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Abstract

The objective of this article is to study (understand and forecast) spot

metal price levels and changes at monthly, quarterly, and annual horizons.

The data to be used consists of metal-commodity prices in a monthly frequency

from 1957 to 2012 from the International Financial Statistics of the IMF on

individual metal series. We will also employ the (relatively large) list of co-

variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which

are available for download. Regarding short- and long-run comovement, we will

apply the techniques and the tests proposed in the common-feature literature to

build parsimonious VARs, which possibly entail quasi-structural relationships

between di¤erent commodity prices and/or between a given commodity price

and its potential demand determinants. These parsimonious VARs will be later

used as forecasting models to be combined to yield metal-commodity prices

optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of
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models (linear and non-linear, single equation and multivariate) and a variety

of co-variates to forecast the returns and prices of metal commodities. With

the forecasts of a large number of models (N large) and a large number of time

periods (T large), we will apply the techniques put forth by the common-feature

literature on forecast combinations.

1 Introduction

The purpose of this paper is twofold. The �rst is to improve our understanding of

metal-commodity price variation either in the long run or in the short run by using

standard time-series techniques. We rely on the common-trend and common-cycle

approach put forward by Engle and Kozicki (1993), Vahid and Engle (1993, 1997),

Engle and Issler (1995), Issler and Vahid (2001, 2006), Vahid and Issler (2002), Hecq

et al. (2006), and Athanasopoulos et al. (2011). Here, non-stationary economic series

are decomposed into an integrated trend component and a stationary and ergodic

cyclical component, where their properties can be jointly investigated in a uni�ed

multivariate setting based on vector autoregressive (VAR) models. Trends and cy-

cles can be common to a group of series being modelled, and these common features

can be removed by independent linear combination1. Our second objective is to im-

prove on current forecasts of metal-commodity prices taking into account the recent

�nancialization of commodity markets and the role of information in commodity

markets; see Hong and Yogo (2009, 2012) and Gargano and Timmermann (2012).

Instead of relying on a speci�c model to forecast metal-commodity prices, we diver-

sify out the risk of large forecast errors (and increase the information set used in

forecasting) by combining forecasts of di¤erent models. This approach, �rst put for-

ward by Bates and Granger (1969), has been shown to reduce forecast uncertainty

of individual models in a variety of studies; see Hendry and Clements (2004) and

Stock and Watson (2006). Recently, Issler and Lima (2009) have developed an op-

timal forecast-combination panel data approach, where forecasts of di¤erent models

or survey results comprise the cross-sectional dimension. In their context, the op-

1Perhaps cointegration is the best-known example of common features.
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timal forecast using a mean-squared error (MSE) risk function can be consistently

estimated employing the bias-corrected average forecast (BCAF), which is a common

feature of all forecast models and survey results.

From a theoretical point-of-view, commodity-price dynamics have been studied

at least since Deaton and Laroque (1992, 1996) and Chambers and Bailey (1996). In

the former, a strong �rst-order autocorrelation, consistent with a unit-root in prices,

is generated by the intertemporal no-arbitrage condition for risk-neutral agents hold-

ing a speculative inventory of a given commodity. Moreover, actions of speculators

generate (and modify) the serial dependence in prices even when there is no depen-

dence in the original demand shocks, leading to demand-driven cyclical variations

about trend prices. As Deaton and Laroque put it, �it is likely that demand shocks

are a more plausible source of price �uctuations than has usually been supposed in

the literature.�

Early modern empirical work on commodity prices focused on the behavior of

trend prices �Cuddington and Urzúa (1989) and Cuddington (1992) �where trends

are modelled as martingale processes. Moreover, as (Deaton, 1999, p. 27) puts it,

referring to the drift term in commodity prices: �what commodity prices lack in

trend, they make up for in variance.�Cashin et al. (2002) summarize the �stylized

facts about real commodity prices: they are often dominated by long periods of

doldrums punctuated by sharp upward spikes (Deaton and Laroque (1992)); they

have a tendency to trend down in the long run (Grilli and Yang (1988)); shocks to

commodity prices tend to persist for several years at a time (Cashin et al. (2000));

and unrelated commodity prices move together (Pindyck and Rotemberg (1990)).�

Regarding the cyclical behavior of commodity prices, Jerrett and Cuddington (2008)

note that �a number of authors have analyzed the movement of metal prices over

the business cycle as well as comovements among commodity prices (see Labys et al.

(1999); Cashin et al. (1999); and Pindyck and Rotemberg (1990)).�

Given these stylized facts, we investigate long-run comovement of metal-commodity

prices by using cointegration analysis in two di¤erent ways: whether a group of

metal-commodity prices have a similar long-run behavior (cointegrate) or if metal-

commodity prices cointegrate with global industrial activity or a regional version of
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that. The latter is motivated by the fact that economic theory views metal commodi-

ties as inputs in industrial production processes. Hence, there is a derived demand

for metal commodities stemming from industrial production. Since there is a recent

migration of industrial activity from developed countries to emerging economies,

especially China and India, successful modeling of metal-commodity prices should

include data from emerging markets.

Recently, there has been a renewed interest on commodity-price cycles, see Jer-

rett and Cuddington (2008) and IMF (2012), and our paper complements this recent

e¤ort. In our view, the study of short-run behavior of metal-commodity prices entails

understanding their growth cycles using deviations from existing long-run relation-

ships as predictors for future cyclical variation, i.e., a vector error-correction model

(VECM).

Exploiting the error-correction structure has been the norm in several papers

in the �nancial econometrics literature; see Lettau and Ludvigson (2001, 2004) and

Welch and Goyal (2008). Indeed, the recent ��nancialization�of commodity markets

� commodities being considered by �nancial investors as a distinct asset class2 �

supports the incorporation of �nancial econometric techniques into commodity-price

analysis. Despite that, so far, the �nancial econometric literature has neglected the

possibility of short-run restrictions of the form of synchronization of cycles, which

come about naturally since the short-run determinants of (some) commodity prices

are identical. Here, we advance with respect to previous literature: not only these two

types of comovement can be jointly modelled, but the long- and short-run restrictions

could also be jointly (or separately) imposed. There are also tests to determine if

these restrictions are supported by the data.

One of the advantages of the common-trend and common cycle method is parsi-

mony. As is well known, VARs have been increasingly used in multivariate analysis

2Commodities have gained recent notoriety among �nancial investors. According to the In-
vestment Company Institute, total net assets of commodity exchange trade funds grew 10; 000%
between 2004 and 2010 achieving more than $100 billion. From a �nancial perspective, precious
metals have been used for hedging against exposure to crises and to in�ation risk. Furthermore,
commodity prices are connected to economic cycles. For example, crude oil price increases have
been related to economic recessions, see Hamilton (2011).
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of economic data. However, one of the shortcomings of these models is the excessive

number of parameters. For example, a V AR (p) for n series has n2 � p parameters
in the conditional mean. One can easily see the burden on degrees of freedom if

the number of series being modelled is large. Cointegration certainly reduces the

number of parameters, but these reductions are mild. On the other hand, short-run

restrictions �or common cycles �have a much greater potential to reduce the num-

ber of parameters in the dynamic representation. For example, when dealing with

post-war quarterly data, and a VAR with three variables and eight lags, there are

seventy �ve mean parameters to be estimated from about two hundred data points

on each variable. If the three-variable system has one known cointegrating vector,

the number of free parameters falls from seventy �ve to sixty nine when estimating

a VECM. Common-cyclical features show more potential in reducing the number of

conditional-mean parameters. If the three variables in the VECM share one common

cycle, then the number of mean parameters falls from sixty nine to twenty seven.

There are two advantages of having synchronized cycles is a multivariate data set

when the common-trend common cycle method is employed. The �rst is the existence

of contemporaneous relationships between the stationary series in the system (level

for stationary series and �rst di¤erences for integrated series). They appear because

the (observed) cyclical determinants of the series involved are the same, implying

the existence of linear combinations of the data that are orthogonal to these cyclical

determinants, thus being white noise. These linear combinations can be thought

as quasi-structural contemporaneous relationships, since, from a regression point of

view, they involve nothing else but contemporaneous series3. As discussed above,

the second advantage is parsimony, which implies more e¢ cient parameter estimates

and more precise out-of-sample forecasting models. The latter has been shown to be

relevant from an empirical point of view; see Issler and Vahid (2001, 2006), Vahid

and Issler (2002), and Athanasopoulos et al. (2011).

This brings us to the second objective of this paper, which is to improve on

3This is the case labelled strong-form serial-correlation common features. A less stringent re-
strictions allows a few lags to be in the linear combination as well, thus being labelled weak-form
serial-correlation common features. Both are discussed in Section 2 and in the Appendix.

5



current forecasts of metal-commodity prices, taking into account the �nancialization

of commodity markets and the role of information in commodity markets. Given

the importance of the commodities market in world economy, and its importance for

decision making among investors, it is not surprising that there are many studies

relating the commodity prices with di¤erent state variables. Recently, Hong and

Yogo (2009) �nds evidence of limited in-sample predictability of commodity spot

price and futures returns and Gargano and Timmermann (2012) �nds no or little

prediction power on a monthly horizon using the default return spread, growth in

money supply, and the T-bill rate. They also �nd that the explanatory power of

di¤erent state variables used in predicting commodity prices varies over time, with

money supply showing some predictability after the great crisis, probably due to

Quantitative Easing in its di¤erent versions. Despite these recent disappointing

results, we believe that we can improve on current forecasts by using the optimal

forecast-combination method of Issler and Lima (2009).

As is well known, Bates and Granger (1969) made the econometrics profession

aware of the bene�ts of forecast combination when a limited number of forecasts

is considered. The widespread use of di¤erent combination techniques has lead to

an interesting puzzle from the econometrics point of view �the forecast combina-

tion puzzle: if we consider a �xed number of forecasts (N <1), combining them
using equal weights (1=N) fare better than using �optimal weights�constructed to

outperform any other forecast combination in the mean-squared error (MSE) sense.

Regardless of how one combine forecasts, if the series being forecast is stationary and

ergodic, and there is enough diversi�cation among forecasts, we should expect that a

weak law-of-large-numbers (WLLN) applies to well-behaved forecast combinations.

This argument was considered in Palm and Zellner (1992) who asked the question

�to pool or not to pool�forecasts? Timmermann (2006) used risk diversi�cation �

a principle so keen to �nance �to defend pooling of forecasts. Of course, to obtain

this WLLN result, at least the number of forecasts has to diverge (N !1), which
entails the use of asymptotic panel-data techniques. This is exactly the approach

in Issler and Lima, with the added twist that now N; T ! 1, with T ! 1 prior

than N : the sequential asymptotic approach developed by Phillips and Moon (1999),
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denoted by (T;N !1)seq.
The reason why forecast combination works well is because it takes advantage of

the principle of risk diversi�cation: idiosyncratic forecast errors vanish because of the

WLLN works as the number of forecasts being combined increases without bounds.

However, the forecast combination puzzle also works against forecast combinations

because of the curse of dimensionality: as N increases, if one has to estimate �op-

timal weights�to combine forecasts with a �xed number of observations, then, the

estimates of these weights become increasingly volatile and are inconsistent.

Issler and Lima solve the curse of dimensionality by imposing equal weights that

need not be estimated (1=N), and perform bias correction to take MSE down to its

minimum, identifying, in the limit, the conditional expectation of the series being

forecast: if yt is the series being forecast, and h is the horizon, then, what is being

identi�ed is the latent variable Et�h(yt), where Et�h(�) is the conditional expectation
operator using all information available (observable or not) up to period t�h. Here,
we are able to expand the information content of every individual model.

We now outline the contents of this paper. As stated above, its objective is

to study (understand and forecast) spot metal price (log) levels and its changes at

monthly, quarterly, and annual horizons. The data to be used consists of metal-

commodity prices in a monthly frequency from 1957 to 2012 from the London Metal

Exchange (LME) on individual metal series and inventories. We will also employ

the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong

and Yogo (2012), which are available for download. Regarding short- and long-run

comovement, we will apply the techniques and the tests proposed in the common

feature literature to build parsimonious VARs, which possibly entail quasi-structural

relationships between di¤erent commodity prices and/or between a given commodity

price and its potential demand determinants; see the theoretical details in Section

2. These parsimonious VARs will be later used as forecasting models to be com-

bined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample

forecasts, we will use a variety of models (linear and non-linear, single equation and

multivariate) and a variety of co-variates to forecast the returns and prices of metal

commodities. With the forecasts of a large number of models (N large) and a large
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number of time periods (T large), we will apply the techniques discussed in Section

3, with results reported in detail in Section 4. Section 5 concludes. The Appen-

dix contains additional material regarding short- and long-run comovement and the

optimal forecast-combination technique.

2 Cointegration and Common Cycles for Metal

Prices

The Appendix contains a brief summary of the techniques used here. For an in-

depth theoretical discussion of these issues see Engle and Granger (1987), Vahid and

Engle (1993), Vahid and Engle (1997), Hecq et al. (2006), and Athanasopoulos et al.

(2011).

Assume that yt is a n-vector of I(1) metal prices (or log metal prices), which can

be represented by a vector autoregression (VAR) model in levels:

yt = �1yt�1 + : : :+ �pyt�p + �t: (1)

If elements of yt cointegrate, Engle and Granger (1987) showed that the system

(1) can be written as a Vector Error-Correction model (VECM):

� yt = �
�
1� yt�1 + : : : + ��p�1� yt�p+1 + �

0 yt�1 + �t (2)

where  and � are full rank matrices of order n� r, r is the rank of the cointegrating
space, �

�
I �

pP
i=1

�i

�
= �0, and ��j = �

pP
i=j+1

�i , j = 1; : : : ; p� 1.

For our purposes, testing for cointegration will be used to verify whether metal-

price data share common trends (or have long-run comovement). As is well known,

metals are an important input in industrial processes, and thus it is expected that

most metals would have their long-run prices linked to global industrial factors.

Testing for common trends among yt will use the maximum-likelihood approach in

Johansen (1991). A key issue to assure that inference is done properly in this case is
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to estimate the lag length of the VAR (1) consistently, i.e., to estimate p consistently.

Athanasopoulos et al. discuss how this can be achieved by using a combination of

information criteria. An alternative to way to infer p is to perform diagnostic testing

to rule out the risk of underestimation of p, which leads to inconsistent estimates for

the parameters in (2).

Vahid and Engle (1993) show that the dynamic representation of yt (2) may be

restricted if there exist white noise independent linear combinations of the series

� yt, i.e., if the � yt share common cycles. These white noise linear combinations

of the series � yt can be expressed using cofeature vectors ~�
0
i, stacked in an s � n

matrix ~�0, which eliminate all serial correlation in � yt. Thus, ~�0� yt = ~�0�t. This

is what Hecq, Palm and Urbain (2006) have labelled strong-form serial-correlation

common features:

~�0��1 = ~�0��2 = : : : = ~�
0��p�1 = 0, and (3)

~�0 = 0: (4)

If we only impose restrictions (3), but not (4), we obtain what they have labelled

weak-form serial-correlation common features: ~�0 [� yt � �0 yt�1] = ~�0�t, i.e., we

only inherit an unpredictable linear combination of � yt once we control for the

long-run deviations �0 yt�1 stemming from cointegration.

We continue the discussion of common cycles in the case of strong-form serial-

correlation common features ((3) and (4)), given that the weak-form case can be

immediately inferred from it4. Since cofeature vectors are identi�ed only up to an

invertible transformation, without loss of generality, we can consider ~� to be of the

form:

~� =

"
Is

~��(n�s)�s

#
Completing the system by adding the unconstrained VECM equations for the re-

4The Appendix contains a more complete discussion.
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maining n� s elements of � yt; we obtain a quasi-structural model,

24 Is ~��0

0
(n�s)�s

In�s

35� yt =
24 0

s�(np+r)

���1 : : : ���p�1 
�

35
266664

� yt�1
...

� yt�p+1

�0yt�1

377775+ vt: (5)

Since

24 Is ~��0

0
(n�s)�s

In�s

35 is invertible, we can recover (2) from (5). However, that

the latter has s � (np+ r)� s � (n� s) fewer parameters, thus, being over-identi�ed.
One way to test for the existence of s serial-correlation common features (SCCF)

is to use of canonical-correlation analysis; see Engle and Kozicki (1993) and the

detailed discussion in Issler and Vahid (2001). The null is that the �rst smallest

s canonical correlations are jointly zero and the test statistic is �T
sP
i=1

log (1� �i),

where �i, i = 1; � � � ; n, are the sample squared canonical correlations between f� ytg
and f�0yt�1;� yt�1;� yt�2; � � � ;� yt�p+1g. The limiting distribution of this test sta-
tistic is �2 with s (np+ r)� s (n� s) degrees of freedom.
One possible drawback of the canonical-correlation approach is that it assumes ho-

moskedastic data, and that may not hold for metal-price (and other macroeconomic

and �nancial data) collected at high frequency. In this case, a GMM approach is more

robust, since inference can be conducted with Heteroskedastic and Auto-Correlation

(HAC) robust estimates of the variance-covariance matrices of parameter estimates.

The vector of instruments comprise the series in �0yt�1; � yt�1; � yt�2; � � � ; � yt�p+1,
collected in a vector Zt�1. GMM estimation exploits the following moment restric-
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tion:

0 = E [vt 
 Zt�1] = (6)

= E

266664
0BBBB@
24 Is ~��0

0
(n�s)�s

In�s

35� yt �
24 0

s�(np+r)

���1 : : : ���p�1 
�

35
266664

� yt�1
...

� yt�p+1

�0yt�1

377775
1CCCCA
 Zt�1

377775 ;

i.e., the orthogonality between all the elements in vt and all the elements in Zt�1. The

test for common cycles is an over-identifying restriction test �the J test proposed

in Hansen (1982) �which has an asymptotic �2 distribution with degrees of freedom

equal to the number of over-identifying restrictions. The over-identifying restrictions

test checks whether the errors of the system are orthogonal to all the instruments in

Zt�1.

3 A Theoretical Approach for Forecast Combina-

tion

The techniques discussed in this section are appropriate for forecasting a weakly

stationary and ergodic univariate process fytg using a large number of forecasts that
will be combined to yield an optimal forecast in the mean-squared error (MSE) sense.

These forecasts are the result of several econometric models that need to be estimated

prior to forecasting. We label forecasts of yt, computed using conditioning sets lagged

h periods, by fhi;t, i = 1; 2; : : : ; N . Therefore, fhi;t are h-step-ahead forecasts and N

is the number of models estimated to forecast fhi;t.

Issler and Lima consider 3 consecutive distinct time sub-periods. The �rst sub-

period E is labeled the �estimation sample�, where models are usually �tted to

forecast yt subsequently. The number of observations in it is E = T1 = �1 � T ,
comprising (t = 1; 2; : : : ; T1). The sub-period R (for regression) is labeled the post-

model-estimation or �training sample�, where realizations of yt are usually confronted
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with forecasts produced in the estimation sample, and weights and bias-correction

terms are estimated. It has R = T2 � T1 = �2 � T observations in it, comprising

(t = T1 + 1; : : : ; T2). The �nal sub-period is P (for prediction), where genuine out-

of-sample forecast is entertained. It has P = T � T2 = �3 � T observations in it,

comprising (t = T2 + 1; : : : ; T ).

Forecasts fhi;t�s are approximations to the optimal forecast (Et�h(yt)) as follows:

fhi;t = Et�h(yt) + khi + "hi;t; (7)

where khi is the individual model time-invariant bias for h-step-ahead prediction and

"hi;t is the individual model error term in approximating Et�h(yt), where E("hi;t) = 0
for all i, t, and h. Here, the optimal forecast is a common feature of all individual

forecasts and khi and "
h
i;t arise because of forecast misspeci�cation.

We can always decompose the series yt into Et�h(yt) and an unforecastable com-
ponent �ht , such that Et�h(�

h
t ) = 0 in:

yt = Et�h(yt) + �ht : (8)

Combining (7) and (8) yields, the well known two-way decomposition, or error-

component decomposition, of the forecast error fhi;t � yt:

fhi;t = yt + �
h
i;t; i = 1; 2; :::; N , and T > T1; (9)

�hi;t = khi + �
h
t + "

h
i;t, where � �ht = �ht

From the perspective of combining forecasts, the components khi , "
h
i;t and �

h
t play

very di¤erent roles. If we regard the problem of forecast combination as one aimed at

diversifying risk, i.e., a �nance approach, then, on the one hand, the risk associated

with "hi;t can be diversi�ed, while that associated with �
h
t cannot. On the other

hand, in principle, diversifying the risk associated with khi can only be achieved if a

bias-correction term is introduced in the forecast combination, which reinforces its

usefulness.

Issler and Lima propose the following non-parameteric consistent estimates for the
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components khi , B
h, �ht , and "

h
i;t: bkhi = 1

R

PT2
t=T1+2

fhi;t� 1
R

PT2
t=T1+2

yt, cBh = 1
N

PN
i=1
bkhi ,b�ht = 1

N

PN
i=1 f

h
i;t�cBh� yt, b"hi;t = fhi;t� yt� bkhi � b�ht. They show that, under the set

of conditions listed in this Appendix, the the feasible bias-corrected average forecast

(BCAF) 1
N

PN
i=1 f

h
i;t � cBh obeys:
plim

(T;N!1)seq

 
1

N

NX
i=1

fhi;t � cBh
!
= yt + �

h
t = Et�h(yt);

where plim(T;N!1)seq is the probability limit using the sequential asymptotic frame-

work of Phillips and Moon (1999). Thus, the feasible BCAF is an optimal forecasting

device.

They also show that there is an in�nite number of optimal forecast combina-

tions using deterministic weights f!igNi=1,such that !i 6= 0, !i = O(N�1) uniformly,

with
PN

i=1 !i = 1 and limN!1
PN

i=1 !i = 1. This allows the discussion of the

well-known forecast combination puzzle: if we consider a �xed number of forecasts

(N <1), combining them using equal weights (1=N) fare better than using �op-

timal weights� constructed to outperform any other forecast combination in the

mean-squared error (MSE) sense. Optimal population weights, constructed from the

variance-covariance structure of models with stationary data, are optimal. Thus,

the forecast-combination puzzle must be a consequence of the lack of consistency in

estimating them, and can arise when N , the number of models being combined, is

high relative to the number of observations used in estimating them by OLS �R.

Finally, there is one interesting case in which we can dispense with estimation in

combining forecasts: when the mean bias is zero, i.e., Bh = 0, there is no need to

estimate Bh and the BCAF is simply equal to 1
N

PN
i=1 f

h
i;t, the sample average of all

forecasts. This is the ultimate level of parsimony. To be able to test the null that

Bh = 0, Issler and Lima developed a robust t-ratio test that takes into account the

cross-sectional dependence in khi .
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3.1 Forecast Combination for Nested Models

The potential problem of nested models is that the innovations from nested models

can exhibit high cross-sectional dependence, preventing a weak law-of-large numbers

(WLLN) to hold. We introduce nested models by considering a continuous set of

models splitting the total number of models N into M classes (or blocks), each of

them containing m nested models, so that N = mM . In the index of forecasts,

i = 1; : : : ; N , we group nested models contiguously. Hence, models within each class

(block) are nested but models across classes (blocks) are non-nested.

The number of classes and the number of models within each class to be functions

of N , respectively as follows: M = N1�d and m = Nd, where 0 � d � 1. Notice

that this setup considers all the relevant cases: (i) d = 0 corresponds to the case in

which all models are non-nested; d = 1 corresponds to the case in which all models

are nested and; (iii) the intermediate case 0 < d < 1 gives rise to N1�d blocks of

nested models, all with size Nd.

Regarding the interaction across blocks of nested models, it is natural to impose

that the correlation structure of innovations across classes is such that it does not

prevent a weak law-of-large numbers (WLLN) to hold, although we expect it not

to hold within every block of nested models. Keeping some nested models poses no

problem, since the mixture of models will still deliver the optimal forecast. From a

practical point of view, the choice of 0 � d < 1 seems to be superior and is su¢ cient
to guarantee optimality of forecasts combinations as before.

4 Empirical analysis

4.1 Data

In our empirical analysis, we employed data of di¤erent frequencies and di¤erent

sources building a very comprehensive dataset of metal prices and potential co-

variates that can be used in quasi-structural models and also for forecasting. We

have now a library of data on three di¤erent frequencies: monthly, quarterly and

annual.
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On a monthly basis, the metal-price data consists of commodity prices for a va-

riety of metals (or derived products) �Aluminium, Copper, Lead, Nickel, Tin and

Zinc �provided by the International Financial Statistics (IFS) of the IMF. Metal-

price data in this frequency is available from 1957 to 2012. Nominal price data were

de�ated using the consumer price index (CPI) for the U.S., which was extracted

from the FRED database of the St. Louis FED. We have also a measure of indus-

trial production in a monthly basis, constructed by J.P. Morgan, which is used in

building quasi-structural models. It includes Chinese and India�s industrial produc-

tion. Because of that, this series is available only from 1992:01 through 2012:09.

In forecasting, we used co-variates which are potentially correlated to the prices of

these metals or derived products. These are mostly composed by �nancial indices

downloaded from the library kept by Welch and Goyal (2008) and by Hong and Yogo

(2012), available from 1965 to 2008. This list includes: global, U.S., and Chinese in-

dustrial production, the primary metals coincident and leading indices, provided by

the United States Geological Service (USGS), and a few �nancial-sector co-variates,

such as: VIX � a volatility index, the U.S. real e¤ective exchange rate and the

S&P500 index.

On a quarterly basis, the price data are for the same metals (or derived products)

listed for monthly frequency, available from the IFS. Nominal price data were de�ated

using the CPI for the U.S. We also employed the (relatively large) list of co-variates

used in Welch and Goyal (2008) and in Hong and Yogo (2012).

On an annual basis, metal-price data were provided by the United States Geo-

logical Service (USGS), from 1900 through 2010. Annual prices were de�ated by the

U.S. CPI �a series put together by the St. Louis and Minneapolis Federal Reserve

Economic Database. Actual annual CPI data covers the period 1913-2010, whereas

the period 1900-13 uses FED estimates. We also employed the list of annual co-

variates used in Welch and Goyal (2008) and in Hong and Yogo (2012) and a list

of �nancial indices and real economic variables, such as Angus Maddison�s historical

GDP, and Shiller�s U.S. per capita real consumption.

Due to time constraints, our analysis of common-cyclical features will focus on

the GMM tests proposed in Section 2, which is an appropriate testing strategy under
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unknown heterogeneity and dependence of the moment restrictions in question, which

ultimately depend on these same features regarding the data being used. The same

is not true for the canonical-correlation analysis, therefore, we will not present it

here in this version of the paper. Also due to time constraints, we only investigated

here common-cyclical features between metal prices and industrial production on a

monthly frequency, leaving for future research looking into this issue on a quarterly

and annual basis.

Cointegration analysis investigates the existence of long-run relationships among

economic data. As is well known, this requires the use of long-span data. Higher

frequency at the expense of span is not a substitute for it. Thus, we should put more

emphasis on cointegration tests using annual data, given it has the longest span �

110 years.

Regarding the forecasting exercise, the focus will be on monthly and annual fre-

quencies alone, the former being appropriate to short-term forecasting and the latter

to long-term forecasting. Time constraints also put a burden on our exercise, since

we have experienced convergence problems for some of our algorithms computing

average forecasts. For that reason, the number of forecasts on these averages had to

reduced.

4.2 Cointegration and Common Cycles for Metal Prices

4.2.1 Monthly Frequency

Data for (log) prices of metals (or derived products) �Aluminium, Copper, Lead,

Nickel, Tin and Zinc �are available from 1957:01 through 2012:03, whereas data for

(log) Global Industrial Production (seasonally adjusted) is available from 1992:01

through 2012:09. All these series show signs of containing a unit root, which is

con�rmed for all of them using Phillips and Perron (1989) test5. We �rst investigate

whether prices for metal commodities cointegrate and share common cycles with

5A slight caveat involves (log) aluminium prices, which rejects the null of a unit root at 5%
signi�cance when a constant is included, but rejects when a constant and trend are included. It
also rejects Kwiatkowski et al. (1992) stationarity test. Thus, we chose to model it as a I (1)
process.
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global industrial production. The analysis is pairwise, one commodity price at a

time. Results are presented in Table 1.

Regarding cointegration, with the exception of aluminium, we �nd no evidence

of a long-run relationship between metal prices and industrial production for the

last 20 years. On the other hand, results for common cycles are very di¤erent using

the GMM approach of Section 2 (robust to heteroskedasticity and serial correlation

of unknown form). At 5% signi�cance, we found evidence of strong-form common-

cyclical features between industrial production and the following metals: copper,

nickel, tin, and zinc. In addition to that, we also found evidence of strong-form

common-cyclical features between industrial production and aluminium.

To motivate the �ndings of common-cyclical features in Table 1, we focus on the

well-known association between copper prices and economic activity, which has been

a conventional wisdom for �nancial analysts for a long time. Denote by P coppert the

current price of copper, and by Yt current industrial production. Using the Ljung-

Box test at 10% signi�cance, our empirical results found that the following linear

combination is unpredictable:

� ln (P coppert )� 7:52
(1:50)

�� ln (Yt) + 0:015
(0:006)

; (10)

with robust standard errors of parameter estimates in parenthesis. Notice that both

� ln (P coppert ) and � ln (Yt) show strong signs of serial correlation using this same

tool. Thus,

Et (� ln (Yt)) = Et
�
� ln (P coppert )

7:52

�
+ 0:002:

Therefore, it is possible to forecast global industrial production growth using

the growth rate of copper prices, which is a very useful result since copper prices are

traded daily but global industrial production is only available with some lag vis-a-vis

current time6.

Next, we analyze the pairwise behavior of metal commodity prices alone. Results

are also presented in Table 1. They showed no signs of pairwise common cycles for

6The linear combination in (10) has an estimated standard deviation of 0:071.
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Table 1: Common-Feature Tests (Monthly)

Strong-form SCCF Weak-form SCCF

�y1;t �y2;t ~�� J-statistic Cointegration ~�� J-statistic

Aluminum Lead 0.193� 0.0118 - - -
(0.106) [0.05]

Copper Aluminum 1.15��� 0.0353 - - -
(0.029) [0.000]

Aluminum Industrial Production 5.316��� 0.0427 (1,-0.201) 3.784��� 0.0275
(0.969) [0.036] (0.949) [0.085]

Aluminum Tin 0.168 0.0130 - - -
(0.146) [0.035]

Nickel Aluminum 0.735��� 0.1407 - - -
(0.186) [0.000]

Zinc Aluminum 0.283 0.0344 (1,-0.463) 0.295 0.0344
(0.188) [0.012] (0.19) [0.007]

Lead Copper 0.241�� 0.0275 (1,-0.99) 0.274��� 0.0262
(0.097) [0.001] (0.096) [0.001]

Lead Industrial Production 4.052� 0.0331 - -
(2.101) [0.047]

Tin Lead 0.38��� 0.0320 (1,-1.625) 0.411��� 0.0303
(0.094) [0.000] (0.097) [0.000]

Nickel Lead 0.23 0.0265 (1,-0.673) 0.32 0.0257
(0.189) [0.000] (0.194) [0.000]

Zinc Lead 0.383��� 0.0255 (1,-0.488) 0.467��� 0.0256
(0.146)��� [0.000] (0.156) [0.000]

Copper Industrial Production 7.523��� 0.0310 - - -
(1.504) [0.189]

Copper Tin 0.841��� 0.0403 - - -
(0.238) [0.000]

Copper Nickel 0.319�� 0.0358 (1,-1.67) 0.365��� 0.0355
(0.128) [0.000] (0.133) [0.000]

Zinc Copper 0.442��� 0.0479 (1,-0.281) 0.418��� 0.0431
(0.094) [0.000] (0.093) [0.000]

Tin Industrial Production 5.23��� 0.0096 - - -
(1.603) [0.512]

Tin Nickel 0.122� 0.0361 (1,-5.198) 0.165�� 0.0379
(0.07) [0.001] (0.077) [0.000]

Tin Zinc 0.284��� 0.0377 (1,-4.035) 0.0362
(0.095) [0.006] [0.005]

Nickel Industrial Production 6.034��� 0.0292 - - -
(1.728) [0.219]

Zinc Nickel 0.287��� 0.0233 (1,-0.922) 0.278��� 0.0238
(0.092) [0.000] (0.086) [0.000]

Zinc Industrial Production 5.827��� 0.0337 - - -
(1.601) [0.329]

Notes: GMM estimation using equation (6) for Strong-form SCCF and the analogue equation for

Weak-form SCCF at the appendix.

Standard errors are in parentheses and p-values are in brackets.
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the growth rates of metal-commodity prices.

4.2.2 Quarterly Frequency

On a quarterly frequency, data for (log) prices of metals (or derived products) �Alu-

minium, Copper, Lead, Nickel, Tin and Zinc �are available from 1957:01 through

2012:01. Table 2 presents results of pairwise cointegration between metal prices,

reporting overwhelming evidence of cointegration between prices of di¤erent metal

commodities. In this case, reduced-form models are vector error-correction models

(VECMs) and quasi-structural models entail, in the �rst equation, a linear combina-

tion of two metal price growth rates. The second equation of the structural system

is just a reduced-form counterpart.

We found evidence of serial-correlation common features among commodity-price

growth when testing employed the GMM setup described in Section 2. For all possible

15 pairwise cases, we found strong-form SCCF for 6 of them �Aluminium-Copper,

Aluminium-Lead, Aluminium-Nickel, Copper-Nickel, Lead-Zinc, and Nickel-Tin. It

seems that Aluminium and Nickel are well synchronized with other metal commodi-

ties. Similar results are also obtained for weak-form SCCF.

4.2.3 Annual Frequency

On an annual basis, metal-price data were provided by the United States Geological

Service (USGS), from 1900 through 2010, de�ated by the U.S. CPI. Table 4 presents

results of pairwise cointegration between metal prices, reporting overwhelming ev-

idence of cointegration between prices of di¤erent metal commodities. Given the

longer span of this annual database vis-a-vis the monthly and quarterly databases

�more than twice as long �cointegrating evidence here should receive more weight

vis-a-vis previous evidence.

Table 3 presents the results of common-feature tests for annual data. From all

possible 15 cases, we found cointegration among 10 pairs of metal-commodity prices.

One interesting issue is the long-run behavior of real metal-commodity prices: while

three of them displayed an obvious increase in prices (Copper, Nickel, and Zinc)
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Table 2: Common-Feature Tests (Quarterly)

Strong-form SCCF Weak-form SCCF

�y1;t �y2;t ~�� J-statistic Cointegration ~�� J-statistic

Aluminum Lead 0.241�� 0.0604 (1,-0.278) 0.144 0.0543
(0.114) [0.225] (0.123) [0.232]

Copper Aluminum 0.433��� 0.0647 (1,-0.134) 0.355��� 0.0658
(0.128) [0.177] (0.136) [0.117]

Aluminum Tin 0.377 0.0473 (1,-0.203) 0.429� 0.0430
(0.241) [0.004] (0.244) [0.002]

Aluminum Nickel 0.391��� 0.0326 (1,9.784) 0.366��� 0.0319
(0.091) [0.314] (0.108) [0.227]

Zinc Aluminum 0.67�� 0.0356 (1,-0.836) 0.467 0.0313
(0.275) [0.02] (0.317) [0.009]

Lead Copper 0.562��� 0.0447 (1,-1.013) 0.7��� 0.0364
(0.169) [0.007] (0.214) [0.005]

Lead Tin 0.701��� 0.0583 (1,-0.548) 0.904��� 0.0456
(0.137) [0.049] (0.16) [0.079]

Nickel Lead -0.126 0.0594 (1,-0.677) 0.078 0.0542
(0.176) [0.045] (0.186) [0.038]

Zinc Lead 0.477��� 0.0528 (1,-2.593) 0.497��� 0.0573
(0.136) [0.076] (0.141) [0.029]

Copper Tin 0.782��� 0.0520 - - -
(0.199) [0.01]

Copper Nickel 0.681��� 0.0525 (1,-0.412) 0.618��� 0.0408
(0.247) [0.077] (0.237) [0.115]

Zinc Copper 0.904��� 0.0517 (1,-0.269) 0.732��� 0.0435
(0.142) [0.024] (0.161) [0.023]

Tin Nickel 0.604��� 0.0573 (1,-0.192) 0.962��� 0.0451
(0.189) [0.053] (0.246) [0.081]

Zinc Tin 0.479�� 0.0505 (1,-0.249) 0.714�� 0.0459
(0.232) [0.004] (0.292) [0.002]

Zinc Nickel 0.604��� 0.0303 (1,-0.517) 0.552��� 0.0234
(0.18) [0.036] (0.186) [0.024]

Notes: GMM estimation using equation (6) for Strong-form SCCF and the analogue equation for

Weak-form SCCF at the appendix.

Standard errors are in parentheses and p-values are in brackets.
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in 110 years �more than double from 1900 to 2010 �the other three displayed an

obvious decrease over time (Aluminium, Lead, and Tin) of about 70%-90%.

We also found overwhelming evidence of SCCF among commodity-price growth

when testing employed the GMM setup described in Section 2. For all possible 15

pairwise cases, we found strong-form SCCF for 14 of them, the only exception being

the pair Tin-Zinc. Similar results are also obtained for weak-form SCCF. One point

to note is that annual data for metal-prices showed much more synchronization than

did quarterly and monthly data. This is a sign that some high-frequency �uctuations

that are not synchronized tend to disappear with time aggregation.

Finally, we illustrate our empirical results for the case of Aluminium and Lead at

annual frequency. Let � yt =
�
� ln

�
PAlt
�
;� ln

�
PLeadt

��0
be a 2�1 vector containing

the instantaneous growth rates of the prices of Aluminium and Lead, respectively.

Then, our estimated quasi-structural model took the form7:

24 1 �0:62
(0:12)

0 1

35� yt =
24 0 0 0 0 0

0:30
(0:12)

�0:23
(0:17)

0:10
(0:10)

0:07
(0:14)

�0:09
(0:01)

35
264 � yt�1� yt�2

�0yt�1

375 ;
where the �rst equation is the white-noise linear combination of � ln

�
PAlt
�
and

� ln
�
PLeadt

�
. Notice the reduced-rank structure of the matrix of estimated para-

meters. It yields a parsimonious representation for � yt: instead of estimating 12

parameters in the VECM, we only estimated 7 in the quasi-structural form. As theory

and experience has taught us, the latter forecasts much better than the former.

4.3 Forecasting Metal Prices by Combining Model Forecasts

In order to show the empirical applicability of the forecasting techniques discussed

above, we conducted an experiment to assess the predictability performance of dif-

ferent models of a metal-commodity prices, where forecast accuracy is measured by

the root of the mean-squared forecast error. The metal-price data used here is the

same one used in the cointegration and common-cycle analyses of the previous sec-

7Disregarding constant terms.
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Table 3: Common-Feature Tests (Annual)

Strong-form SCCF Weak-form SCCF

�y1;t �y2;t ~�� J-statistic Cointegration ~�� J-statistic

Aluminum Lead 0.621��� 0.0112 (1,3.63) 0.601�� 0.0111
(0.116) [0.876] (0.239) [0.752]

Aluminum Copper -0.552��� 0.0515 - - -
(0.21) [0.135]

Aluminum Tin 0.02�� 0.0454 (1,0.122) 0.012 0.0301
(0.008) [0.778] (0.008) [0.867]

Aluminum Nickel -0.54��� 0.0638 (1,-0.399) 0.043 0.0394
(0.188) [0.142] (0.251) [0.235]

Aluminum Zinc -0.264� 0.0730 (1,-0.298) 0.121 0.0429
(0.151) [0.096] (0.132) [0.201]

Copper Lead -0.286�� 0.0116 (1,2.557) -0.241 0.0115
(0.117) [0.533] (0.363) [0.262]

Tin Lead - - - - -
- - - -

Lead Nickel -0.618��� 0.0836 (1,0.311) 0.134 0.0283
(0.167) [0.06] (0.177) [0.382]

Zinc Lead -0.095 0.0297 - - -
(0.1) [0.36] - -

Copper Tin -0.033 0.0579 (1,2.818) -0.095 0.0535
(0.075) [0.402] (0.132) [0.334]

Copper Nickel 0.223� 0.0367 - - -
(0.134) [0.265] - -

Copper Zinc 0.009 0.0408 (1,-0.973) 0.193 0.0260
(0.077) [0.354] (0.132) [0.422]

Nickel Tin -0.564��� 0.0569 (1,2.95) -0.634�� 0.0548
(0.099) [0.189] (0.248) [0.116]

Tin Zinc -0.758��� 0.0901 (1,0.372) -0.465��� 0.0301
(0.111) [0.045] (0.118) [0.355]

Nickel Zinc 0.498��� 0.0561 - - -
(0.084) [0.116] - -

Notes: GMM estimation using equation (6) for Strong-form SCCF and the analogue equation for

Weak-form SCCF at the appendix.

Standard errors are in parentheses and p-values are in brackets.
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tion, although we only focused on results for monthly and annual data alone. The

former is appropriate to examine short-term forecast accuracy, whereas the latter is

appropriate for long-term accuracy.

Our target variables in forecasting are commodity prices for a variety of metals

(or derived products) �Aluminium, Copper, Lead, Nickel, Tin and Zinc �extracted

from the IFS when monthly frequency is used and from the USGS when annual

data is employed. For some of the estimated models, we used co-variates which are

potentially correlated to the metal prices. Some are related to the economic activity,

such as: the global industrial production, the U.S. industrial production, the Chinese

industrial production, the primary metals coincident index (USGS), a leading index

of metals price (USGS), and some other �nancial-sector co-variates, such as: VIX �

a volatility index, the U.S. real e¤ective exchange rate and the S&P500 index.

Our monthly data set covers the period from January 1965 to December 2008,

comprising 528 observations (T = 528). Correlations between each co-variate and

the metals price index are presented in Table 4. Our annual data set covers data

from 1900 to 2010, comprising 111 observations (T = 111). Since there is evidence

of a unit root for the metals price series and the co-variates, all series in Table 4 were

transformed to instantaneous growth rates prior to computing correlations:

Table 4: Correlations Between the Metal Prices and Co-variates

Aluminum Copper Lead Nickel Tin Zinc BASISM ISRETM LRETB10 LTY RV SP500 TBL USIP VSRETM
Aluminum 1 0.427 0.671 0.605 0.420 0.110 -0.080 0.026 -0.041 -0.216 -0.193 -0.461 -0.095 -0.540 -0.210
Copper - 1 0.561 0.217 0.249 0.302 0.257 0.043 -0.079 0.135 -0.062 -0.508 0.257 -0.548 -0.084
Lead - - 1 0.333 0.672 0.310 -0.091 0.028 -0.045 0.157 -0.128 -0.518 0.209 -0.540 -0.105
Nickel - - - 1 0.165 0.378 -0.117 -0.007 -0.050 0.007 -0.024 -0.073 0.021 -0.087 -0.068
Tin - - - - 1 0.130 -0.052 -0.022 0.026 0.427 -0.157 -0.585 0.303 -0.498 -0.039
Zinc - - - - - 1 -0.165 -0.051 0.032 0.238 0.001 0.019 0.231 0.000 0.041

BASISM - - - - - - 1 0.142 -0.141 0.015 0.075 -0.033 0.166 -0.009 0.116
ISRETM - - - - - - - 1 -0.090 -0.086 -0.156 0.025 -0.074 0.010 0.113
LRETB10 - - - - - - - - 1 -0.053 0.126 0.034 -0.065 0.059 0.022
LTY - - - - - - - - - 1 -0.071 -0.505 0.838 -0.354 0.131
RV - - - - - - - - - - 1 0.295 -0.096 0.320 0.164

S&P500 - - - - - - - - - - - 1 -0.505 0.955 0.121
TBL - - - - - - - - - - - - 1 -0.435 0.089
USIP - - - - - - - - - - - - - 1 0.173

VSRETM - - - - - - - - - - - - - - 1

Notes: ISRETM Metals Price Indes: 1-month excess spot returns; LRETB10: 10-year Treasury bond: 1-month excess returns LTY: Long term yield; RV Realized volatility on S&P 500;

TBL:Treasury-bill rates 3-months; USIP: Industrial Production (USA); VSRETM: Metals Price Indes: Volatility of 1-month excess spot returns

In order to �t well the cross-sectional asymptotic requirement (large N) regarding
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the WLLN, we need to have a large set of diversi�ed forecasts to eliminate the

combination of idiosyncratic errors. For this reason, we chose a few classes of di¤erent

econometric models: ARMA, GARCH, VAR, VECM, with distinct co-variates, and

distinct functional forms (levels, logs), and stationarity assumptions (stationarity

vs di¤erence-stationarity) for the target variable and co-variates. Considering that

some of these models were fairly similar, we discarded a few of those, ending up

with N between 109 and 144, i.e., between 109 and 144 distinct models and distinct

forecasts for each time horizon (h). Obviously, some of them are nested within each

other, and we also have classes of nested models as well. As we argued before, this

will not pose a problem to applying the asymptotic techniques as long as we have a

large enough number of diverse classes.

For implementing the BCAF and other combining techniques discussed above, we

split the sample in three distinct parts, each with a speci�c purpose: the �rst one,

from 1 to T1, to estimate the coe¢ cients of each model; the second from T1+1 to T2,

to compute the bias; and the third from T2+1 to T , to implement truly out-of-sample

forecasting, and to assess the forecast accuracy of di¤erent forecast strategies and of

individual models using the root mean-squared error (RMSE) of forecasts.

To asses forecast accuracy, we constructed an algorithm which is appropriate for

the bias-corrected average forecast (BCAF). For alternative forecast combinations or

forecasting schemes, slight modi�cations are required. The algorithm runs as follows:

1. For each model (AR, GARCH or VAR, and a speci�c set of co-variates), we

estimate the coe¢ cients of the regressors using the sub-sample from 1 to T1.

2. Forecast h-steps ahead the models estimated in step 1 (fhit) from T1 to T2. Each

model should be forecasted h-steps ahead T2 � T1 � h+ 1 times.

3. Calculate the bias associated with each h-steps ahead forecast and each model;

the bias is the average error between the h-steps ahead forecast and the ob-

served value of the target series (from T1 to T2).

4. Forecast h-steps ahead the same models estimated in step 1 for only T2 + h,

using the same coe¢ cients estimated in step 1.

24



5. Store the bias from step 3 and the forecast made in step 4 fhi;T2+h.

6. Update T1 = T1 + 1, T2 = T2 + 1.

7. Go to step 1 until T2 = T:

8. Adjust the forecasts of each model (made from T2+1 to T ) by their respective

bias.

9. Combine all these adjusted forecasts using equal weights.

10. Compute the RMSE of the BCAF, considering the series of metals price index

as the target series.

For the monthly dataset, we took T1 = 200 and T2 = 378. Since T = 528, this

leaves 150 observations to evaluate out-of-sample performance of di¤erent models.

For the annual data set, we took T1 = 35 and T2 = 70. Since T = 111, this leaves 41

observations for out-of-sample evaluation. In both case, the idea was to keep enough

data to estimate the models and two similar-size sub-samples to compute the bias

and make the forecasts.

The maximum horizon was set to 6 months for monthly data and to 5 years with

annual data.

After computing the average bias for each forecast horizon (cBh), we tested the
null H0 : Bh = 0, using Issler and Lima�s t-ratio test. Tables 5 and 6 present the

results, respectively with monthly and annual data.

From the results in Table 5, we conclude that none of the monthly biases were

deemed signi�cant by the t-ratio test in Issler and Lima, although with annual data

the mean bias for Zinc is nonzero (Table 6). This suggests that, for monthly data,

it might not be worth to discard a part of the sample to compute the bias. Since

the BCAF collapses to the simple average forecast (AF) when the bias is zero, then,

the best strategy is simply to merge the samples E and R into one, where models

are estimated. With these models, we can then compute forecast for the sample P ,

combining them using 1
N

PN
i=1 f

h
i;t. With the exception of Zinc for annual data, this

is also true for all the other metal prices.
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Table 5: Mean Bias Signi�cance Test (Monthly)

Aluminum Copper
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead -0.003 -0.014 0.495 0.086 0.155 0.438
2 step-ahead -0.037 -0.084 0.466 0.228 0.180 0.429
3 step-ahead -0.057 -0.084 0.466 0.378 0.194 0.423
4 step-ahead -0.085 -0.095 0.462 0.549 0.213 0.416
5 step-ahead -0.105 -0.095 0.462 0.747 0.235 0.407
6 step-ahead -0.114 -0.088 0.465 0.973 0.257 0.398

Lead Nickel
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead 0.055 0.260 0.397 0.244 0.548 0.292
2 step-ahead 0.129 0.265 0.395 0.462 0.505 0.307
3 step-ahead 0.212 0.273 0.392 0.686 0.502 0.308
4 step-ahead 0.298 0.280 0.390 0.789 0.441 0.330
5 step-ahead 0.389 0.290 0.386 0.923 0.422 0.336
6 step-ahead 0.485 0.299 0.382 1.151 0.448 0.327

Tin Zinc
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead 1.689 0.420 0.337 - - -
2 step-ahead 3.816 0.406 0.342 - - -
3 step-ahead 5.982 0.406 0.342 - - -
4 step-ahead 8.036 0.406 0.342 - - -
5 step-ahead 10.057 0.408 0.342 - - -
6 step-ahead 12.061 0.410 0.341 - - -
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Table 6: Mean Bias Signi�cance Test (Annual)

Aluminum Copper
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead -276.842 -0.525 0.300 -233.249 -1.114 0.133
2 step-ahead -444.360 -0.524 0.300 -400.706 -1.114 0.133
3 step-ahead -486.603 -0.474 0.318 -525.299 -1.212 0.113
4 step-ahead -487.179 -0.417 0.338 -619.110 -1.309 0.095
5 step-ahead -450.445 -0.355 0.361 -689.353 -1.349 0.089

Lead Nickel
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead 263.951 0.435 0.332 -1140.074 -1.073 0.142
2 step-ahead 602.373 0.454 0.325 -1834.030 -1.220 0.111
3 step-ahead 783.477 0.458 0.323 -2542.124 -1.500 0.067
4 step-ahead 744.257 0.434 0.332 -3141.645 -1.793 0.037
5 step-ahead 666.113 0.384 0.351 -3495.002 -1.909 0.028

Tin Zinc
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead 16049.680 0.845 0.199 -276.644 -1.277 0.101
2 step-ahead 37310.520 0.751 0.226 -458.376 -1.662 0.048
3 step-ahead 55645.350 0.743 0.229 -586.994 -2.044 0.021
4 step-ahead 53266.960 0.818 0.207 -702.797 -2.652 0.004
5 step-ahead 42927.230 0.983 0.163 -749.982 -2.879 0.002
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Given the theoretical results in Section 3 for optimality of combined forecasts,

we also computed alternative forecast combinations using di¤erent strategies: (i)

the weighted average forecast (WAF), where weights are based on the inverse of

the mean-squared error for each model, normalized to add up to unity; (ii) take

the simple average of the 5 best �tting models (by Bayesian Information Criteria);

(iii) take the simple average of the 10 best �tting models (by Bayesian Information

Criteria); (iv) the median forecast8.

4.3.1 Comparing forecast accuracy of di¤erent models

We now compare the BCAF to other popular forms of forecast combination, such

as the simple average forecast
�
AF : 1

N

PN
i=1 f

h
i;t

�
and the weighted average forecast

(WAF), in which weights are based on the inverse of the mean-squared error for

each model, where weights are normalized to add up to unity. Using data for copper,

Figures 1 and 2 present the results for all forecast-combinations strategies for horizons

1- and 6-steps ahead respectively:

8For this case we have no optimality result, but we keep it just for reference.
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Figure 1: Forecast Combination Schemes for Copper

Prices �1-step ahead
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Figure 2: Forecast Combination Schemes for Copper

Prices �6-steps ahead

Next, we computed the RMSE for the BCAF, the WAF, the AF, the best individ-

ual model selected by BIC (Bayesian Information Criterium), and the combinations

using the 5-best and 10-best models. Results are presented in Tables 7 and 89,

respectively for monthly and annual data.

For monthly data, for 1- through 6-steps ahead and across all metal prices, the

best performance in terms of RMSE was achieved by the WAF, followed closely by

the BCAF and the AF, which are all forecast-combination schemes. On occasion,

the median forecast and the best model also performed well.

Regarding annual data, the BCAF outperformed other forecasts strategies, al-

though some individual models performed really well for Copper and Nickel.

The results of this empirical exercise show that combining forecasts proved to be

the best strategy to forecast the metal prices: either using the bias-corrected average

9In Table 7, we had convergence problems regarding Zinc forecasts, which are not presented in
nthis version of the paper.
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BCAF Weighted Average Median Best Model 5 Best 10 Best
Aluminum Average (MSE) Forecast (BIC) Models Models
1 step-ahead 0.619 0.605 0.678 0.663 0.732 0.688 0.684
2 step-ahead 0.926 0.888 1.049 1.005 1.158 1.096 1.057
3 step-ahead 1.402 1.327 1.635 1.570 1.914 1.804 1.699
4 step-ahead 1.674 1.548 1.981 1.911 2.461 2.315 2.129
5 step-ahead 1.833 1.647 2.197 2.161 2.866 2.722 2.436
6 step-ahead 2.125 1.861 2.564 2.530 3.459 3.330 2.912

BCAF Weighted Average Median Best Model 5 Best 10 Best
Copper Average (MSE) Forecast (BIC) Models Models

1 step-ahead 0.647 0.575 0.571 0.574 0.55 0.566 0.569
2 step-ahead 1.999 1.706 1.716 1.717 1.631 1.695 1.707
3 step-ahead 3.378 2.779 2.817 2.804 2.698 2.795 2.815
4 step-ahead 4.471 3.557 3.587 3.579 3.485 3.604 3.634
5 step-ahead 5.219 4.123 4.091 4.060 4.04 4.157 4.193
6 step-ahead 5.718 4.619 4.592 4.55 4.566 4.672 4.711

BCAF Weighted Average Median Best Model 5 Best 10 Best
Lead Average (MSE) Forecast (BIC) Models Models

1 step-ahead 0.074 0.074 0.073 0.072 0.076 0.073 0.074
2 step-ahead 0.143 0.145 0.144 0.143 0.150 0.145 0.146
3 step-ahead 0.2 0.206 0.206 0.205 0.214 0.209 0.209
4 step-ahead 0.247 0.256 0.258 0.257 0.272 0.267 0.264
5 step-ahead 0.281 0.293 0.293 0.291 0.310 0.307 0.303
6 step-ahead 0.329 0.341 0.343 0.342 0.367 0.367 0.359

BCAF Weighted Average Median Best Model 5 Best 10 Best
Nickel Average (MSE) Forecast (BIC) Models Models

1 step-ahead 17.916 17.670 15.688 15.817 16.221 17.095 16.231
2 step-ahead 48.508 47.784 48.316 49.425 50.291 51.964 49.464
3 step-ahead 76.682 75.53 83.621 86.079 88.583 91.630 86.640
4 step-ahead 92.064 91 106.000 109.447 112.618 117.515 110.329
5 step-ahead 100.430 99.401 119.853 123.473 124.583 131.369 122.996
6 step-ahead 105.895 104.082 126.449 131.179 127.222 136.305 126.641

BCAF Weighted Average Median Best Model 5 Best 10 Best
Tin Average (MSE) Forecast (BIC) Models Models

1 step-ahead 3.497 3.374 2.614 2.535 2.479 2.497 2.502
2 step-ahead 11.160 9.501 7.130 7.002 6.853 6.778 6.757
3 step-ahead 23.028 18.181 13.257 13.039 13.128 12.894 12.853
4 step-ahead 37.227 27.824 20.298 19.901 20.564 20.184 20.094
5 step-ahead 51.951 36.476 26.372 25.575 26.988 26.381 26.214
6 step-ahead 67.825 44.722 31.727 30.62 32.705 31.877 31.612

BCAF Weighted Average Median Best Model 5 Best 10 Best
Zinc Average (MSE) Forecast (BIC) Models Models

1 step-ahead - - - - - - -
2 step-ahead - - - - - - -
3 step-ahead - - - - - - -
4 step-ahead - - - - - - -
5 step-ahead - - - - - - -
6 step-ahead - - - - - - -

T = 528, T1 = 200, T2 = 378 and the out-of-sample range is 150

Table 7: Forecast Root-Mean-Squarred-Error (Monthly)
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forecast (BCAF), the weighted average forecast (WAF), or the average forecast (AF).

This was true for most metal prices and horizons, although some individual models

performed well on occasion.

5 Conclusion and Further Research

The objective of this paper was to study (understand and forecast) spot metal price

levels and changes at monthly, quarterly, and annual horizons. The data to be used

consists of metal-commodity prices in a monthly and quarterly frequencies from 1957

to 2012 from the IFS. At annual frequency we use USGS data from 1900 through

2010. We will also employ the (relatively large) list of co-variates used in Welch and

Goyal (2008) and in Hong and Yogo (2009) , which are available for download.

Regarding short- and long-run comovement, we tested and con�rmed their ex-

istence using the techniques proposed in the common-feature literature at di¤erent

frequencies. These �ndings entail the estimation of parsimonious VARs with coin-

tegration restrictions and quasi-structural relationships. Cointegration restrictions

were found with long-span annual data: using pairwise analysis, we found that, from

all possible 15 cases, we found cointegration among 10 pairs of metal-commodity

prices. One interesting issue is the long-run behavior of real metal-commodity prices:

while three of them displayed an obvious increase in prices (Copper, Nickel, and Zinc)

in 110 years �more than double from 1900 to 2010 �the other three displayed an ob-

vious decrease over time (Aluminium, Lead, and Tin) of about 70%-90%. Common

cycles are also observed at all frequencies, but their existence is more useful at the

monthly frequency, where we showed how to use them to nowcast the current state

of industrial production using copper price data. At annual frequency common-cycle

evidence is more abundant than at higher frequencies �quarterly or monthly.

Finally, in a forecasting exercise, we combined forecasting models to build metal-

commodity prices optimal forecasts. Regarding out-of-sample forecasts, we used a

variety of models (linear and non-linear, single equation and multivariate) and a

variety of co-variates to forecast the returns and prices of six metal commodities.

With the forecasts of a large number of models (N large) and a large number of
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BCAF Weighted Average Median Best Model 5 Best 10 Best
Aluminum Average (MSE) Forecast (BIC) Models Models
1 step-ahead 37.206 40.657 38.358 40.861 37.900 36.715 36.116
2 step-ahead 59.374 70.052 63.762 66.324 67.485 65.130 63.431
3 step-ahead 65.961 82.476 70.684 75.429 77.922 74.876 72.269
4 step-ahead 69.016 93.859 75.082 81.393 83.052 79.635 76.129
5 step-ahead 69.13 99.694 75.681 84.285 87.665 83.348 79.164

BCAF Weighted Average Median Best Model 5 Best 10 Best
Copper Average (MSE) Forecast (BIC) Models Models

1 step-ahead 17.665 17.128 13.821 12.165 12.414 15.894 15.021
2 step-ahead 44.467 46.675 35.102 34.609 31.649 32.732 32.260
3 step-ahead 75.580 83.605 59.676 62.879 55.337 55.212 55.486
4 step-ahead 106.519 121.296 100.515 100.425 81.601 82.790 84.118
5 step-ahead 128.250 150.484 128.840 128.84 100.425 102.647 105.021

BCAF Weighted Average Median Best Model 5 Best 10 Best
Lead Average (MSE) Forecast (BIC) Models Models

1 step-ahead 87.215 88.310 95.419 102.963 98.490 96.390 96.919
2 step-ahead 164.499 161.849 182.150 199.458 188.621 180.429 180.717
3 step-ahead 194.459 199.206 231.145 247.535 225.020 218.144 219.826
4 step-ahead 197.945 217.125 261.908 280.107 231.141 228.625 232.594
5 step-ahead 204.004 223.123 274.640 288.786 226.445 230.735 237.098

BCAF Weighted Average Median Best Model 5 Best 10 Best
Nickel Average (MSE) Forecast (BIC) Models Models

1 step-ahead 780.106 791.635 784.654 760.113 728.444 739.280 747.302
2 step-ahead 1727.239 1840.379 1825.805 1898.553 1475.888 1421.853 1441.278
3 step-ahead 1967.854 2148.107 2060.348 2160.290 1696.273 1587.752 1607.805
4 step-ahead 2263.931 2663.476 2317.876 2342.069 2065.623 1971.324 2000.096
5 step-ahead 2678.195 3306.581 2872.925 2839.961 2335.586 2306.738 2352.873

BCAF Weighted Average Median Best Model 5 Best 10 Best
Tin Average (MSE) Forecast (BIC) Models Models

1 step-ahead 64.457 72.979 64.111 67.698 74.204 72.228 72.420
2 step-ahead 159.763 168.255 141.708 147.906 161.558 148.089 148.736
3 step-ahead 221.401 216.056 176.578 183.942 192.313 179.855 179.121
4 step-ahead 203.960 258.841 204.587 210.945 201.923 199.095 197.25
5 step-ahead 201.165 313.839 226.033 229.935 204.341 214.522 211.547

BCAF Weighted Average Median Best Model 5 Best 10 Best
Zinc Average (MSE) Forecast (BIC) Models Models

1 step-ahead 141.114 143.832 195.797 161.538 150.502 149.399 153.070
2 step-ahead 244.172 251.799 479.166 292.524 254.273 255.094 267.004
3 step-ahead 245.351 266.658 875.957 291.309 247.958 248.965 260.206
4 step-ahead 242.105 279.292 250.617 253.082 233.096 236.309 241.427
5 step-ahead 250.851 301.163 264.693 269.355 235.248 242.127 248.668

T = 111, T1 = 35, T2 = 70 and the out-of-sample range is 41

Table 8: Forecast Root-Mean-Squarred-Error (Annual)
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time periods (T large), we showed that combining forecasts proved to be the best

strategy to forecast the metals prices. For metal prices, regarding possible opti-

mal combination schemes, we found that the best performances in terms of RMSE

was achieved by the bias-corrected average forecast (BCAF), the weighted aver-

age forecast (WAF) using the reciprocal of the MSE, or the average forecast (AF).

These are all forecast-combination schemes, which achieve optimality by eliminating

individual-model forecast error by means of the use of a weak law-of-large-numbers.

These empirical results are true for most metal prices, frequencies, and horizons,

although some individual models performed well on occasion.
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A Joint Short- and Long-Run Restriction forMetal-

Price Dynamics using VAR Models

Before discussing the dynamic representation of metal-price data, we present useful

de�nitions of the concepts used to measure the degree of comovement in them. These

include long-run comovement (cointegration) and short-run comovement (common

cycles for the growth rate of these prices). Engle and Issler (1995) and Issler and

Vahid (2001) present previous applications of the techniques discussed in this section.

For an in-depth theoretical discussion of these issues see Engle and Granger (1987)

and Vahid and Engle (1993) respectively for cointegration and common cycles. The-

oretical extensions of the standard common-cycle case can be found in Hecq et al.

(2006) and Athanasopoulos et al. (2011).

Assume that yt is a n-vector of I(1) metal prices (or log metal prices), with the

stationary (MA (1)) Wold representation given by:

� yt = C (L) �t; (11)

whereC (L) is a matrix polynomial in the lag operator, L, withC (0) = In,
1P
j=1

kCjk <

1 . The vector �t is a n�1 a multivariate white noise process. We can rewrite equa-
tion (11) as:

� yt = C (1) �t +�C
� (L) �t (12)

where C� (L) = C�0 + C
�
1L + C

�
2L

2 + � � � , with C�i =
P
j>i

�Cj for all i � 0, and, in

particular, C�0 = In � C (1).
Integrating both sides of equation (12), given an initial condition y0, we get:

yt = C (1)

t�1X
s=0

�t�s + C
� (L) �t + y0

= Tt + Ct (13)

Equation (13) is the multivariate version of the Beveridge-Nelson trend-cycle rep-
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resentation (Beveridge and Nelson (1981)). Apart from an initial condition y0, the

series yt are represented as sum of a Martingale part Tt = C (1)
t�1P
s=0

�t�s, which is

called the �trend,�and a stationary and ergodic part Ct = C� (L) �t, which is called

the �cycle.�

De�nition 1. The variables in yt are said to have common trends (or cointegrate)
if there are r linearly independent vectors, r < n, stacked in an r�n matrix �0, with
the following property10:

�0
r�n
C (1) = 0:

De�nition 2. The variables in yt are said to have common cycles if there are s
linearly independent vectors, s � n � r, stacked in an s � n matrix ~�0, with the
property that:

~�0
s�n
C� (L) = 0:

Thus, cointegration and common cycles represent restrictions on the elements of

C (1) and C� (L) respectively.

We now discuss what role these restrictions play on the dynamic autoregressive

representation of yt. We assume that yt is generated by a Vector Autoregression

(VAR). Note that VARs are the working horses of time-series econometric analysis.

They have been applied extensively for reduced-form and structural-form estimation

and forecasting, since they �t most macroeconomic and �nancial data fairly well:

yt = �1yt�1 + : : :+ �pyt�p + �t; (14)

10This de�nition could alternatively be expressed in terms of an n� r matrix , such that:

C (1)  = 0:

The Granger-Representation Theorem (Engle and Granger (1987)) shows that if the series in yt are
cointegrated, � and  in equation (2) below satisfy:

C (1)  = 0; and;

�0C (1) = 0:
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where the autoregressive matrix polynomial is � (L) = I ��1L��2L2� : : :��pLp.
If elements of yt cointegrate, then the matrix � (1) = I �

pP
i=1

�i must have less

than full rank. In this case, Engle and Granger (1987) showed that the system (14)

can be written as a Vector Error-Correction model (VECM) as:

� yt = �
�
1� yt�1 + : : : + ��p�1� yt�p+1 + �

0 yt�1 + �t (15)

where  and � are full rank matrices of order n� r, r is the rank of the cointegrating
space, �

�
I �

pP
i=1

�i

�
= �0, and ��j = �

pP
i=j+1

�i , j = 1; : : : ; p� 1.

For our purposes, testing for cointegration will be used to verify whether metal-

price data share common trends (or have long-run comovement). As is well known,

metals are an important input in industrial processes, and thus it is expected that

most metal commodities would have their long-run prices linked to global indus-

trial factors. Testing for common trends among yt will use the maximum-likelihood

approach in Johansen (1991).

A key issue to assure that inference is done properly in this case is to estimate the

lag length of the VAR (14) consistently, i.e., to estimate p consistently. When data

have common cycles as well as common trends, Athanasopoulos et al. (2011) showed

that some popular information criteria do not have an appropriate small-sample

behavior, and that a combination of traditional information criteria and criteria

with data-dependent penalties can estimate the lag length consistently for VARs with

common trends and cycles. An alternative to way to infer p is to perform diagnostic

testing to rule out the risk of underestimation of p, which leads to inconsistent

estimates for the parameters in (15).

Vahid and Engle (1993) show that the dynamic representation of yt may be further

restricted if there exist white noise independent linear combinations of the series� yt,

i.e., that the � yt share common cycles. To see this, recall that the cofeature vectors

~�
0
i, stacked in an s� n matrix ~�0, eliminate all serial correlation in � yt; i.e. lead to
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~�0� yt = ~�
0�t. Therefore, they should restrict the elements of (15) as follows:

~�0��1 = ~�0��2 = : : : = ~�
0��p�1 = 0, and (16)

~�0 = 0: (17)

Hecq et al. (2006) have labelled the joint restrictions (16) and (17) as strong-form

serial-correlation common features (SCCF), whereas they call only imposing restric-

tions (16) as weak-form SCCF. For the latter, notice that we only inherit an un-

predictable linear combination of � yt once we control for the long-run deviations

�0 yt�1. Hence,

~�0 [� yt � �0 yt�1] = ~�0�t: (18)

We now continue the discussion of common cycles in the case of strong-form serial-

correlation common features, since the weak-form case can be immediately inferred

from it. As is well known, cofeature vectors are identi�ed only up to an invertible

transformation11. Without loss of generality, consider ~� to have an s dimensional

identity sub-matrix:

~� =

"
Is

~��(n�s)�s

#
Now, ~�0� yt = ~�0�t constitute s equations in a system. Completing the system by

adding the unconstrained VECM equations for the remaining n� s elements of � yt;
we obtain,

24 Is ~��0

0
(n�s)�s

In�s

35� yt =
24 0

s�(np+r)

���1 : : : ���p�1 
�

35
266664

� yt�1
...

� yt�p+1

�0yt�1

377775+ vt; (19)

where ���i and � represent the partitions of ��i and  respectively, corresponding to

11The same is true regarding cointegrating vectors. We are only able to identify a subspace of
Rn of dimension r.
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the bottom n� s reduced form VECM equations, and vt =

24 Is ~��0

0
(n�s)�s

In�s

35 �t:
It is easy to show that (19) parsimoniously encompasses (15). Since24 Is ~��0

0
(n�s)�s

In�s

35 is invertible, it is possible to recover (15) from (19). Notice however
that the latter has s � (np+ r)� s � (n� s) fewer parameters.
Assuming that yt share common trends and cycles leading to (19), we test for

common cycles using a canonical-correlation approach once we determine what is the

lag length of the VAR, i.e., p. We proceed as follows:

1. Compute the sample squared canonical correlations between f� ytg and

f�0yt�1;� yt�1;� yt�2; � � � ;� yt�p+1g, labelled �i, i = 1; � � � ; n, where n is the
number of variables in the system.

2. Test whether the �rst smallest s canonical correlations are jointly zero by com-

puting the test statistic:

�T
sX
i=1

log (1� �i) ;

which has a limiting �2 distribution with s (np+ r)� s (n� s) degrees of free-
dom under the null, where r is the number of cointegrating relationships. The

maximum number of zero canonical correlations that can possibly exist is n�r.

3. Suppose that s zero canonical correlations were found in the previous step.

Use these s contemporaneous relationships between the �rst di¤erences as s

pseudo-structural equations in a system of simultaneous equations. Augment

them with n� s equations from the VECM and estimate the system using full

information maximum likelihood (FIML). The restricted VECM will be the

reduced form of this pseudo-structural system.

4. The case where we have weak-form restrictions, in step 1 above, we Com-

pute the sample squared canonical correlations between
n�
� y0t; (�

0yt�1)
0�0o
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and f�0yt�1;� yt�1;� yt�2; � � � ;� yt�p+1g. The rest of the steps remain identi-
cal.

B GMM Based Common-Cycle Tests

One possible drawback of the canonical-correlation approach is that it assumes ho-

moskedastic data, and that may not hold for metal-price (and other macroeconomic

and �nancial data) collected at high frequency. In this case, a GMM approach is more

robust, since inference can be conducted with Heteroskedastic and Auto-correlation

(HAC) robust estimates of variance-covariance matrices of parameter estimates. Re-

garding common cycles, the system with n-equations in (19) can be estimated by

GMM. The vector of instruments comprise the series in f�0yt�1;� yt�1;� yt�2; � � � ;� yt�p+1g
which are collected in a vector Zt�1. Indeed, GMM estimation exploits the orthogo-

nality between all the elements in vt and all the elements in Zt�1, where vt is de�ned

in equation (19):

E [vt 
 Zt�1] = 0: (20)

The test for common cycles is the over-identifying restriction test �the J test �

proposed in Hansen (1982). It has an asymptotic �2 distribution with degrees of free-

dom equal to the number of over-identifying restrictions. As usual, over-identifying

restriction tests verify whether or not errors are orthogonal to instruments in an

instrumental-variable setup. Thus, it checks whether the exclusions of the elements

of Zt�1 in the �rst s equations is appropriate. Heuristically, since the cyclical behav-

ior (serial correlation behavior) of the data � yt is captured by Zt�1, this test veri�es

whether the linear combinations in these s equations have no serial correlation, i.e.,

are unpredictable. Therefore, it is a test of common serial correlation or common cy-

cles. If two series have a common cycle, their impulse response functions are colinear,

making their response to shocks proportional and therefore similar. Here, contrary

to the canonical correlation approach above, we can deal with heteroskedasticity of

unknown form by employing the HAC robust estimates for the variance-covariance

matrix of sample means counterparts of (19)
�cST� using the Newey and West (1987)
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procedure. The parameters estimated by GMM, stacked in a vector �, comprise all

parameters in ~��0 and all parameters in the matrices ���1 ;�
��
2 ; : : : �

��
p�1, and in 

�.

If we want to test for weak-form SCCF, the only additional twist if that now vt
takes the form:

vt =

24 Is ~��0

0
(n�s)�s

In�s

35� yt � " 0 � � � 0 1

���1 � � � ���p�1 2

#266664
� yt�1
...

� yt�p+1

�0yt�1

377775 ;

where  =

"
1

2

#
.

C Optimal Forecast Combinations

In this section, we list the set of assumptions needed to obtain optimal forecast

combinations and discuss some details on how to construct these optimal forecast

under mean-squared error (MSE) risk function. For an in-depth theoretical discussion

of these issues see Issler and Lima (2009) and the references therein.

We are interested in forecasting yt, stationary and ergodic, using information

up to h periods prior to t, then, under a MSE risk function, the optimal forecast

is the conditional expectation using information available up to t � h: Et�h(yt).
We label forecasts of yt, computed using conditioning sets lagged h periods, by fhi;t,

i = 1; 2; : : : ; N . Therefore, fhi;t are h-step-ahead forecasts and N is the number of

models estimated to forecast fhi;t.

Hendry and Clements (2004) argue that the fact that the simple forecast average
1
N

PN
i=1 f

h
i;t usually outperforms individual forecasts f

h
i;t shows our inability to ap-

proximate Et�h(yt) reasonably well with individual models. However, since Et�h(yt)
is optimal, this is exactly what these individual models should be doing.

With this motivation, our setup writes the fhi;t�s as approximations to the optimal

forecast as follows:

fhi;t = Et�h(yt) + khi + "hi;t; (21)
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where khi is the individual model time-invariant bias for h-step-ahead prediction and

"hi;t is the individual model error term in approximating Et�h(yt), where E("hi;t) = 0
for all i, t, and h. Here, the optimal forecast is a common feature of all individual

forecasts and khi and "
h
i;t arise because of forecast misspeci�cation.

We can always decompose the series yt into Et�h(yt) and an unforecastable com-
ponent �t, such that Et�h(�t) = 0 in:

yt = Et�h(yt) + �t: (22)

Combining (7) and (8) yields,

fhi;t = yt � �t + khi + "hi;t; or;

fhi;t = yt � �ht + khi + "hi;t; where, �ht = ��t: (23)

This yields the well known two-way decomposition, or error-component decomposi-

tion, of the forecast error fhi;t � yt:

fhi;t = yt + �
h
i;t; i = 1; 2; :::; N and t > T1 (24)

�hi;t = k
h
i + �

h
t + "

h
i;t:

By construction, the framework in (9) speci�es explicit sources of forecast errors

that are found in both yt and fhi;t; see also the discussion in Palm and Zellner (1992)

and Davies and Lahiri (1995). The term khi is the time-invariant forecast bias of

model i. It captures the long-run e¤ect of forecast-bias of model i. Its source is fhi;t.

The term �ht arises because forecasters do not have future information on yt between

t� h + 1 and t. Hence, the source of �ht is yt , and it is an additive aggregate zero-
mean shock a¤ecting equally all forecasts. The term "hi;t captures all the remaining

errors a¤ecting forecasts, such as those of idiosyncratic nature and others that a¤ect

some but not all the forecasts (a group e¤ect). Its source is fhi;t.

From the perspective of combining forecasts, the components khi , "
h
i;t and �

h
t play

very di¤erent roles. If we regard the problem of forecast combination as one aimed at
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diversifying risk, i.e., a �nance approach, then, on the one hand, the risk associated

with "hi;t can be diversi�ed, while that associated with �
h
t cannot. On the other

hand, in principle, diversifying the risk associated with khi can only be achieved if a

bias-correction term is introduced in the forecast combination, which reinforces its

usefulness.

We now list the assumptions needed to construct optimal forecast combinations

under this framework.

Assumption 1 We assume that ki; "i;t and �t are independent of each other for all
i and t.

Independence is an algebraically convenient assumption used throughout the lit-

erature on two-way decompositions; see Wallace and Hussain (1969) and Fuller and

Battese (1974) for example. At the cost of unnecessary complexity, it could be

relaxed to use orthogonal components, something we avoid here.

Assumption 2 ki is an identically distributed random variable in the cross-sectional

dimension, but not necessarily independent, i.e.,

khi � i.d.(B; �2kh); (25)

where Bh and �2
kh
are respectively the mean and variance of khi . In the time-

series dimension, khi has no variation, therefore, it is a �xed parameter.

The idea of dependence is consistent with the fact that forecasters learn from each

other by meeting, discussing, debating, etc. Through their ongoing interactions, they

maintain a current collective understanding of where their target variable is most

likely heading to, and of its upside and downside risks. Given the assumption of

identical distribution for khi , B
h represents the market (or collective) bias. Since

we focus on combining forecasts, a pure idiosyncratic bias does not matter but a

collective bias does. In principle, we could allow for heterogeneity in the distribution

of ki �means and variances to di¤er across i. However, that will be a problem in

testing the hypothesis that forecast combinations are biased.
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It is desirable to discuss the nature of the term khi , which is related to the question

of why we cannot focus solely on unbiased forecasts, for which khi = 0. The role of

khi is to capture the long-run e¤ect, in the time dimension, of the bias of econometric

models of yt. The model-based forecasts bias results from model misspeci�cation.

Here, it is important to distinguish between in-sample and out-of-sample model �t-

ting. The fact that, in sample, a model approximates well the data-generating process

(DGP) of yt does not guarantee that it will in out-of-sample forecasting; see the dis-

cussion in Clements and Hendry (2006) and in Hendry and Clements (2004). Notice

that bias correction is a form of intercept correction. We now discuss survey-based

forecasts. In this case, a relevant question to ask is: why would forecasters introduce

bias under a MSE risk function? Laster et al. (1999), Patton and Timmermann

(2007) , and Batchelor (2007) list di¤erent arguments consistent with forecasters

having a non-quadratic loss function. Following their discussion, we assume that all

forecasters employ a combination of quadratic loss and a secondary loss function.

Bias is simply a consequence of this secondary loss function and of the intensity in

which the forecaster cares for it. The �rst example is that of a bank selling an invest-

ment fund. In this case, the bank�s forecast of the fund return may be upward-biased

simply because it may use this forecast as a marketing strategy to attract new clients

for that fund. Although the bank is penalized by deviating from Et�h (yt), it also
cares for selling the shares of its fund. The second example introduces bias when

there is a market for pessimism or optimism in forecasting. Forecasters want to be

labeled as optimists or pessimists in a �branding�strategy to be experts on �worst-�

or on �best-case scenarios,�respectively. Batchelor lists governments as examples of

experts on the latter.

Assumption 3 The aggregate shock �ht is a stationary and ergodic MA process of
order at most h� 1, with zero mean and variance �2

�h
<1.

Since h is a bounded constant in our setup, �ht is the result of a cumulation of

shocks to yt that occurred between t�h+1 and t. Being anMA (�) is a consequence
of the wold representation for yt. If yt is already an MA (�) process, of order smaller
than h�1, then, its order will be the same of that of �ht . Otherwise, the order is h�1.
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In any case, it must be stressed that �ht is unpredictable, i.e., that Et�h
�
�ht
�
= 0.

This a consequence of (8) and of the law of iterated expectations, simply showing

that, from the perspective of the forecast horizon h, unless the forecaster has superior

information, the aggregate shock �ht cannot be predicted.

Assumption 4: Let "ht =
�
"h1;t; "

h
2;t; ::: "

h
N;t

�0
be a N � 1 vector stacking the errors

"hi;t associated with all possible forecasts, where E
�
"hi;t
�
= 0 for all i and t.

Then, the vector process
�
"ht
	
is assumed to be covariance-stationary and

ergodic for the �rst and second moments, uniformly on N . Further, de�ning

as �hi;t = "
h
i;t � Et�1

�
"hi;t
�
, the innovation of "hi;t, we assume that

lim
N!1

1

N2

NX
i=1

NX
j=1

��E ��hi;t�hj;t��� = 0: (26)

Because the forecasts are computed h-steps ahead, forecast errors "i;t can be

serially correlated. Assuming that "hi;t is weakly stationary is a way of controlling

its time-series dependence. It does not rule out errors displaying conditional het-

eroskedasticity, since the latter can coexist with the assumption of weak stationarity;

see Engle (1982).

The techniques discussed in this section are appropriate for forecasting a weakly

stationary and ergodic univariate process fytg using a large number of forecasts that
will be combined to yield an optimal forecast in the mean-squared error (MSE) sense.

These forecasts are the result of several econometric models that need to be estimated

prior to forecasting12.

We consider 3 consecutive distinct time sub-periods, where time is indexed by

t = 1; 2; : : : ; T1, : : : ; T2; : : : ; T . The �rst sub-period E is labeled the �estimation

sample�, where models are usually �tted to forecast yt subsequently. The number of

observations in it is E = T1 = �1 �T , comprising (t = 1; 2; : : : ; T1). For the other two,
we follow the standard notation in West (1996). The sub-period R (for regression) is

12In this setting, we can also imagine that some (or all) responses use no formal econometric
model at all, e.g., just the result of an opinion poll on the variable in question using a large number
of individual responses.
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labeled the post-model-estimation or �training sample�, where realizations of yt are

usually confronted with forecasts produced in the estimation sample, and weights

and bias-correction terms are estimated. It has R = T2 � T1 = �2 � T observations
in it, comprising (t = T1 + 1; : : : ; T2). The �nal sub-period is P (for prediction),

where genuine out- of-sample forecast is entertained. It has P = T � T2 = �3 � T
observations in it, comprising (t = T2 + 1; : : : ; T ). Notice that 0 < �1; �2; �3 < 1,

�1 + �2 + �3 = 1, and that the number of observations in these three sub-periods

keep a �xed proportion with T - respectively, �1, �2 and �3 - being all O(T ). This is

an important ingredient in our asymptotic results for T !1.
Issler and Lima (2009) propose a non-parametric estimator of khi , which exploits

the fact that khi represents the �xed e¤ect of a panel of forecasts:

(fhi;t � yt) = khi + �ht + "hi;t; i = 1; 2; :::; N (27)

t = T1 + 1; :::; T2

It does not depend on any distributional assumption on khi � i:d:(Bh; �2
kh
) and it

does not depend on any knowledge of the models used to compute the forecasts

fhi;t � yt.
Issler and Lima propose the following consistent estimators for the components

khi , B
h, �ht , and "

h
i;t:

bkhi =
1

R

T2X
t=T1+2

fhi;t �
1

R

T2X
t=T1+2

yt (28)

cBh =
1

N

NX
i=1

bkhi (29)

b�ht =
1

N

NX
i=1

fhi;t � cBh � yt (30)

b"hi;t = fhi;t � yt � bkhi � b�ht (31)

Now we state the two most important results from Issler and Lima (2009), which
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asserts that the (feasible) bias-corrected average forecast (BCAF) is an optimal fore-

casting device.

Theorem 1. If Assumptions 1-4 hold, the feasible bias-corrected average forecastPN
i=1 !if

h
i;t � cBh obeys

plim
(T;N!1)seq

 
1

N

NX
i=1

fhi;t � cBh
!
= yt + �

h
t = E(yt)

and has a mean-squared error as follows:

E

"
plim

(T;N!1)seq

 
1

N

NX
i=1

fhi;t � cBh
!
� yt

#2
= �2�h

Therefore it is an optimal forecasting device.

Indeed, there are in�nite ways of combining forecasts. The next corollary presents

alternative weighting schemes.

Corollary 1. Consider the sequence of deterministic weights f!igNi=1,such that !i 6=
0, !i = O(N�1) uniformly, with

PN
i=1 !i = 1 and limN!1

PN
i=1 !i = 1. Then, under

Assumptions 1-4, an optimal forecasting device is:

E

"
plim

(T;N!1)seq

 
NX
i=1

!if
h
i;t �

NX
i=1

!ibkhi
!#2

= �2�h

Optimal population weights, constructed from the variance-covariance structure

of models with stationary data, will obey the structure in Corollary 1 and cannot

perform better than 1
N
coupled with bias correction. Therefore, there is no forecast-

combination puzzle in the context of populational weights.

Theorem 1shows that the feasible BCAF is asymptotically equivalent to the op-

timal weighted forecast. Its advantage is that it employs equal weights. As N !1,
the number of estimated parameters is kept at unity: cBh. This is a very attractive
feature of the BCAF compared to devices that combine forecasts using estimated
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weights. Our answer to the curse of dimensionality is parsimony, implied by esti-

mating only one parameter- cBh. One additional advantage is that we need not limit
the asymptotic path of N and T , which is the case of forecasts based on estimated

weights.

Finally, there is one interesting case in which we can dispense with estimation in

combining forecasts: when the mean bias is zero, i.e., Bh = 0, there is no need to

estimate Bh and the BCAF is simply equal to 1
N

PN
i=1 f

h
i;t, the sample average of all

forecasts. This is the ultimate level of parsimony. To be able to test the null that

Bh = 0, Issler and Lima developed a robust t-ratio test that takes into account the

cross-sectional dependence in khi .

C.1 Forecast Combinations for Nested Models

It is important to discuss whether the techniques above are applicable to the situation

where some (or all) of the models we combine are nested. The potential problem is

that the innovations from nested models can exhibit high cross-sectional dependence.

In what follows, we introduce nested models into our framework in the following

way. Consider a continuous set of models and split the total number of models N

into M classes (or blocks), each of them containing m nested models, so that N =

mM . In the index of forecasts, i = 1; : : : ; N , we group nested models contiguously.

Hence, models within each class are nested but models across classes are non-nested.

We make the number of classes and the number of models within each class to be

functions of N , respectively as follows: M = N1�d and m = Nd, where 0 � d � 1.
Notice that this setup considers all the relevant cases: (i) d = 0 corresponds to the

case in which all models are non-nested; d = 1 corresponds to the case in which all

models are nested and; (iii) the intermediate case 0 < d < 1 gives rise to N1�d blocks

of nested models, all with size Nd.

For each block of nested models, Assumption 4 may not hold because the inno-

vations from that block can exhibit high cross-sectional dependence. Regarding the

interaction across blocks of nested models, it is natural to impose that the correla-

tion structure of innovations across classes is such that Assumption 4 holds, since we
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should expect that the cross-sectional dependence of forecast errors across classes is

weak.

Here, keeping some nested models poses no problem at all, since the mixture of

models will still deliver the optimal forecast. From a practical point of view, the

choice of 0 � d < 1 seems to be superior. Here, we are back to the main theorem

in �nance about risk diversi�cation: do not put all your eggs in the same basket,

choosing a large enough number of diversi�ed (classes of) models.
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