Discussion of Bengui and Bianchi's "Capital Flow Management when Capital Controls Leak"

Olivier Jeanne (JHU)

IMF Annual Research Conference November 13-14 2014

《曰》 《聞》 《臣》 《臣》 三臣 …

- John Williamson (**1995**), *The Management of Capital Inflows*, made the case for prudential capital controls, with Chilean URR as poster child
- 1998: Chili abandons its capital controls
- The Bank of Chili had become weary of the race between regulation and circumvention
- Circumvention is a first-order issue for the future of capital flow management (through capital controls)

- Bengui-Bianchi (BB) present a model
- Builds on the new literature on prudential controls (Korinek, 2010; Bianchi, 2011; etc)
- An important question and a useful contribution
 - theorists often do not pay attention to circumvention

- Bianchi (2011)
 - class of models in which the boom-bust cycle in capital flows is magnified by fluctuations in the value of the country's "international collateral"
 - a Pigouvian tax on debt inflows can be used to smooth out the excessive volatility in capital flows.
- Departure from Bianchi (2011): the tax applies only to a subset of agents
- Leakage: the effect of tax is partially undone by by the actions of the unregulated agents

<u>Results</u>

- The gains from macroprudential controls may remain susbstantial in spite of leakage
- The optimal tax on capital inflows could be lower or higher than in the absence of leakage
- Macroprudential policy can have significant redistributive effects between regulated and unregulated borrowers

- A (E)

- I like the paper
- There seems to be something generic about the question asked by BB
 - something that does not depend on the details of the financial friction to be mitigated by macroprudential regulation
- Let me explore the answer(s) with a more simple (and ad hoc) model (Jeanne, 2014)

Comments

• Assume identical atomistic borrowers with ex-ante welfare

$$V(d,D)-(1+r)d$$

d **individual** debt *D* **aggregate** debt $U_D < 0$ because of aggregate systemic externality

There are different ways one can think about circumvention in this model:

- intensive margin: all borrowers circumvent at the margin
- extensive margin: some borrowers escape the tax altogether

They may lead to different results

• Assume borrowers are identical and can issue regulated and unregulated debt

$$d = d_r + d_u$$

cost of issuing unregulated debt $f(d_u)$, where $f(\cdot)$ is increasing and concave

• Each borrower minimizes the non-interest cost of borrowing

$$C(d) = \min_{d_r+d_u=d} \left[\tau d_r + f(d_u) \right]$$

• Envelope theorem,

$$C'(d) = \tau,$$

the same as without circumvention, so borrowers choose the same \boldsymbol{d}

• **Irrelevance result:** The macroprudential policymaker should not change the level of the macroprudential tax in response to circumvention

Departure from irrelevance (1)

• Assume now that instead of being strictly concave the cost is a linear function

 $f(d_u) = \gamma d_u$

 $\bullet\,$ Then the policymaker should not increase the tax rate above $\gamma\,$

 $\tau \leq \gamma$

Circumvention now constrains regulation

• The same kind of results may be obtained with a fixed cost of circumvention

A (1) × (2) × (3) ×

Departure from irrelevance (2)

• Assume that borrowers are heterogeneous, and have different costs of circumvention

$$f_i(d_u) = \gamma_i d_u$$

- Then regulation separates the borrowers in two groups, the regulated borrowers (with $\gamma_i > \tau$) and the unregulated borrowers (with $\gamma_i \leq \tau$)
 - denote by d_r and d_u the debt of the representative agent in each group
- \bullet Increasing τ shifts borrowers from the regulated group to the unregulated group
- \bullet Extensive margin \longrightarrow reason to moderate regulation

- Let us make "Calvinist" assumption that borrowers are predestined to be in regulated or unregulated group (like BB)
 - $\gamma_i = 0$ for some borrowers and $\gamma_i = +\infty$ for others
- Then leakage operates completely at the intensive margin inside the unregulated group
- Incomplete offset of macroprudential policy

$$\frac{\partial d_{r}}{\partial \tau} < \frac{\partial D}{\partial \tau} < 0 < \frac{\partial d_{u}}{\partial \tau}$$

向下 イヨト イヨト

- How is optimal level of τ affected by circumvention?
- $\bullet\,$ It takes a higher tax to achieve the same aggregate debt target $\to \tau$ should be higher
- $\bullet\,$ The tax distorts the allocation of debt between regulated and unregulated borrowers $\to\,\tau\,$ should be lower
- On balance, ambiguous: τ could be higher or lower

- I wrote a generic model in which there is a need to tax debt for prudential reasons
- With circumvention:
 - Irrelevance result
 - Departures from irrelevance; the tax rate could go up or down, depending on how one models circumvention
- The only robust result: circumvention does not completely obviate the need for regulation in general
- The simple model does not do full justice to BB, but it highlights intuition behind main results and puts them in broader context

- One would like to discipline the model using information about circumvention in the real world
- One can make a case for BB's modeling choice
 - some agents seem better able to circumvent than others (e.g., large firms vs. small borrowers; Forbes on Chile)
- But seems extreme to assume that some agents are captive at any level of tax
 - in Bianchi (2011) the optimal tax can exceed 20 %: isn't it too high?
- The private sector can reduce the cost of circumvention by investing in "circumventional capital"
 - dynamic problem: the tax should not be kept too high for too long
- It is difficult to differentiate the tax by type of inflows (Klein and Shambaugh, 2013)

< 回 > < 三 > < 三 >

- Very nice paper
- One last thought: one reason to manage capital flows through reserves rather than capital controls may be related to circumvention

THANK YOU