Managing Capital Outflows: The Role of Foreign Exchange Intervention

Suman S. Basu
IMF

Atish R. Ghosh
IMF

Jonathan D. Ostry
IMF

Pablo E. Winant
Bank of England

IMF Annual Research Conference
November 3, 2016

The views expressed in this document are those of the authors and should not be attributed to the IMF, its Executive Board, or its management, or to the Bank of England.
How should EME central banks conduct FX intervention when faced with capital outflows?

Sterilized FX intervention increasingly accepted during inflow episodes
(Ghosh, Ostry, and Chamon, 2016; Gabaix and Maggiori, 2015; Blanchard et al., 2015)

▶ Exchange rates can transmit financial shocks
(Jeanne and Rose, 2002; Gabaix and Maggiori, 2015)

▶ FX intervention has traction on the exchange rate and can therefore cushion such shocks
(Blanchard, Adler and Filho, 2015; Chamon, Garcia and Souza, 2015)
How should EME central banks conduct FX intervention when faced with capital outflows?

But outflow shocks are different

- Stock of reserves may be depleted
- Size and persistence of outflows strongly tied to financial frictions
- Possibility of panic by unsophisticated investors

So in practice, even for managed floats, reluctant to recommend intervention except to counter severe market dysfunction

- Reserves deemed "wasted" if exchange rate eventually depreciates
- Fear of "counterproductive" interventions: central bank may invite speculative attacks and worsen the depreciation
Central bank behavior has been heterogeneous

Russia 2008
Large and temporary shock ⇒ Intervention and depreciation

Brazil 2013
Small but potentially persistent shock ⇒ Intervention rule

China 2014
Moderate shock with some panic ⇒ Large intervention
Message of this paper

Characterize the optimal FX intervention policy in response to capital outflows for a simple model with imperfect capital mobility

- Zero lower bound on reserves
- Persistence of the shock
- Unsophisticated investors in the FX market
Message of this paper

Characterize the optimal FX intervention policy in response to capital outflows for a simple model with imperfect capital mobility

▶ Zero lower bound on reserves
▶ Persistence of the shock
▶ Unsophisticated investors in the FX market

Three key insights:

▶ Time consistency problem, which reduces intervention and worsens exchange rate stabilization — especially when reserves are low and the shock is persistent
▶ Temporary pegs and volume intervention rules can improve welfare
▶ Existence of unsophisticated investors alters the optimal policy
 • “Counterproductive interventions” not possible with speculators only, but are possible if investors panic when reserves decline;
 • Investors who panic when the exchange rate depreciates can improve welfare by enhancing the central bank’s commitment power
Structure of this talk

1. The central bank’s optimization problem

2. Full-commitment solution
 ▶ Promise of sustained future intervention and gradual depreciation

3. Time-consistent solution
 ▶ Low intervention and large immediate depreciation

4. Simple intervention rules
 ▶ Can improve welfare above discretion

5. Panic by unsophisticated investors
 ▶ Can generate “counterproductive interventions”
 ▶ Or enhance the central bank’s commitment power
Structure of this talk

1. The central bank’s optimization problem

2. Full-commitment solution
 ▶ Promise of sustained future intervention and gradual depreciation

3. Time-consistent solution
 ▶ Low intervention and large immediate depreciation

4. Simple intervention rules
 ▶ Can improve welfare above discretion

5. Panic by unsophisticated investors
 ▶ Can generate “counterproductive interventions”
 ▶ Or enhance the central bank’s commitment power
The central bank’s optimization problem

Choose sequence of FX intervention \(\{ f_t \}_{t=0}^{\infty} \) to minimize:

\[
E_0 \sum_{t=0}^{\infty} \beta^t \frac{(e_t - e^*)^2}{2}
\]

subject to the constraints

\[
e_t = \frac{1}{a + c} \left[z_t - f_t + ae_{t+1} \right]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \quad \text{and} \quad \sum_{t=0}^{\infty} f_t \leq R_0
\]
The central bank’s optimization problem

Choose sequence of FX intervention \(\{f_t\}_{t=0}^{\infty} \) to minimize:

\[
E_0 \sum_{t=0}^{\infty} \beta^t \frac{(e_t - e^*)^2}{2}
\]

subject to the constraints

\[
e_t = \frac{1}{a+c} \left[z_t - f_t + ae_{t+1} \right]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \quad \text{and} \quad \sum_{t=0}^{\infty} f_t \leq R_0
\]

The target \(e^* \) may differ from the pure float exchange rate

Environment where a depreciation is destabilizing

- Inefficient path of domestic terms of trade (Cavallino, 2015)
- Balance sheets of FX borrowers (Aghion, Bacchetta, and Banerjee, 2001)
The central bank’s optimization problem

Choose sequence of FX intervention \(\{f_t\}_{t=0}^{\infty} \) to minimize:

\[
E_0 \sum_{t=0}^{\infty} \beta^t \frac{(e_t - e^*)^2}{2}
\]

subject to the constraints

\[
e_t = \frac{1}{a + c} \left[z_t - f_t + ae_{t+1} \right]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \quad \text{and} \quad \sum_{t=0}^{\infty} f_t \leq R_0
\]

Imperfect capital mobility with portfolio balance shocks

- Capital outflows: \(k_t = a (E_t e_{t+1} - e_t) + z_t \)
- Market clearing: \(k_t \equiv ce_t + f_t \)

Exchange rate is affected by intervention today and in the future

Full commitment: Credibly promise \(e_{t+1} \); Time consistency: Cannot
The central bank’s optimization problem

Choose sequence of FX intervention \(\{f_t\}_{t=0}^{\infty} \) to minimize:

\[
E_0 \sum_{t=0}^{\infty} \beta^t \frac{(e_t - e^*)^2}{2}
\]

subject to the constraints

\[
e_t = \frac{1}{a + c} \left[z_t - f_t + a e_{t+1} \right]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \text{ and } \sum_{t=0}^{\infty} f_t \leq R_0
\]

Imperfect capital mobility with portfolio balance shocks

- Capital outflows: \(k_t = a (E_t e_{t+1} - e_t) + z_t \)
- Market clearing: \(k_t \equiv c e_t + f_t \)

Exchange rate is affected by intervention today and in the future

Full commitment: Credibly promise \(e_{t+1} \); Time consistency: Cannot
The central bank’s optimization problem

Choose sequence of FX intervention \(\{f_t\}_{t=0}^\infty \) to minimize:

\[
E_0 \sum_{t=0}^\infty \beta^t \frac{(e_t - e^*)^2}{2}
\]

subject to the constraints

\[
e_t = \frac{1}{a + c} [z_t - f_t + ae_{t+1}]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \text{ and } \sum_{t=0}^\infty f_t \leq R_0
\]

Imperfect capital mobility with portfolio balance shocks

- Capital outflows: \(k_t = a (E_t e_{t+1} - e_t) + z_t \)
- Market clearing: \(k_t \equiv ce_t + f_t \)

Exchange rate is affected by intervention today and in the future

Full commitment: Credibly promise \(e_{t+1} \); Time consistency: Cannot
The central bank’s optimization problem

Choose sequence of FX intervention \(\{f_t\}_{t=0}^{\infty} \) to minimize:

\[
E_0 \sum_{t=0}^{\infty} \beta^t \frac{(e_t - e^*)^2}{2}
\]

subject to the constraints

\[
e_t = \frac{1}{a + c} \left[z_t - f_t + ae_{t+1} \right]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \text{ and } \sum_{t=0}^{\infty} f_t \leq R_0
\]

Imperfect capital mobility with portfolio balance shocks

- Capital outflows: \(k_t = a (E_t e_{t+1} - e_t) + z_t \)
- Market clearing: \(k_t \equiv ce_t + f_t \)

Exchange rate is affected by intervention today and in the future

Full commitment: Credibly promise \(e_{t+1} \); Time consistency: Cannot
The central bank’s optimization problem

Choose sequence of FX intervention \(\{f_t\}_{t=0}^{\infty} \) to minimize:

\[
E_0 \sum_{t=0}^{\infty} \beta^t \frac{(e_t - e^*)^2}{2}
\]

subject to the constraints

\[
e_t = \frac{1}{a + c} \left[z_t - f_t + a e_{t+1} \right]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \quad \text{and} \quad \sum_{t=0}^{\infty} f_t \leq R_0
\]

Imperfect capital mobility with portfolio balance shocks

- Capital outflows: \(k_t = a (E_t e_{t+1} - e_t) + z_t \)
- Market clearing: \(k_t \equiv c e_t + f_t \)

Exchange rate is affected by intervention today and in the future

Full commitment: Credibly promise \(e_{t+1} \); **Time consistency:** Cannot
The central bank’s optimization problem

Choose sequence of FX intervention \(\{f_t\}_{t=0}^\infty \) to minimize:

\[
E_0 \sum_{t=0}^\infty \beta^t \frac{(e_t - e^*)^2}{2}
\]

subject to the constraints

\[
e_t = \frac{1}{a + c} [z_t - f_t + ae_{t+1}]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \quad \text{and} \quad \sum_{t=0}^\infty f_t \leq R_0
\]

Zero lower bound on reserves

- Not a standard linear-quadratic problem!
- Model’s simplicity makes time-consistent case solvable
The central bank’s optimization problem

Choose sequence of FX intervention \(\{f_t\}_{t=0}^{\infty} \) to minimize:

\[
E_0 \sum_{t=0}^{\infty} \beta^t (e_t - e^*)^2
\]

subject to the constraints

\[
e_t = \frac{1}{a + c} [z_t - f_t + ae_{t+1}]
\]

\[
f_t = R_t - R_{t+1} \in [0, R_t] \text{ and } \sum_{t=0}^{\infty} f_t \leq R_0
\]

Zero lower bound on reserves

- Not a standard linear-quadratic problem!
- Model’s simplicity makes time-consistent case solvable
Structure of this talk

1. The central bank’s optimization problem

2. Full-commitment solution
 ▶ Promise of sustained future intervention and gradual depreciation

3. Time-consistent solution
 ▶ Low intervention and large immediate depreciation

4. Simple intervention rules
 ▶ Can improve welfare above discretion

5. Panic by unsophisticated investors
 ▶ Can generate “counterproductive interventions”
 ▶ Or enhance the central bank’s commitment power
Full-commitment solution

Marginal value of intervention

Solution in the absence of shocks

FX intervention

Exchange rate
Full-commitment solution

Consider shock \(z_t = \bar{z} > 0 \)

Marginal value of intervention

\[\Gamma_t \]

FX intervention

\[f_t \]

Exchange rate

\[\bar{e} = \frac{\bar{z}}{c} \]
Full-commitment solution

Consider shock $z_t = \bar{z} > 0$

Promise of future intervention appreciates exchange rates in earlier periods

Marginal value of intervention

FX intervention

Exchange rate

\[
\bar{e} = \frac{\bar{z}}{c}
\]
Full-commitment solution

Consider shock $z_t = \bar{z} > 0$

Promise of future intervention appreciates exchange rates in earlier periods, but is discounted

\[\Gamma_t \]

Marginal value of intervention

\[f_t \]

FX intervention

\[\bar{e} = \frac{\bar{z}}{c} \]

Exchange rate
Full-commitment solution

Consider shock \(z_t = \bar{z} > 0 \)

Promise of future intervention appreciates exchange rates in earlier periods, but is discounted

\(\Rightarrow \) Promise sustained future intervention until reserves run out

Marginal value of intervention

\[
\Gamma_t
\]

FX intervention

\[
f_t
\]

Reserves run out

Exchange rate

\[
e_t
\]

\[
e = \frac{\bar{z}}{c}
\]

\[
e^*
\]

\[
t_1 \quad t_2
\]
Structure of this talk

1. The central bank’s optimization problem

2. Full-commitment solution
 - Promise of sustained future intervention and gradual depreciation

3. Time-consistent solution
 - Low intervention and large immediate depreciation

4. Simple intervention rules
 - Can improve welfare above discretion

5. Panic by unsophisticated investors
 - Can generate “counterproductive interventions”
 - Or enhance the central bank’s commitment power
Time-consistent solution

Central bank re-optimizes in every period, ignoring past promises
⇒ Investors’ expectations \(e_{t+1}(R_{t+1}) \) depend only on reserves
⇒ Can only influence investors’ expectations by keeping reserves for tomorrow

FX intervention

Reserves run out

Exchange rate

\[\bar{e} = \frac{\bar{z}}{c} \]
Time-consistent solution

Central bank re-optimizes in every period, ignoring past promises
⇒ Investors’ expectations $e_{t+1} (R_{t+1})$ depend only on reserves
⇒ Can only influence investors’ expectations by keeping reserves for tomorrow

$$(e_t - e^*) \left[1 + a e_{t+1}' (R_{t+1}) \right] = \beta (e_{t+1} - e^*)$$
Time-consistent solution

Central bank re-optimizes in every period, ignoring past promises

⇒ Investors’ expectations $e_{t+1} (R_{t+1})$ depend only on reserves

⇒ Can only influence investors’ expectations by keeping reserves for tomorrow

$$(e_t - e^*) \left[1 + ae_{t+1}' (R_{t+1}) \right] = \beta (e_{t+1} - e^*)$$

⇒ Not credible to use up all reserves
Time-consistent solution

Central bank re-optimizes in every period, ignoring past promises

⇒ Investors’ expectations $e_{t+1} (R_{t+1})$ depend only on reserves
⇒ Can only influence investors’ expectations by keeping reserves for tomorrow

\[
(e_t - e^*) [1 + ae'_{t+1} (R_{t+1})] = \beta (e_{t+1} - e^*)
\]

⇒ Not credible to use up all reserves
⇒ Low intervention and large immediate depreciation

FX intervention

Exchange rate

\[e^* \]

\[f_t \]

\[e_t \]

\[0 \]

\[\bar{z} \]

\[t_1 \]

\[t_2 \]
Time-consistent solution

The time consistency problem is more severe

- For low to moderate reserves
- For persistent shocks

\[e = \bar{z} \]

\[f_t \]

FX intervention

Exchange rate
Structure of this talk

1. The central bank’s optimization problem

2. Full-commitment solution
 ▶ Promise of sustained future intervention and gradual depreciation

3. Time-consistent solution
 ▶ Low intervention and large immediate depreciation

4. Simple intervention rules
 ▶ Can improve welfare above discretion

5. Panic by unsophisticated investors
 ▶ Can generate “counterproductive interventions”
 ▶ Or enhance the central bank’s commitment power
Partial commitment is useful after persistent shocks

Temporary peg or volume intervention rules

- Are worse than the full-commitment solution
- But can improve on the time-consistent solution because they prevent the large immediate depreciation

\[
e_t = \frac{\bar{z}}{c}
\]
Partial commitment is useful after persistent shocks

Temporary peg or volume intervention rules

- Are worse than the full-commitment solution
- But can improve on the time-consistent solution because they prevent the large immediate depreciation

\[e_t = \bar{z} c \]
Partial commitment is useful after persistent shocks

Temporary peg or volume intervention rules

- Are worse than the full-commitment solution
- But can improve on the time-consistent solution because they prevent the large immediate depreciation
Structure of this talk

1. The central bank’s optimization problem

2. Full-commitment solution
 - Promise of sustained future intervention and gradual depreciation

3. Time-consistent solution
 - Low intervention and large immediate depreciation

4. Simple intervention rules
 - Can improve welfare above discretion

5. Panic by unsophisticated investors
 - Can generate “counterproductive interventions”
 - Or enhance the central bank’s commitment power
Panic when reserves decline

New speculators and higher $a \Rightarrow “Counterproductive interventions”$

“Counterproductive interventions” possible with new unsophisticated investors

$$k_t^{Panic} = \frac{(R_t - R_{t+1})^2}{2\theta}$$

\Rightarrow Large interventions can be counterproductive

\Rightarrow Limit intervention to prevent FX market panic

\Rightarrow Exchange rate becomes destabilized even under full commitment

Full commitment

![Full commitment diagram]

Time consistency

![Time consistency diagram]
Panic when reserves decline

New speculators and higher $a \not\Rightarrow \text{“Counterproductive interventions”}$

“Counterproductive interventions” possible with new unsophisticated investors

$$k_t^{Panic} = \frac{(R_t - R_{t+1})^2}{2\theta}$$

\Rightarrow Large interventions can be counterproductive

\Rightarrow Limit intervention to prevent FX market panic

\Rightarrow Exchange rate becomes destabilized even under full commitment
Panic when exchange rate depreciates

Cost Δ when $e_t > e^\ast$

- Hurts welfare under full commitment
- But can improve on the time-consistent solution by providing commitment to maintain a temporary peg

\Rightarrow Imperfection of panic offsets imperfection of lack of commitment
Panic when exchange rate depreciates

Cost Δ when $e_t > e^*$

- Hurts welfare under full commitment
- But can improve on the time-consistent solution by providing commitment to maintain a temporary peg

\Rightarrow Imperfection of panic offsets imperfection of lack of commitment
Conclusion

Characterize the optimal FX intervention policy in response to capital outflows for a simple model with imperfect capital mobility

- Zero lower bound on reserves
- Persistence of the shock
- Unsophisticated investors in the FX market

Three key insights:

- Time consistency problem, which reduces intervention and worsens exchange rate stabilization — especially when reserves are low and the shock is persistent
- Temporary pegs and volume intervention rules can improve welfare
- Existence of unsophisticated investors alters the optimal policy
 - “Counterproductive interventions” not possible with speculators only, but are possible if investors panic when reserves decline;
 - Investors who panic when the exchange rate depreciates can improve welfare by enhancing the central bank’s commitment power