end{array}$$

- x^i, X^i ... bundle of domestic variables
- *mⁱ*, *Mⁱ* ... bundle of international transactions (upper-case variables denote country aggregates)
- ζ^i ... bundle of domestic policies
- Zⁱ ... bundle of exogenous parameters
- Q ... vector of world market prices of mⁱ, Mⁱ
- τ^i is full set of tax instruments on intl transactions rebated via T^i

Examples

Example 1: Canonical open economy macro model:

$$\max_{(c_{t}^{i}, b_{t+1}^{i})_{i}} \sum_{t} \beta^{t} u(c_{t}^{i}) \quad \text{s.t.} \quad c_{t}^{i} + (1 - \xi_{t}^{i}) b_{t+1}^{i} / R_{t+1} = y_{t}^{i} + b_{t}^{i}$$

Mapping:

- define net imports $m_t^i = c_t^i y_t^i = b_t^i b_{t+1}^i / R_{t+1}$
- domestic variables $x^i = \{c_t^i\}$
- state variables $Z^i = \{y_t^i\}$, domestic policies $\zeta^i = \emptyset$
- world market prices $Q_t = 1/\prod_{s=0}^t R_{s+1}$
- external policy instruments $(1 \tau_t^i) = 1/\prod_{s=1}^t (1 \xi_{s+1}^i)$
- ightarrow utility $U^i(x^i) = \sum_t \beta^t u(c^i_t)$
- ightarrow constraints $f_t^i(\cdot) = c_t^i y_t^i m_t^i \leq$ 0 orall t

A (B) < A (B) < A (B)</p>

Examples

Example 1: Canonical open economy macro model:

$$\max_{(c_t^i, b_{t+1}^i)_i} \sum_t \beta^t u(c_t^i) \quad \text{s.t.} \quad c_t^i + (1 - \xi_t^i) b_{t+1}^i / R_{t+1} = y_t^i + b_t^i$$

Mapping:

- define net imports $m_t^i = c_t^i y_t^i = b_t^i b_{t+1}^i / R_{t+1}$
- domestic variables $x^i = \{c_t^i\}$
- state variables $Z^i = \{y_t^i\}$, domestic policies $\zeta^i = \emptyset$
- world market prices $Q_t = 1/\Pi_{s=0}^t R_{s+1}$
- external policy instruments $(1 \tau_t^i) = 1/\prod_{s=1}^t (1 \xi_{s+1}^i)$

$$ightarrow$$
 utility $U^i(x^i) = \sum_t eta^t u(oldsymbol{c}^i_t)$

ightarrow constraints $f_t^i(\cdot) = c_t^i - y_t^i - m_t^i \leq 0 \; \forall t$

Other Examples:

- multiple traded goods: $m^i = (m^i_{t,k})$ with k = 1...K
- multiple states of nature: $m^i = (m^i_{t,s})$ with $s \in \mathcal{S}$
- non-traded goods: $x^i = (c^i_{T,t}, c^i_{N,t}, y^i_{N,t})$ and $f^i_{t,2} = y^i_{N,t} c^i_{N,t}$
- labor: $x^i = (c^i_t, \ell^i_t)$ and $U^i(x^i) = \sum_t \left[u(c^i_t) d(\ell^i_t) \right]$
- capital: $x^i = (c_t^i, k_t^i)$ and f_t^i includes law of motion
- domestic market imperfections \rightarrow capture in $f^i(\cdot)$
- multiple types of agents, political preferences \rightarrow capture in $U^i(x^i)$
- \rightarrow framework nests a wide range of open economy macro models

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Lemma (Separability)

Given the complete external policy instruments, we can separate the domestic and international optimization problems.

Step 1: optimal domestic allocation for given external (m^i, M^i)

- representative agent optimizes
- domestic policymaker optimizes
- \rightarrow defines reduced-form utility function $V^i(m^i, M^i)$

Example (baseline model): $V^{i}(m^{i}, M^{i}) = \sum_{t} \beta^{t} u(y_{t}^{i} + m_{t}^{i})$

< □ > < □ > < □ > < □ >

Step 2: determine optimal external allocations Mⁱ in country *i*:
planner solves for optimal external allocation Mⁱ,

$$\max_{M^{i}} V^{i}(M^{i}, M^{i}) \quad \text{s.t.} \quad Q \cdot M^{i} \leq 0$$

while internalizing any externalities from flows

 $\rightarrow\,$ determines global competitive equilibrium

Key Question

Is the Nash equilibrium among national planners efficient?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Step 2: determine optimal external allocations Mⁱ in country *i*:
planner solves for optimal external allocation Mⁱ,

$$\max_{M^{i}} V^{i}(M^{i}, M^{i}) \quad \text{s.t.} \quad Q \cdot M^{i} \leq 0$$

while internalizing any externalities from flows

 \rightarrow determines global competitive equilibrium

Key Question

Is the Nash equilibrium among national planners efficient?

< □ > < □ > < □ > < □ >

Global Planning Problem

Global planner's equilibrium: can be expressed using $V^i(m^i, M^i)$:

$$\max_{\{M^i\}} \sum_{i} \phi^{i} \omega^{i} V^{i}(M^i, M^i) \quad \text{s.t.} \quad \sum_{i} \omega^{i} M^i \leq 0$$

Proposition (1st FWT for National Economic Policymaking)

The Nash equilibrium among national planners is Pareto efficient.

Intuition:

- policy interventions (ζ^i, τ^i) may entail spillover effects
- BUT: spillover effects are mediated through global prices Q
- \rightarrow first welfare theorem applies at the level of planners
- $\rightarrow\,$ global reallocation of capital/goods is efficient market response

Equilibrium in World Capital Markets: Baseline

Equilibrium in World Capital Markets: Externalities

4 A N

Equilibrium in World Capital Markets: Efficient Intervention

4 A N

Baseline model: $V_M^i = 0 \rightarrow$ no externalities

Example of learning externalities:

• learning-by-exporting externalities: $\Delta Y_{t+1}^i = \varphi(M_t^i)$

$$f^{i}(\cdot) = Y^{i}_{t+1} - Y^{i}_{t} - \varphi(M^{i}_{t}) \leq 0$$

• learning-by-doing externalities: $Y_t^i = A_t^i L_t^i$ and $\Delta A_{t+1}^i = \psi(L_t^i)$

$$\begin{split} f_1^i(\cdot) &= A_{t+1}^i - A_t^i - \psi(L_t^i) \leq 0 \\ f_2^i(\cdot) &= A_t^i u'(C_t^i) - d'(L_t^i) \leq 0 \quad \text{(no labor subsidy)} \end{split}$$

Optimal policy for economy i = inflow controls = globally optimal!

Example of aggregate demand externalities at the ZLB:

• consider zero lower bound on the nominal interest rate:

$$\iota_{t+1}^i \ge 0$$

- output is demand-determined: $\tilde{Y}_t^i = C_t^i M_t^i$ with the usual (New) Keynesian frictions in the background
- if world interest rate high enough: $\frac{1+r_{t+1}}{1+\pi_{t+1}^i} 1 > 0 \rightarrow$ no problem
- if world interest rate too low: ^{1+r_{t+1}}/_{1+πⁱ_{t+1}} − 1 = 0
 → imports Mⁱ_t eat into domestic aggregate demand

Optimal policy for economy *i* = inflow controls = globally optimal!

Examples and Applications III

Example of exchange rate stabilization:

- consider a developing economy with two types of agents:
 - financial elite: have access to international capital market
 - workers: live hand-to-mouth: no access to capital markets work either in traded or non-traded sector
- all agents value consumption:

$$U^{i} = \sum \beta^{t} u(\boldsymbol{c}_{T,t}^{i}, \boldsymbol{c}_{N,t}^{i})$$

- under autarky and no shocks: income of workers is stable
 → consumption smooth
- under open capital accounts: fluctuations in world interest rate lead to inflows/outflows
 - \rightarrow workers suffer positive/negative income shocks

Optimal policy = smoothing capital account = globally optimal!

Anton Korinek (JHU)

Robustness: efficiency result holds under all discussed extensions:

- labor, capital, multiple goods, uncertainty, ...
- any domestic market imperfections
- heterogeneous agents, political preferences, ...
- \rightarrow all these affect optimal *level* but *not efficiency* of intervention

Sufficient Conditions for Efficiency:

- domestic planners are competitive (price-takers)
- In planners have sufficient instruments to determine Mⁱ
- o international market imperfections

Case I for Cooperation: Monopolistic Policymakers

Monopolistic policymakers: internalize market power over Q

• monopolistic planner internalizes ROW inv. demand $Q^{-i}(-\omega^i M^i)$

$$\max_{M^{i}} V^{i}(M^{i}, M^{i}) \quad \text{s.t.} \quad Q^{-i}(-\omega^{i}M^{i}) \cdot M^{i} \leq 0$$

Proposition (Monopolistic Policy Intervention)

Monopolistic policy interventions that are designed to distort world prices/interest rates are inefficient.

A D b 4 A b 4

Equilibrium in World Capital Markets: Baseline

Equilibrium in World Capital Markets: Monopolistic Behavior

Difficulty: How do we distinguish monopolistic behavior from correcting externalities?

Theory offers a few guidelines:

- small economies in the world market have $Q_M^i = 0$ \rightarrow no market power over Q
- countries with little cross-country trade have $M^i \approx 0$ \rightarrow no welfare benefit to manipulating price so $\mathcal{E}^i_{OM} \approx 0$
- sign of intervention $\hat{\tau}^i$ = sign of trade position $M_{t,k,s}^i$:
 - country with net inflows will restrict inflows and vice versa
 - with multiple goods, tax imports and restrict exports
 - under uncertainty, reduce insurance because each country has net long position in idiosyncratic risk

- If external policy instruments (τⁱ) are available, a planner will never distort domestic policies ζⁱ to exert market power
- 2 If external policy instruments (τ^i) are incomplete, then domestic policies will also be distorted to exert market power

Baseline model:

- complete set of external instruments (τ^i)
- allowed planner to implement desired external allocation (critical for argument of the first welfare theorem)

Incomplete Policy Instruments:

- can be captured by a cost function $\mathcal{C}^i(au^i) \geq 0$
- interpretations:
 - direct implementation cost $C^i(\tau^i) = \gamma^i \sum (\tau^i_t)^2/2$
 - non-existing instruments if $\gamma^i \to \infty$
 - restrictions on instruments $C^i(\tau^i) = \gamma^i \sum (\tau^i_{t,s} \tau^i_{t,0})^2/2$ with $\gamma^i \to \infty$

Proposition (Effectively Incomplete Policy Instruments)

- The Nash equilibrium among national planners is inefficient if at least one country does not possess an effectively complete set of instruments.
- Constrained efficiency under incomplete policy instruments requires

$$\sum \omega^i {m C}^{i\prime}(au^i)(1- au^i)={f 0}$$

Intuition:

 setting average marginal distortion to zero minimizes total implementation costs

4 A N

Example of Wasteful Competitive Intervention:

- consider N identical countries with externalities $V_M^i < 0$
- each country intervenes $\tau^i > 0$ at cost $C^i(\tau^i) > 0$
- intervention is completely wasteful: same allocation but lower cost with τⁱ = 0 ∀i

Example of Sharing the Regulatory Burden:

- consider 2 identical countries with cost $C^{i}(\tau^{i}) = \gamma^{i} \sum (\tau_{t}^{i})^{2}/2$
- assume asymmetric change in externalities that calls for $d\tau^1 > 0$
- in national planning equilibrium, unilateral intervention
- under global coordination,

$$d\tau_0^1 = \frac{\gamma^2 d\eta}{2(\gamma^1 + \gamma^2)} = -d\tau_1^1$$
 and $d\tau_0^2 = -\frac{\gamma^1 d\eta}{2(\gamma^1 + \gamma^2)} = -d\tau_1^2$

• extreme cases: $\gamma^1 = 0$ or $\gamma^1 \to \infty$

Further Results on Imperfect Policy Instruments

- If set of *external* policy instruments is not effectively complete, it is optimal to distort *domestic* policies to target external transactions
- $\rightarrow\,$ global coordination needs to also involve domestic policies

- Limited risk markets
- Financial constraints
- Price rigidities and AD externalities
- Cross-border externalities

- Spillover effects from national economic policymaking are efficient if
 - policymakers act competitively
 - 2 have complete set of instruments
 - and -
 - international markets are free of imperfections
- $\rightarrow\,$ Benchmark result to channel discussion on "global cooperation"