Managing Capital Outflows:
The Role of Foreign Exchange Intervention
by Basu, Ghosh, Ostry and Winant

Discussion
by Anton Korinek
Johns Hopkins University and NBER
Summary

I. Highly sophisticated intertemporal model of foreign exchange intervention
 - market segmentation breaks UIP arbitrage
 - exchange rate = asset price
 = PDV(future shocks & interventions)

II. Analysis of optimal intervention
 - if CB cares about *level* of exchange rate
 - solved under commitment and under time consistency
Overview of Model: Demand and Supply for Outflows

- Supply of outflows: \(k = a \cdot [e_{t+1} - e] + Z \)
- Demand for outflows: \(k = c \cdot e + f \)

![Graph showing supply and demand curves for outflows.](image)
Overview of Model: Demand and Supply for Outflows

- Supply of outflows:
 \[k = a \cdot [e_{t+1} - e] + \hat{Z} \]

- Demand for outflows:
 \[k = c \cdot e + f \]

\[\frac{1}{e} \text{ appreciation} \]

\[\Delta z \quad k \text{ outflows} \]

\[\Delta R \text{ appreciation} \]
Overview of Model: Demand and Supply for Outflows

- Supply of outflows: \[k = a \cdot [e_{t+1} - e] + \overset{\text{UIP arbitrage}}{\Delta R} + \overset{\text{shock}}{Z} \]
- Demand for outflows: \[k = c \cdot e + \overset{\text{CA}}{\Delta f} + \overset{\text{\Delta R}}{f} \]
Overview of Model:
Intertemporal Structure

- Supply of outflows: \[k = a \cdot [e_{t+1} - e] + \hat{Z} \]
- Demand for outflows: \[k = c \cdot e + f \]

- Iterate forward to obtain \(e \) as asset price
 \[e = PDV(z_{t+s} - f_{t+s}) \]
- Discount factor \(\left(\frac{a}{a+c} \right) < 1 \) each period
- Future intervention appreciates current \(e \)
Analysis of Optimal Policy

Welfare function: \(W = -\sum_t \beta^t (e_t - e^*)^2 \)

- policymaker values *level* of \(e_t \)
- benefit of intervention at \(t \) adds up since it appreciates \(e_t, e_{t-1}, \ldots, e_1, e_0 \)
- but it is also discounted at rate \(\beta \)
- in authors’ preferred specification,

\[
\frac{dW}{d\Delta e_t} \approx \beta^t \cdot t
\]
Intertemporal Structure

Benefit of intervention for misaligned exchange rate:

\[
\frac{dW}{d\Delta e_{t+s}} \cong \beta^t \cdot t
\]
Main Results:

Under commitment:
- promise future intervention at date with maximum payoff
- potentially delayed start
- intervene until reserves depleted (or shock over)
Main Results:

Under time consistency:

- keeping reserves = only way to create expectations of future intervention → always keeping some reserves is beneficial
- depreciation much greater, welfare lower, esp. when reserves are low

→ simple rules (e.g. peg, fixed intervention, ...) may serve as 2nd best form of commitment
Q: Does Welfare Depend on Level or Changes in Exchange Rate?

Welfare function: \(W = - \sum_t \beta^t (\Delta e_t)^2 \)

- policymaker dislikes changes in \(e_t \)
- same interesting intertemporal effects of intervention
- but very different implications for optimal policy

→ interesting to elaborate
 (e.g. is time consistency problem smaller?)
Q: Alternative Reading of Examples of Forex Intervention

Several of the examples cited in the paper (e.g. Russia, Korea, Brazil):

- banks/corporates with large currency mismatch, implicitly earning profits from carry trade
- keeping fixed exchange rate = implicit bailout = socializing losses that are flipside of carry trade

Optimal policy: forbid mismatches
very little forex intervention