Favero, Giavazzi & Perego “Country Heterogeneity and the International Evidence on Effects of Fiscal Policy”
– A Discussion –

Morten O. Ravn, University College London

June 2011
FGP touch upon a very important, interesting and relevant question: “What happens following a fiscal intervention meant to stabilize debt-to-GDP”
FGP touch upon a very important, interesting and relevant question: “What happens following a fiscal intervention meant to stabilize debt-to-GDP”

this is a question relevant for many economies right now and we have very little idea about what’s in line for us
FGP touch upon a very important, interesting and relevant question: “What happens following a fiscal intervention meant to stabilize debt-to-GDP”

this is a question relevant for many economies right now and we have very little idea about what’s in line for us

Much of the paper, however, instead asks: “How can you estimate the impact of exogenous fiscal policy shocks using panel data”
They estimate:

\[\tilde{X}_{i,t} = C_{i,1} + C_2 \tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma^{g}_i \varepsilon_{i,t}^{g} + \gamma^{\tau}_i \varepsilon_{i,t}^{\tau} \]

\[\tilde{X}_{i,t} = [y_{it}, g_{it}, \tau_{it}, i_{it}, p_{it}, s_{it}]', \quad Z_{i,t} = [B_{it}, y_{it}^*, s_{it}^*]' \]
They estimate:

\[\tilde{X}_{i,t} = C_{i,1} + C_2 \tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma_i^g \varepsilon_{i,t}^g + \gamma_i^\tau \varepsilon_{i,t}^\tau \]

\[\tilde{X}_{i,t} = [y_{it}, g_{it}, \tau_{it}, i_{it}, p_{it}, s_{it}]', \quad Z_{i,t} = [B_{it}, y_{it}^*, s_{it}^*]' \]

\[\varepsilon_{i,t}^g \text{ and } \varepsilon_{i,t}^\tau: \text{ IMF narratives of “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”} \]
They estimate:

\[
\tilde{X}_{i,t} = C_{i,1} + C_2 \tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma_i^g \varepsilon_{i,t}^g + \gamma_t \varepsilon_{i,t}^\tau \\
\tilde{X}_{i,t} = [y_{it}, g_{it}, \tau_{it}, i_{it}, p_{it}, s_{it}]' , \ Z_{i,t} = [B_{it}, y_{it}^*, s_{it}^*]'
\]

\(\varepsilon_{i,t}^g\) and \(\varepsilon_{i,t}^\tau\): IMF narratives of “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”

Their main points
They estimate:

\[\tilde{X}_{i,t} = C_{i,1} + C_2 \tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma^g_i \varepsilon^g_{i,t} + \gamma^\tau_i \varepsilon^\tau_{i,t} \]

\[\tilde{X}_{i,t} = [y_{it}, g_{it}, \tau_{it}, i_{it}, p_{it}, s_{it}]', \quad Z_{i,t} = [B_{it}, y^*_{it}, s^*_{it}]' \]

\(\varepsilon^g_{i,t} \) and \(\varepsilon^\tau_{i,t} \): IMF narratives of “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”

Their main points

1. One needs to control for debt dynamics when estimating the impact of fiscal shocks
They estimate:

\[
\tilde{X}_{i,t} = C_{i,1} + C_{2} \tilde{X}_{i,t-1} + \varphi_{i} Z_{i,t-1} + \gamma_{i}^{g} \varepsilon_{i,t}^{g} + \gamma_{i}^{\tau} \varepsilon_{i,t}^{\tau} \\
\tilde{X}_{i,t} = [y_{it}, g_{it}, \tau_{it}, i_{it}, p_{it}, s_{it}]', \quad Z_{i,t} = [B_{it}, y_{it}^*, s_{it}^*]'
\]

\(\varepsilon_{i,t}^{g}\) and \(\varepsilon_{i,t}^{\tau}\): IMF narratives of “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”

Their main points

1. One needs to control for debt dynamics when estimating the impact of fiscal shocks
2. One needs to allow for heterogeneity across countries due to:
They estimate:

\[
\tilde{X}_{i,t} = C_{i,1} + C_{2}\tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma^g_i \varepsilon^g_{i,t} + \gamma^\tau_i \varepsilon^\tau_{i,t}
\]

\[
\tilde{X}_{i,t} = [y_{it}, g_{it}, \tau_{it}, i_{it}, p_{it}, s_{it}]', \quad Z_{i,t} = [B_{it}, y_{it}^*, s_{it}^*]'
\]

\(\varepsilon^g_{i,t}\) and \(\varepsilon^\tau_{i,t}\): IMF narratives of “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”

Their main points

1. One needs to control for debt dynamics when estimating the impact of fiscal shocks
2. One needs to allow for heterogeneity across countries due to:
 1. heterogeneity in fiscal reaction functions
They estimate:

\[
\tilde{X}_{i,t} = C_{i,1} + C_2 \tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma^g_i \varepsilon_{i,t}^g + \gamma^\tau_i \varepsilon_{i,t}^\tau \\
\tilde{X}_{i,t} = [y_{it}, g_{it}, \tau_{it}, i_{it}, p_{it}, s_{it}]', \quad Z_{i,t} = [B_{it}, y_{it}^*, s_{it}^*]'
\]

\(\varepsilon_{i,t}^g\) and \(\varepsilon_{i,t}^\tau\): IMF narratives of “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”

Their main points

1. One needs to control for debt dynamics when estimating the impact of fiscal shocks
2. One needs to allow for heterogeneity across countries due to:
 1. heterogeneity in fiscal reaction functions
 2. differences in openness
Does one really need to control for debt?

- Reduced form VAR

\[Y_t = B(L) Y_{t-1} + u_t \]
Does one really need to control for debt?

- Reduced form VAR
 \[Y_t = B(L) Y_{t-1} + u_t \]
- \(u_t \) are the latent reduced form errors
Does one really need to control for debt?

- Reduced form VAR

 \[Y_t = B(L) Y_{t-1} + u_t \]

- \(u_t \) are the latent *reduced form* errors

- The econometrician would like to identify the fiscal shocks, \(e_t^g \) and \(e_t^\tau \)
Does one really need to control for debt?

- Reduced form VAR
 \[Y_t = B(L) Y_{t-1} + u_t \]
- \(u_t \) are the latent *reduced form* errors
- The econometrician would like to identify the fiscal shocks, \(e_t^g \) and \(e_t^\tau \)
- Controlling for debt may be useful
Does one really need to control for debt?

- Reduced form VAR
 \[Y_t = B(L)Y_{t-1} + u_t \]

- \(u_t \) are the latent *reduced form* errors

- The econometrician would like to identify the fiscal shocks, \(e_t^g \) and \(e_t^\tau \)

- Controlling for debt may be useful
 - There’s feedback from debt to fiscal instruments.
Does one really need to control for debt?

- Reduced form VAR
 \[Y_t = B(L) Y_{t-1} + u_t \]

- \(u_t \) are the latent reduced form errors

- The econometrician would like to identify the fiscal shocks, \(e_t^g \) and \(e_t^\tau \)

- Controlling for debt may be useful
 - There’s feedback from debt to fiscal instruments.
 - debt may carry important information about the shocks
But - the authors use narratively identified shocks - they are not trying to identify the shocks - they know them!

Since the shocks are known the Wold theorem implies that their impact can be estimated from:

\[Y_t = D_s(L)e_s, \quad s = g, \tau \]

There is no need to control for debt or anything else.

Problem: Small sample bias - the above requires an infinite sample. In that case, I might want to estimate finite sample approximations that allow for VAR structures but that would imply a quite different model with MA-structure in the shocks and debt in the vector of observables.
Does one really need to control for debt?

- But - the authors use narratively identified shocks - they are not trying to identify the shocks - they know them!
- Since the shocks are known the Wold theorem implies that their impact can be estimated from:

\[Y_t = D^s (L) e^s_t, \ s = g, \tau \]
Does one really need to control for debt?

- But - the authors use narratively identified shocks - they are not trying to identify the shocks - they know them!
- Since the shocks are known the Wold theorem implies that their impact can be estimated from:

\[Y_t = D^s (L) e_t^s, \ s = g, \tau \]

- There is no need to control for debt or anything else.
Does one really need to control for debt?

- But - the authors use narratively identified shocks - they are not trying to identify the shocks - they know them!
- Since the shocks are known the Wold theorem implies that their impact can be estimated from:
 \[Y_t = D^s (L) e_t^s, \ s = g, \tau \]
- There is no need to control for debt or anything else
- Problem: Small sample bias - the above requires an infinite sample
Does one really need to control for debt?

- But - the authors use narratively identified shocks - they are not trying to identify the shocks - they know them!
- Since the shocks are known the Wold theorem implies that their impact can be estimated from:
 \[Y_t = D_s^s \left(L \right) e_t^s, \quad s = g, \tau \]
- There is no need to control for debt or anything else
- Problem: Small sample bias - the above requires an infinite sample
- In that case, I might want to estimate finite sample approximations that allow for VAR structures
Does one really need to control for debt?

- But - the authors use narratively identified shocks - they are not trying to identify the shocks - they know them!
- Since the shocks are known the Wold theorem implies that their impact can be estimated from:
 \[Y_t = D^s (L) e^s_t, \ s = g, \tau \]
- There is no need to control for debt or anything else
- Problem: Small sample bias - the above requires an infinite sample
- In that case, I might want to estimate finite sample approximations that allow for VAR structures
- but that would imply a quite different model with MA-structure in the shocks and debt in the vector of observables
Does one really need to control for debt?

- Regardless of the above comment, what is the argument for controlling for debt?
Does one really need to control for debt?

Regardless of the above comment, what is the argument for controlling for debt?
Does one really need to control for debt?

- FGP argue that the right column is “better”
Does one really need to control for debt?

- FGP argue that the right column is “better”
- This implies that “normal” policy actions are sufficient to bring about fiscal solvency
Does one really need to control for debt?

- FGP argue that the right column is “better”
- This implies that “normal” policy actions are sufficient to bring about fiscal solvency
- This might be fine for some of the countries in the sample but perhaps not for others (no names mentioned)
Does one really need to control for debt?

- FGP argue that the right column is “better”
- This implies that “normal” policy actions are sufficient to bring about fiscal solvency
- This might be fine for some of the countries in the sample but perhaps not for others (no names mentioned)
- Controlling for debt and imposing GBC in a linear VAR setting also has other consequences that could be questioned:
Does one really need to control for debt?

- FGP argue that the right column is “better”
- This implies that “normal” policy actions are sufficient to bring about fiscal solvency
- This might be fine for some of the countries in the sample but perhaps not for others (no names mentioned)
- Controlling for debt and imposing GBC in a linear VAR setting also has other consequences that could be questioned:
 - Never any defaults
Does one really need to control for debt?

- FGP argue that the right column is “better”
- This implies that “normal” policy actions are sufficient to bring about fiscal solvency
- This might be fine for some of the countries in the sample but perhaps not for others (no names mentioned)
- Controlling for debt and imposing GBC in a linear VAR setting also has other consequences that could be questioned:
 1. Never any defaults
 2. The level of debt is irrelevant for how movements in debt impact on fiscal instruments
Does one really need to control for debt?

- FGP argue that the right column is “better”
- This implies that “normal” policy actions are sufficient to bring about fiscal solvency
- This might be fine for some of the countries in the sample but perhaps not for others (no names mentioned)
- Controlling for debt and imposing GBC in a linear VAR setting also has other consequences that could be questioned:
 1. Never any defaults
 2. The level of debt is irrelevant for how movements in debt impact on fiscal instruments
- Both could be questioned
The use of narratives is attractive because they contain a lot of information that is difficult to capture with VARs.
Using the IMF narrative

- The use of narratives is attractive because they contain a lot of information that is difficult to capture with VARs.
- But one also needs to be careful:
 - Endogeneity of the narratively identified shocks.
 - Quality of the narrative.
 - Scaling of the shocks and the interpretation of impulse responses.
The use of narratives is attractive because they contain a lot of information that is difficult to capture with VARs.

But one also needs to be careful:

1. Endogeneity of the narratively identified shocks.
The use of narratives is attractive because they contain a lot of information that is difficult to capture with VARs. But one also needs to be careful:

1. Endogeneity of the narratively identified shocks
2. Quality of the narrative
Using the IMF narrative

- The use of narratives is attractive because they contain a lot of information that is difficult to capture with VARs.
- But one also needs to be careful:
 1. Endogeneity of the narratively identified shocks
 2. Quality of the narrative
 3. Scaling of the shocks and the interpretation of impulse responses
Endogeneity

- $\epsilon^g_{i,t}$ and $\epsilon^\tau_{i,t}$: “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”
Endogeneity

- $\varepsilon_{g_{i,t}}$ and $\varepsilon_{\tau_{i,t}}$: “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”

- What is required for estimation?

1. $\varepsilon_{f_{i,t}} \perp \varepsilon_{i,t}$
2. $\varepsilon_{f_{i,t}} \perp \tilde{X}_{i,t-1}$
3. $\varepsilon_{f_{i,t}} \perp Z_{i,t}$
Endogeneity

- $\epsilon_{i,t}^g$ and $\epsilon_{i,t}^\tau$: “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”

- What is required for estimation?

 1. $\epsilon_{i,t}^f \perp \epsilon_{i,t}^{nf}$
 2. $\epsilon_{i,t}^f \perp \tilde{X}_{i,t-1}$
 3. $\epsilon_{i,t}^f \perp Z_{i,t}$

- Violation of 2 can be dealt with - project $\epsilon_{i,t}^f$ on $\tilde{X}_{i,t-1}$ and use the orthogonalized measure
Endogeneity

- $\varepsilon^g_{i,t}$ and $\varepsilon^\tau_{i,t}$: “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”

What is required for estimation?

1. $\varepsilon^f_{i,t}$ ⊥ $\varepsilon^{nf}_{i,t}$
2. $\varepsilon^f_{i,t}$ ⊥ $\tilde{X}_{i,t-1}$
3. $\varepsilon^f_{i,t}$ ⊥ $Z_{i,t}$

Violation of 2 can be dealt with - project $\varepsilon^f_{i,t}$ on $\tilde{X}_{i,t-1}$ and use the orthogonalized measure

Violations of 1 and 3 is not easy to deal with and it seems likely that it could be a problem - there might potentially be endogeneity biases
In case of endogeneity we would expect budget worsening due to some other shock to set off fiscal correction.
In case of endogeneity we would expect budget worsening due to some other shock to set off fiscal correction.
Quality of the narrative

- **Measurement Errors** - how good are the narratives? “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”
Quality of the narrative

- **Measurement Errors** - how good are the narratives? “tax increases and spending cuts implemented to reduce the budget deficit and put public debt on a sustainable path”
Problem 2: **Measurement Errors**

\[\varepsilon_{st} = \varepsilon_{st} + \eta_{st} \]

Where \(\eta_{st} \) is some measurement error.

If this is relevant, there is attenuation bias:

\[e_{X_i,t} = C_{i,1} + C_{i,2} e_{X_i,t-1} + \phi_i Z_i,t + \gamma_g i \varepsilon_{g,t} + \gamma_\tau i \varepsilon_{\tau,t} \]

Mertens and Ravn (2011) and Perotti (2011) show how to deal with such problems and the biases produced by ignoring them. Both of these papers estimate tax multipliers and find significantly bigger estimates when accounting for attenuation biases.
Problem 2: Measurement Errors

what’s the implication?

\[\varepsilon_t^s = e_t^s + \eta_t^s \]
Problem 2: **Measurement Errors**

what’s the implication?

\[
\varepsilon_t^s = e_t^s + \eta_t^s
\]

where \(\eta_t^s \) is some measurement error
Problem 2: **Measurement Errors**

what’s the implication?

\[\varepsilon_t^s = e_t^s + \eta_t^s \]

where \(\eta_t^s \) is some measurement error.

If this is relevant there is attenuation bias:

\[\tilde{X}_{i,t} = C_{i,1} + C_2 \tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma_i^g \varepsilon_{i,t}^g + \gamma_i^\tau \varepsilon_{i,t}^\tau \]

Mertens and Ravn (2011) and Perotti (2011) show how to deal with such problems and the biases produced by ignoring them. Both of these papers estimate tax multipliers and find significantly bigger estimates when accounting for attenuation biases.
Problem 2: **Measurement Errors**

what’s the implication?

\[\varepsilon_t^s = e_t^s + \eta_t^s \]

where \(\eta_t^s \) is some measurement error

If this is relevant there is attenuation bias:

\[\tilde{X}_{i,t} = C_{i,1} + C_2 \tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma_i^g \varepsilon_{i,t}^g + \gamma_i^\tau \varepsilon_{i,t}^\tau \]

Mertens and Ravn (2011) and Perotti (2011) show how to deal with such problems and the biases produced by ignoring them
Problem 2: **Measurement Errors**

what’s the implication?

\[\varepsilon_t^s = e_t^s + \eta_t^s \]

where \(\eta_t^s \) is some measurement error

If this is relevant there is attenuation bias:

\[\tilde{X}_{i,t} = C_{i,1} + C_2 \tilde{X}_{i,t-1} + \varphi_i Z_{i,t-1} + \gamma_i^g e_{i,t}^g + \gamma_i^\tau e_{i,t}^\tau \]

Mertens and Ravn (2011) and Perotti (2011) show how to deal with such problems and the biases produced by ignoring them

Both of these papers estimate tax multipliers and find significantly bigger estimates when accounting for attenuation biases
The estimates of the impact of innovations to taxes and spending cannot be interpreted like multipliers and cannot be compared across countries.

You would like to know, for example, $\xi_y^g = dy dg$, this is not the same as the response of output to a one percent innovation to ε_g because this latter one is computed at unchanged output. How can you do this?

Include spending and tax revenues in the vector of observables and scale so that these change by the appropriate amounts.

Such scaling problems likely to be one cause of heterogeneity.
The estimates of the impact of innovations to taxes and spending cannot be interpreted like multipliers and cannot be compared across countries.

You would like to know, for example,

\[\zeta_{y,g} = \frac{dy}{dg} \]
The estimates of the impact of innovations to taxes and spending cannot be interpreted liked multipliers and cannot be compared across countries.

You would like to know, for example,

\[\zeta_{y,g} = \frac{dy}{dg} \]

this is not the same as the response of output to a one percent innovation to \(\varepsilon^g \) because this latter one is computed at unchanged output.
The estimates of the impact of innovations to taxes and spending cannot be interpreted like multipliers and cannot be compared across countries.

You would like to know, for example,

\[\zeta_{y,g} = \frac{dy}{dg} \]

this is not the same as the response of output to a one percent innovation to \(\varepsilon^g \) because this latter one is computed at unchanged output.

how can you do this?
Scaling

- The estimates of the impact of innovations to taxes and spending cannot be interpreted like multipliers and cannot be compared across countries.

- You would like to know, for example,

\[\zeta_{y,g} = \frac{dy}{dg} \]

- this is not the same as the response of output to a one percent innovation to \(\epsilon^g \) because this latter one is computed at unchanged output.

- how can you do this?

- include spending and tax revenues in the vector of observables and scale so that these change by the appropriate amounts.
The estimates of the impact of innovations to taxes and spending \textbf{cannot} be interpreted like multipliers and cannot be compared across countries.

You would like to know, for example,

$$\zeta_{y,g} = \frac{dy}{dg}$$

this is not the same as the response of output to a one percent innovation to ε^g because this latter one is computed at unchanged output.

How can you do this?

Include spending and tax revenues in the vector of observables and scale so that these change by the appropriate amounts.

Such scaling problems likely to be one cause of heterogeneity.
What do we learn?

- How does a fiscal stabilization affect aggregate activity?
What do we learn?

- How does a fiscal stabilization affect aggregate activity?
- Negative: Wealth effects from cut in government spending
- Negative: Substitution effects from increase in distortionary taxes
- Negative: Income effects on liquidity constrained
- Positive: Expectations and trigger points
- Positive: Impact on cost of borrowing and risk of default

M.O. Ravn (U(C,L))

Heterogeneity and Fiscal Policy

June 2011
What do we learn?

- How does a fiscal stabilization affect aggregate activity?
 1. Negative: Wealth effects from cut in government spending
 2. Negative: Substitution effects from increase in distortionary taxes
What do we learn?

How does a fiscal stabilization affect aggregate activity?

1. Negative: Wealth effects from cut in government spending
2. Negative: Substitution effects from increase in distortionary taxes
3. Negative: Income effects on liquidity constrained
How does a fiscal stabilization affect aggregate activity?

1. Negative: Wealth effects from cut in government spending
2. Negative: Substitution effects from increase in distortionary taxes
3. Negative: Income effects on liquidity constrained
4. Positive: Expectations and trigger points
What do we learn?

- How does a fiscal stabilization affect aggregate activity?

1. Negative: Wealth effects from cut in government spending
2. Negative: Substitution effects from increase in distortionary taxes
3. Negative: Income effects on liquidity constrained
4. Positive: Expectations and trigger points
5. Positive: Impact on cost of borrowing and risk of default
What do we learn?

- What is the impact of a fiscal stabilization?
What do we learn?

- What is the impact of a fiscal stabilization?
Conclusions

- Measuring the impact of fiscal shocks is difficult but very important
Conclusions

- Measuring the impact of fiscal shocks is difficult but very important.
- It is also very important to gain some knowledge into the impact of fiscal stabilizations.
Conclusions

- Measuring the impact of fiscal shocks is difficult but very important.
- It is also very important to gain some knowledge into the impact of fiscal stabilizations.
- This paper makes some progress on these issues.
Conclusions

- Measuring the impact of fiscal shocks is difficult but very important
- It is also very important to gain some knowledge into the impact of fiscal stabilizations
- This paper makes some progress on these issues
- I am looking forward to further progress on the topic