

OESTERREICHISCHE NATIONALBANK

Stability and Security.

Stress Testing Market Risks and Derivatives Portfolios

Presentation at the Conference

Macroprudential Supervision: Challenges for Financial Supervisors

Seoul, November 8, 2006

Gerald Krenn

Austrian Nationalbank, Financial Markets Analysis and Surveillance Division Gerald.Krenn@oenb.at

Views expressed herein are those of the presenter and not necessarily those of Oesterreichische Nationalbank.

www.oenb.at

Agenda

- I. Stress tests for market risk: basic concepts
- II. Maximum Loss: a stress testing method uncovering portfolio-specific worst-case scenarios
- III. Stress testing: integrating market and credit risk (the methodology of the "Systemic Risk Monitor")

An Example

- Swap entered by SK Securities in Jan. 97 (see Gay et al. (1999))
- Payout after 1 year depended on FX rates of THB, IDR, JPY vis-à-vis USD:

Payout = USD 53m
$$\cdot \left[5 \cdot \left(\frac{THB_0}{THB_2} - 1 \right) + Max \left(0, \frac{3 \cdot IDR_0 - IDR_1 - IDR_2}{IDR_2} \right) + Max \left(0, 1 - \frac{JPY_0}{JPY_2} \right) - 0.97 \right]$$

If positive: a profit; if negative: a loss

• Decision based on historical

volatilities	тнв	IDR	JPY	VaR
Volatility p.a.	1.23%	2.20%	6.88%	USD 16 m

How a stress test could have looked like

	THB	IDR	JPY	Loss
Scenario 1: minor crisis	-15%	-15%	0%	USD 58 m
Scenario 2: midsize crisis	-30%	-30%	0%	USD 116 m
Scenario 3: major crisis	-50%	-50%	0%	USD 184 m

I. Basic concepts

Stress Testing Market Risks and Derivatives

What really happened

	тнв	IDR	JPY	Loss
Depreciation (1y)	51.8%	77.9%	2.9%	USD 189 m

Stress Testing Market Risk

Ingredients for stress testing

- Portfolio: the trading book (subject to market risk)
 - Balance sheet
- Derivatives

- positions
- Bonds

- Equity

- Interest rate derivatives (swaps, bond-options, caps, floors, ...)
- Equity derivatives (equity options, index futures, …)
- Scenarios: possible future states of the market
 r = (*r*₁,...,*r_n*) vector of risk factor values
 r_i are: interest rates, exchange rates, equity indices etc.
- Portfolio valuation function *P* as a function of r: P = P(r)
- Current state of the market: **r**_{CM}
- Hence, current portfolio value: $P(\mathbf{r}_{CM})$

Performing stress tests

- 1. Select scenarios $r_{\text{stress}1}$, $r_{\text{stress}2}$,... (according to some selection principle)
- 2. Calculate portfolio values $P(\mathbf{r}_{stress1}), P(\mathbf{r}_{stress2}), \dots$
- 3. Derive some measure of riskiness of the scenarios

I. Basic concepts

How to Select Scenarios

- Standard scenarios
 - E.g. 200 bp interest rate shift
- Historical scenarios
 - Replay a historical crisis
 - Historically observed risk factor changes
- Subjective worst-case scenarios
 - Initial shock is translated into risk factor changes
 - Involvement of a wide range of staff, including senior management

Example: Interest Rate Risk in the Banking Book

- Standardized framework according to the Basel document on the principles for the management and supervision of interest rate risk
- Part of Basel II Pillar 2
- Coverage: interest rate sensitive positions of the banking book (on- and off-balance sheet)
- Scenario: 200 basispoint shift of yield curves in all currencies
 - Per currency: take the worst case depending on the distribution of assets and liabilities in a re-pricing scheme
- Compare resulting decline in economic value to the sum of Tier 1 and 2 capital
 - Above a 20% threshold: bank considered as outlier

Dangers of Scenario Selection

- A stress scenario for one portfolio might be a lucky strike for another portfolio
- Standard and historical scenarios may nourish a false illusion of safety
- Subjective worst-case scenarios might be too implausible to trigger management action

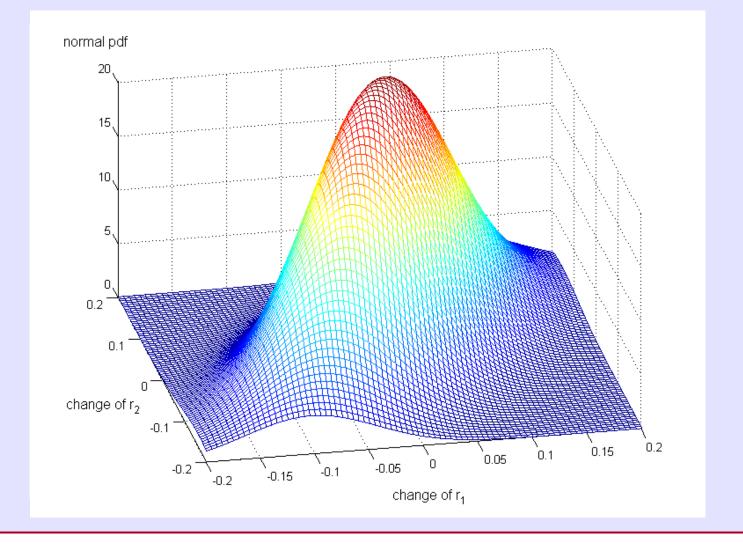
Requirements for "objective worst-case scenarios":

- Scenarios should be portfolio-specific
- There should be some "objective" measure of plausibility
- Consider only scenarios with minimal level of plausibility
- Within plausible scenarios, look for the most harmful one

Maximum Loss: Framework for selecting objective worst-case scenarios

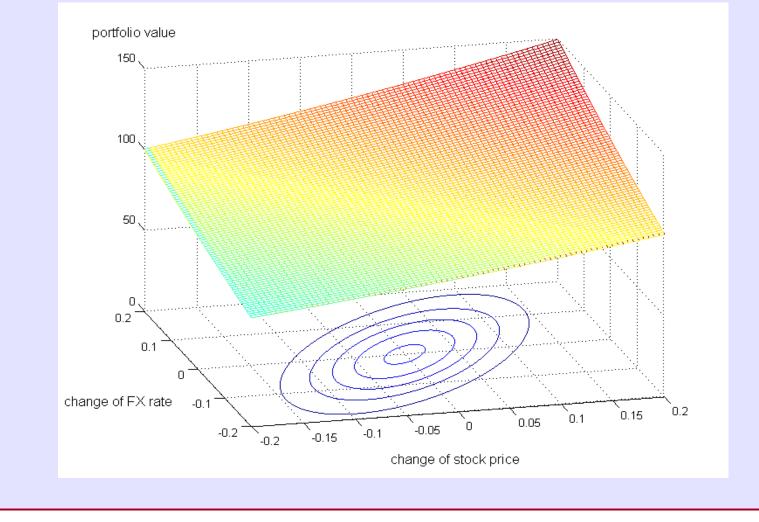
Maximum Loss

- Good overview on Maximum Loss in doctoral thesis by Studer (1997) •
- Chose **trust region** TR: Set of scenarios above a certain minimal plausibility threshold .
- Maximum Loss defined as $AaxLoss_{TR}(P) := \sup \{P(\mathbf{r}_{CM}) P(\mathbf{r})\}$.
- "Above the plausibility threshold no loss worse than Maximum Loss can happen" •


Choice of trust region

- By means of the multivariate risk factor distribution
- Trust region shall have some predefined probability (p) and contain only scenarios • with "highest density"
- In case risk factors have an elliptic distribution (e.g. multivariate normal, Student-t): • Trust region is an ellipsoid of scenarios with Mahalanobis distance to $r_{\rm CM}$ below some threshold k_{p} :

$$TR = \left\{ \mathbf{r} : (\mathbf{r} - \mathbf{r}_{CM})' \Sigma^{-1} (\mathbf{r} - \mathbf{r}_{CM}) \le k_p^{-2} \right\}$$


Σ is the co-variance-matrix)

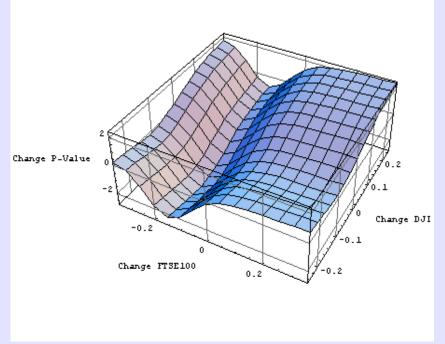
Trust Region: Area of Highest Density

II. Maximum Loss

Within Trust Region: Find Scenario with Smallest Portfolio Value (= Maximum Loss)

II. Maximum Loss

Benefits of Maximum Loss


- Maximum Loss not only quantifies risks but also identifies a worst case-scenario
- Searching for worst-case scenarios yields more harmful and more plausible scenarios than other ways of identifying stress scenarios
- Sample portfolio consisting of options on different international stock indices
 - Stress scenarios are identified in different ways
 - Worst-case according to the recommendations of the Derivatives Policy Group
 - Recurrence of Black Friday in October 1987
 - Worst-case scenario implied by Maximum Loss

	Relative Loss	Plausibility
Worst DPG	- 183%	once in 10 yrs
Black Friday	- 154%	once in 19 yrs
Worst Case (ML)	- 279%	once in 8 yrs

Benefits of Maximum Loss

Identifying key risk factors of the worst case scenario = Locating the vulnerable spots of a portfolio

Example: Again option portfolio

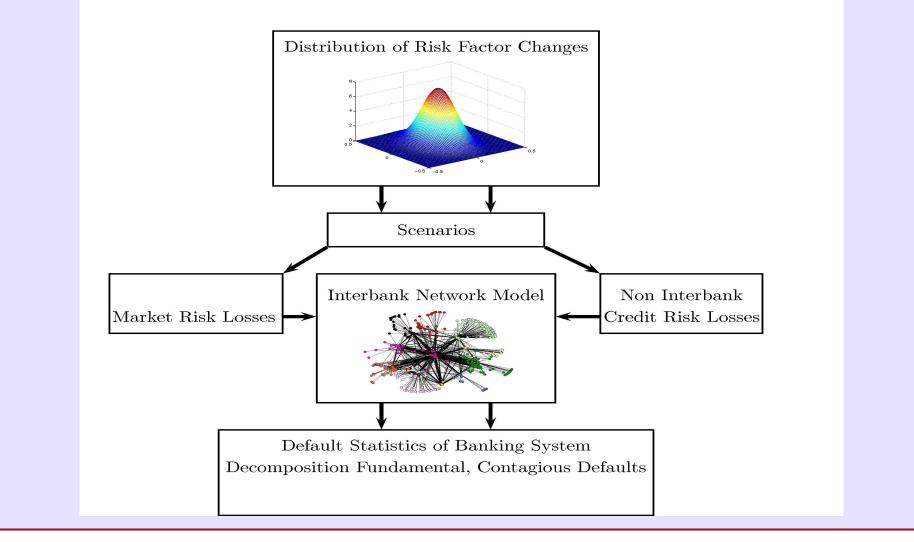
	Risk Fact	Rel. Chan	Loss	Explanatory Power
Report 1	FTSE100	-13%s	206 %	74%
Report 2	FTSE100 DJI	-13% -8%	264 %	94%

Explanatory Power =
$$\frac{\text{Loss}(\mathbf{r}_{\text{report}})}{\text{Loss}(\mathbf{r}_{\text{worst case}})}$$

The Problem of Dimensional Dependence

- *n* : number of risk factors
- Consider elliptic risk factor distributions; then trust regions are ellipsoids
- Trust region shall have probability p
- *k* : radius of ellipsoid
- n, p, and k depend on each other: e.g. p depends on k and n
 In case of the normal distribution:

$$p(k,n) = 1 - F_{\chi_n^2}(k^2) = 1 - \frac{1}{2^{n/2} \Gamma(n/2)} \int_0^{k^2} s^{\frac{n}{2}-1} e^{-\frac{s}{2}} ds$$


- To keep *p* fixed: *k* has to increase as *n* increases
- If we add an "empty risk factor" (i.e. a factor on which the portfolio value does not depend),

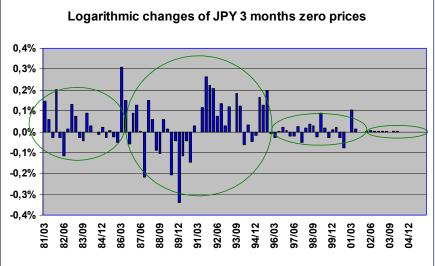
k has to increase in order to hold *p* fixed

- We therefore search for MaxLoss within a larger trust region when we add an empty risk factor
- Also MaxLoss is likely to be larger once having added an empty risk factor

II. Maximum Loss across portfolios

Systemic Risk Monitor (SRM) – Basic Structure

Stress Testing in SRM


- 26 market risk factors + 8 credit risk factors = 34 risk factors
- The time horizon in SRM is 3 months
- These factors are modeled statistically
 - Allows for a Monte Carlo-simulation for analyzing the actual situation (sampling from the un-conditional distribution)
 - Allows for a Monte Carlo-simulation for stress testing (sampling from the conditional distribution)
- For stress testing, a set of risk factors is set to some predefined values
- Remaining factors are sampled from the conditional distribution
- Stress is considered in two ways
 - 1. **Direct stress** from the stressed risk factors
 - 2. **Indirect stress** ("statistical feedback") from the remaining risk factors that are influenced by the stressed risk factors

Statistical Modeling of Risk Factors

- Multivariate distribution of risk factors is estimated in a 2-step procedure:
 - Step 1: Modeling of marginal distribution of each risk factor by models which are optimized with respect to their out-of sample density forecast
 - Step 2: Modeling of **dependencies** between individual risk factors by a grouped t-copula
- Our goal is to have enough flexibility in order to capture
 - Marginal distributions of the various risk factors
 - Patterns of dependence between risk factors
- Market risk factors and credit risk factors are treated in a common statistical model

Marginal Distributions: Model Selection

- No aggregation of higher frequency data, i.e. use quarterly data directly
- GARCH
 - Testing procedure favors consideration of GARCH effects
 - Makes sense for analysis of current situation
 - Should be used with care for stress tests

- Distribution of Residuals
 - Extreme value distribution performs best in the test procedures
 - Simulations show that extreme value distribution leads to too extreme movements
 - SRM now uses t-distribution as marginals

Modeling Dependencies: Grouped t-Copula

- **Copula** models dependencies between risk factors
 - Copula is the part of the multivariate distribution which is not contained in the marginal distributions
- Concept of tail-dependence for assessing dependencies
 - The coefficient of tail-dependence between two variables is defined as:

 $\lambda:=\lim_{v\to 1^-} \mathbb{P}(X_1>G_1^{-1}(v)\mid X_2>G_2^{-1}(v))>0;$

- Is roughly speaking the probability that one variable is very large (small) given the other variable is very large (small)
- In case $\lambda > 0$, "one variable can pull up (down) the other variable"
- For the multivariate normal distribution we have = 0 (no tail-dependence)
 - Real data show tail-dependence
- An alternative is given by the t-copula
 - There is tail-dependence between risk factors (> 0)
 - Scenarios can be generated easily in a Monte Carlo-simulation
 - Drawback: between all risk factors there is the same tail-dependence

Modeling Dependencies: Grouped t-Copula

- As an alternative to the t-copula the grouped t-copula was introduced by Daul et al. (2003)
 - Risk factors are arranged into groups
 - Within each group risk factors have the same tail-dependence
 - Each group is characterized by a parameter (degrees of freedom)
- Grouped t-copula was adopted for SRM
 - Is suited equally well for MC-simulations as the plain t-copula
 - In SRM risk factors were arranged into 4 groups (in parentheses: estimated degrees of freedom)
 - Credit risk factors (20)
 - FX (14)
 - Equity (5)
 - Interest rates (11)

Literature

- Basel Committee on Banking Supervision (2004): "Principles for the Management and Supervision of Interest Rate Risk"
- Daul S., E. DeGeorgi, F. Lindskog, A. McNeil (2003): "The grouped t copula with an application to credit risk", *RISK* Vol. 16, pp 73-76
- Gay G. D., Kim J., Nam J. (1999): "The Case of the SK Securities and J.P. Morgan Swap: Lessons in VaR Frailty", *Derivatives Quarterly*, Spring 1999, pp. 13-26
- Studer G. (1997): "Maximum Loss for Measurement of Market Risk", Doctoral Thesis, Swiss Federal Institute of Technology, Zürich