Stress Testing Credit Risk: The French experience

Expert Forum on Advanced Techniques on Stress Testing
Washington DC, May 2-3, 2006

Paper presented at the Expert Forum on Advanced Techniques on Stress Testing: Applications for Supervisors Hosted by the International Monetary Fund
Washington, D.C., May 2-3, 2006

Olivier Jaudoin
Head of the Banking Studies Department
French Banking Commission

The views expressed in this paper are those of the author(s) only, and the presence of them, or of links to them, on the IMF website does not imply that the IMF, its Executive Board, or its management endorses or shares the views expressed in the paper.
Outline

1. Introduction: FSAP Experience
2. Macro Stress Testing
3. Credit Risk Stress Testing
1 - Introduction: FSAP Scenarios

- FSAP in France in 2004
- Scenarios built by IMF / Commission bancaire / Banque de France:
 - single factor shocks (instantaneous):
 - Market type: interest rate curve, stock price, exchange rate, volatility of stock index
 - Systemic type: overall or sectoral degradation of credit spreads (ratings)
 - multifactor shocks (instantaneous):
 - Combining interest rate and stock price scenarios
 - dynamic macroeconomic scenarios (2-year horizon):
 - Drop in world demand
 - Rise in oil price (with & without reaction of the ECB)
 - Depreciation of US$ vs. €
1 - Introduction: FSAP process

Simulations implemented by banks (Bottom Up)

Expected Changes in P&L and NPL

Aggregated Changes in expected P&L and NPL

Expected Changes in CAR1 & CAR2

Simulations implemented by Supervisors (Top Down)

Aggregated Changes in expected P&L and NPL

Expected Changes in CAR1 & CAR2

Benchmarking
2 - Macro Stress Test

• After the FSAP exercise, the Commission bancaire has performed macro stress testing:
 – based on the econometric models used for the FSAP exercise
 – on a regular basis (every six months)
 – restricted to the top-down approach
 • Market type shocks cannot be implemented efficiently
 – for internal purpose
 – to assess financial stability
2 - Macro Stress Test

• Financial stability is assessed through dynamic macroeconomic scenarios (2-year horizon)

• Scenarios are built by the Commission bancaire and the Banque de France:
 – expert judgement on potential macroeconomic risks
 – diffusion of the initial shock through the in-house econometric model Mascotte and Nigem
2 - Macro Stress Test

Profitability model

- Impact of economic fluctuations on the banks’ expected profitability (net of EL)
- Use of a structural banking profit and margin model relating them to economic factors
- Structural reduced form used to test economic stress scenarios
- Analysis of banks’ stressed profits and margins as first buffer to absorb shocks
2 - Macro Stress Test

Profitability model:

- Dynamic panel data model
- Structural model:

\[M_{i,t} = 0.64 + 0.68M_{i,t-1} + 0.35 p_t^* - 0.59 \sigma_{p,t}^* + 0.29 p_t^* \Delta L_{i,t} - 0.20 \pi_{i,t} + \varepsilon_t \]

\[R^2 = 0.87 \]

\(M_{i,t} \) credit margin for bank i

\(p_t^* \) 5y - 3m risk free interest rate slope

\(\sigma_{p,t}^* \) volatility of 5y - 3m risk free interest rate slope

\(\Delta L_{i,t} \) loan growth for bank i

\(\pi_{i,t} \) anticipated risk volatility for bank i
2 - Macro Stress Test

Capital requirements model:

- Transition matrix depends on the state of economy X_t
- Model the sensitivity of transition matrix to economic fluctuations (corporate)
- Use Banque de France ratings as benchmarks
- Element of Theory: GDP $\uparrow \Rightarrow$ creditworthiness \uparrow
- Goal:
 - Build a quantitative and operational tool
 - Simulation of UL needs to estimate the whole transition matrix (not only PDs of risk classes)
2 - Macro Stress Test

Capital requirements model:

- Rating transition model based on observed transition matrix M_t:

$$M_t = \left[\Pr(rating_t = j \mid rating_{t-1} = i) \right]_{ij}$$

$$z_{ijt} = \log \left(\frac{\Pr(rating_t \leq j \mid rating_{t-1} = i)}{\Pr(rating_t > j \mid rating_{t-1} = i)} \right)$$

$$z_{ijt} = \theta_{ij} z_{ij,t-1} + \alpha_{ij} + \beta_{ij} X_t + \varepsilon_{ijt}$$
Capital requirements model:

\[
\begin{cases}
Z_t = Z_{t-1} \times M_t(X_t) + \nu_t \\
K_t = RW' \cdot Z_t
\end{cases}
\]

- Where \(X \) is a set of macroeconomic variables, and \(Z_t \) the (vector) risk distribution of the portfolio
- Model portfolio’s composition dynamic under economic shocks through transition matrix.
- Computes minimum capital requirement \(K_t \) on new risk distribution \(Z_t \).
2 - Macro Stress Test

Final analysis:

– Combination of the models
 • Assumption: RWA are unchanged when moving from Basel I to Basel II.

– Global impact on the key indicator Capital Adequacy Ratio (Basel II)
 • The CAR estimated under the baseline scenario («baseline CAR») is not a forecast of the CAR:
 – The model takes into account neither the new credit lines nor the reaction of bank induced by the shock
 – The «baseline CAR» is estimated under Basel II assumptions (capital requirements are risk-sensitive)
 – The «baseline CAR» is a benchmark
 • CAR estimated under stress-scenarios are analysed with respect to the benchmark.
3 - Credit Risk

Stress test on credit risk

– Based on ad hoc scenarios
 • Not derived from a macro-framework, since linkage « macro => micro » is difficult to establish
 • Stress assumptions directly applied to the micro-framework

– Analysis based on the corporate portfolio (through the Central Credit Register database)

– Global impact on the key indicator CAR (Basel II)
3 - Credit Risk

Credit Risk Scope:

- Static analysis
 - No feedback micro => macro
 - No reaction from banks
- The analysis is performed on the whole banking system, and on the biggest banking groups as well.
- Degradation of the creditworthiness of the portfolio (usually 1 notch)
 - Degradation with respect to the internal rating scale of the Banque de France
 - Benchmarking with other rating scales (S&P’s) and default time series.
Credit Risk Shock:

- **Instantaneous shock:**
 - increase of the average probability of default = +x% (e.g. between +60% and +90%)

- **Impact on credit risk variables:**
 - Impact on EL: multiplication of EL by (1+x%)
 - Impact on RWA:
 - we first assume that RWA are unchanged when moving from Basel I to Basel II
 - the PD associated to each rating grade is multiplied by (1+x%)
 - RWA are computed with these new PDs = multiplication of RWA by (1+y%)
Credit Risk Analysis:

- Before shock: Tier 1 ratio = Tier 1 / RWA
- After shock:
 - EL is compared to the whole provisions. Tier 1 is deducted of excess EL (if any). Otherwise, excess provisions are not taken into account (pessimistic hypothesis).
 - RWA are multiplied by \((1+y\%)\)

\[
\text{ratio Tier}1 = \frac{\text{Tier}1 - \max(0, (1 + x\%) \times \text{EL} - \text{provisions})}{RWA \times (1 + y\%)}
\]
Credit Risk Results:

- 1-notch degradation on the BDF rating scale is consistent with external and historical benchmarks.
- Tier1 Ratios remain far above 4% after shock (for any large banking groups and at the banking system level).
- Possible to stress-test specific sectors (e.g. 2 notches down for specific industries)

Open issue:

- Estimate the probability of such a shock = quantify the link between the increase of PD and the probability of occurrence
3 - Credit Risk

Improvements under way:

– Profitability model:
 • Link it to the NPL ratio and the creditworthiness of the portfolio

– Capital requirements model:
 • Estimate new credit lines as a function of the economic state
 • Test different rating scales and different definitions of default

– Try to build a panel model to estimate NPL ratio.

– Integrate these different elements into a single framework.
3 - Credit Risk

Limits of the model:

– Contagion effects are not addressed here (current exploration of large exposures data)

– No feedback: reactions from banks (re-allocation strategy) are not taken into account in the model.

Appendix: Models and Instruments (1)

Overview of Non performing loans (NPL) model – provisional

General form is linear econometrics with economic and bank specific explanatory variables ($R^2 = 0.92$)

\[
\Delta NPL_t = 0.61 \times \Delta NPL_{t-4} - 0.11 \times \Delta GDP_{t-4} + 0.1 \times \Delta IR_{t-5} + 0.03 \times \Delta Loan_{t-4}
\]

ΔNPL_t increase in NPL ratio

ΔGDP_{t-4} 1 year lagged GDP growth

ΔIR_{t-5} lagged Interest Rate variation

$\Delta Loan_{t-4}$ lagged loan growth

In the process of being updated
Appendix: Models and Instruments (2)

Early Warning System SAABA

– Based on Credit Register, BdF rating scale and accounting databases.
– The general framework of the System is currently improved in order to be Basel compliant.
– Global Process :
 • Estimation of EL through estimation of PDs and LGDs
 • Impact of EL on own funds regarding SP and GP
 • Estimation of stressed Gross Operating Income
 • Calibration of an extremely negative shock
 • Estimation of the impact of the shock on the solvency ratio.
Secrétariat général de la Commission bancaire