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Agenda

I. Traditional stress tests for market risk

II. Maximum Loss as a risk measure uncovering harmful scenarios

III. Integration of market and credit risk stress testing 
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I: Traditional Stress Tests

Ingredients for stress testing

• Portfolio: In our case the trading book (subject to market risk)
• Scenarios: possible market states r

r = (r1,...,rn) vector of risk factor values
ri are: interest rates, exchange rates, equity indices etc.

• Portfolio valuation function P as a function of r: P = P (r)
• Current state of the market: rCM

• Hence, current portfolio value: P (rCM)

Performing stress tests

1. Select scenarios rstress1, rstress2,... (according to some criterion)
2. Calculate portfolio values P (rstress1), P (rstress2),…
3. Derive some measure of riskiness of the scenarios
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I: Traditional Stress Tests

How to select scenarios

• Standard scenarios

• Historical scenarios

• Subjective worst case scenarios
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I: Dangers of Traditional Stress Tests

• A stress scenario for one portfolio might be a lucky strike for another portfolio
• Stress tests with standard and historical scenarios may nourish a false illusion of 

safety
• Subjective worst case scenarios are often too implausible to trigger management 

action

But: Stress Tests can be the basis of informed risk decisions ... 
... if the scenarios are plausible 
... if we are confident there are no worse scenarios
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II: Maximum Loss

• Good overview on Maximum Loss in doctoral thesis by Studer (1997)
• Can be interpreted as a risk measure that avoids dangers of traditional stress tests
• Choose a trust region TR: A set of scenarios above a certain minimal plausibility 

threshold

• Maximum Loss defined as:

• “Above the plausibility threshold no loss worse than MaxLoss can happen”

Choice of trust region
• By means of the multivariate risk factor distribution
• Trust region shall have some predefined probability (p) and contain only scenarios 

with “highest density”
• In case risk factors have an elliptic distribution (e.g. multivariate normal, Student-t): 

Trust region is an ellipsoid of scenarios with Mahalanobis distance to rCM below some 
threshold kp:
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II: Trust Region: Area of Highest Density
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II: Within Trust Region: Find Scenario with Smallest 
Portfolio Value (= Maximum Loss)
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II: Benefits of Maximum Loss

• Maximum Loss not only quantifies risks but also identifies a worst case scenario 
(among all scenarios in the trust region)

• Searching for worst case scenarios yields more harmful and more plausible 
scenarios than other ways to identify stress scenarios

• Sample portfolio consisting of options on different international stock indices
– Stress scenarios are identified in different ways

• Worst case according to the recommendations of the DPG (Derivatives Policy Group)
• Recurrence of Black Friday in October 1987
• Worst case scenario implied by Maximum Loss

 Relative Loss Plausibility 

Worst DPG - 183% once in 10 yrs 

Black Friday - 154% once in 19 yrs 

Worst Case (ML) - 279% once in 8 yrs 
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II: Benefits of Maximum Loss

Identifying key risk factors of the worst case scenario = Locating the vulnerable spots 
of a portfolio

Example: Again option portfolio
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II: The Problem of Dimensional Dependence

• n … number of risk factors on which the portfolio depends

• Let’s consider an elliptic risk factor distribution; trust regions are then ellipsoids

• The trust region shall have probability p

• When k (the “radius” of the ellipsoid) is fixed, p depends on k (and on n):
e.g. for multivariate normal distribution:

• To get trust regions with some predefined probability p, k has to increase as n increases

• If we add an “empty risk factor” (i.e. a factor on which the portfolio value does not 
depend), the radius k has to increase in order to hold p fixed

• We therefore are searching for MaxLoss within a larger trust region when we add an 
empty risk factor

• Also MaxLoss is likely to be larger once having added an empty risk factor
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III: Systemic Risk Monitor (SRM) – Basic Structure
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III: Risk Factors in SRM

• SRM analysis market risk and credit risk simultaneously
• As risk factors we have market risk factors as well as credit risk drivers
• Time horizon in SRM is 3 months

– Implies that length of risk factor time series will be limited; e.g. with quarterly data starting in 
1980 we get about 100 data points

– For numerical stability (estimation of covariance matrix for the grouped t-copula) number of 
observations should clearly exceed number of risk factors

• Therefore parsimonious selection of risk factors (trade-off with accuracy of valuation)
– Interest rates: 

• 5 currencies EUR, USD, CHF, JPY, GBP
• Maturities: 3 months, 1 year, 5 years, 10 years

– 2 equity indices (national, international)
– 4 exchange rates: EUR vis-à-vis USD, CHF, JPY, GBP

• Credit risk drivers should be able to explain PDs in different industrial sectors

– 8 credit risk factors were selected (e.g. GDP, Consumer Price Index, Unemployment rate, 
international stock index)
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III: Stress Testing in SRM

• 26 market risk factors + 8 credit risk factors = 34 risk factors
• These factors we wish to model statistically

– Allows for a Monte Carlo-simulation for analyzing the actual situation (sampling from the un-
conditional distribution)

– Allows for a Monte Carlo-simulation for stress testing (sampling from the conditional 
distribution)

• For stress testing, a set of risk factors is set to some predefined values
• Remaining factors are sampled from the conditional distribution
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III: Statistical Modeling of Risk Factors

• Multivariate distribution of risk factors is estimated in a 2-step procedure:
– Step 1: Modeling of marginal distribution of each risk factor by models which are 

optimized with respect to their out-of sample density forecast
– Step 2: Modeling of dependencies between individual risk factors by a grouped t-copula

• Our goal is to have enough flexibility in order to capture 
– Marginal distributions of the various risk factors
– Patterns of dependence between risk factors

• Market risk factors and Credit risk factors are treated in a common statistical model
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III: Selecting Marginal Distributions 

Goal: Find a statistical model for risk factor changes over the horizon of one quarter

Aspects to be considered when selecting a model
• Maybe modeling risk factors at higher frequencies (basic periods: daily, weekly,…) 

and aggregating these models to a quarter can exploit information contained in 
higher frequency data

• Maybe there are GARCH effects even for quarterly data
• Different alternatives for the distribution of residuals:

– Normal 
– Student t
– Extreme value
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III: Marginal Distributions: Tests and Results
• The resulting 36 models were applied to 19 (sufficiently long) time series
• 2 statistical tests were applied to each model:

– Test 1: According to de Raaij und Raunig (2002)
– Test 2: Kolmogorov-Smirnov-Test for N(0,1)

• Table shows number of accepted time series per model (according to test 1 and 
2)

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
1d 0 0 0 0 0 0 0 0 0 2 0 0
5d 0 0 0 1 0 0 0 0 0 1 0 0

10d 0 0 0 2 0 1 0 0 0 3 0 2
20d 0 2 1 6 0 1 0 2 0 7 0 4
30d 0 5 8 16 1 8 0 5 11 14 2 10
60d 9 16 9 13 13 15 10 17 11 15 15 15

B
as

ic
 p

er
io

d

Normal t EVT Normal t EVT
No GARCH GARCH

Results
• Aggregation does not yield good results: Quarterly data already contain all the 

information
• GARCH models are slightly superior to constant volatility
• Extreme value distribution for residuals appears best
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III: Marginal Distributions: Final Model Selection

• No aggregation of higher frequency data, i.e. use quarterly data directly

• GARCH
– Testing procedure favors consideration 

of GARCH effects
– Makes sense for analysis of 

current situation
– Should be used with care for stress tests

• Distribution of Residuals
– Extreme value distribution performs best in the test procedures
– Simulations show that extreme value distribution leads to too extreme risk factor movements
– SRM now uses t-distribution as marginals

• Also leads to extreme risk factor movements in some cases
• Hence restriction: degrees of freedom > 4,1

Logarithmic changes of JPY 3 months zero prices
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III: Match between Historical and Generated Data

– Many time series show more extreme 
movements than a normal distribution (small 
degree of freedom)

– Sample of 10,000 scenarios (no GARCH) is 
compared with the historical input data

• Standard deviations match pretty well 
• Kolmogorov-Smirnov test for the null hypothesis, 

that historical data and generated sample have 
the same distribution

• Is rejected only in two cases at alpha = 0.05

Risk factor # degrees 
of freedom Hist. Data Generated 

Sample
p-Value 
KS-Test

Usd 3336.3 6.0% 6.0% 0.975
Chf 4.1 2.8% 2.9% 0.927
Jpy 4.8 5.5% 5.7% 0.670
Gbp 6.3 4.6% 4.6% 0.543
EquityAt 4.1 10.9% 9.9% 0.971
EquityNonAt 4.1 8.3% 8.0% 0.813
Eur 03M 4.1 0.2% 0.1% 0.884
Eur 01Y 4.2 0.6% 0.6% 0.980
Eur 05Y 14.6 2.5% 2.5% 0.935
Eur 10Y 7.3 4.4% 4.3% 0.874
Usd 03M 4.1 0.3% 0.2% 0.297
Usd 01Y 4.1 1.2% 1.0% 0.981
Usd 05Y 4.7 4.0% 4.0% 0.668
Usd 10Y 4.8 6.7% 6.7% 0.382
Chf 03M 4.1 0.2% 0.2% 0.846
Chf 01Y 4.6 0.8% 0.8% 0.926
Chf 05Y 9.0 1.9% 1.9% 0.922
Chf 10Y 9.6 3.2% 3.2% 0.821
Jpy 03M 4.1 0.3% 0.2% 0.000
Jpy 01Y 4.1 0.8% 0.5% 0.044
Jpy 05Y 4.1 2.6% 2.5% 0.677
Jpy 10Y 4.1 4.6% 4.5% 0.964
Gbp 03M 4.1 0.3% 0.2% 0.710
Gbp 01Y 4.1 1.0% 1.0% 0.853
Gbp 05Y 4.1 3.0% 3.0% 0.825
Gbp 10Y 4.1 5.3% 5.0% 0.919

Standard deviation
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III: Match between Historical and Generated Data

2 selected time series
• Austrian traded index (top)
• JPY 3 months (bottom)

Left: Historical data in a normal 
probability plot 

Middle: Generated sample 
(size=10,000; no GARCH) 
in a normal probability plot

Right: QQ-Plot for assessing 
the match between 
historical and generated 
data

– ATX fits well
– JPY 3M: historical 

extremes are not 
captured (a result of the 
restriction dof > 4,1)
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III: Modeling Dependencies: Grouped t-Copula

• Copula models dependencies between risk factors
– Copula is the part of the multivariate distribution which is not contained in the marginal 

distributions
• Concept of tail-dependence for assessing dependencies

– The coefficient of tail-dependence λ between two variables is defined as:

– Is roughly speaking the probability that one variable is very large (small) given the other 
variable is very large (small)

– In case λ > 0, “one variable can pull up (down) the other variable”
• For the multivariate normal distribution we have λ = 0 (no tail-dependence)

– Real data show tail-dependence
• An alternative is given by the t-copula

– There is tail-dependence between risk factors (λ > 0)
– Scenarios can be generated easily in a Monte Carlo-simulation
– Drawback: between all risk factors there is the same tail-dependence
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III: Modeling Dependencies: Grouped t-Copula

• As an alternative to the t-copula the grouped t-copula was introduced by Daul et al. 
(2003)

– Risk factors are arranged into groups
– Within each group risk factors have the same tail-dependence
– Each group is characterized by a parameter (degrees of freedom)

• Grouped t-copula was adopted for SRM
– Is suited equally well for MC-simulations as the plain t-copula
– In SRM risk factors were arranged into 4 groups (in parentheses: estimated degrees of 

freedom)
• Credit risk factors (20)
• FX (14)
• Equity (5)
• Interest rates (11)
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III: Simulation

• In SRM we need the multivariate distribution in order to generate scenarios for the 
Monte Carlo-simulation

• For the grouped t-copula efficient algorithms exist for sampling from the
– un-conditional distribution
– conditional distribution (a set of risk factors is set to predefined values)

• E.g. algorithm for un-conditional distribution (Daul et al. (2003))
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