Monetary Policy Regimes and Capital Account Restrictions in a Small Open Economy

Zheng Liu and Mark M. Spiegel

aFederal Reserve Bank of San Francisco

BOK IMF Conference on Asia Challenges of Stability and Growth Seoul, Korea September 26, 2013

\footnote{The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.}
Low global rates following crisis encouraged EME inflows

- Relatively higher yields, combined with superior growth prospects
- Concerns expressed by EME policy makers about capital inflows
 - Western central banks maintained policies appropriate
 - Also important for EMEs to ensure Western recovery [e.g. Bernanke (2012)]
- Surges led to reconsideration of capital flow restrictions and other policies aimed at stemming inflows [Ostry, et al (2010)]
 - Mitigate excessive booms and exposure to sudden stops
- When possible, central banks also engaged in sterilization to mitigate real impact of inflows
In low interest rate environments, sterilization can be costly

- Policy problems faced by PBOC [Chang, Liu, and Spiegel (2012)]
 - To maintain closed capital account, PBOC purchased export proceeds with domestic assets
 - Profitable when foreign interest rates were high
 - Sterilization costly when global rates are low

- Many parallels for Asian small open economies
 - Pressures from low global rates through capital inflow surges
 - Under imperfect asset substitutability, central bank can sterilize inflows
 - But likely to be costly

- Costly sterilization \Rightarrow tradeoff between stabilizing inflation and capital account
We consider 2 types of capital account restrictions and 3 alternative monetary regimes

- Capital account restrictions
 1. Optimal time-varying tax rate on capital inflows
 2. Simple constant tax on capital inflows

- Monetary policy regimes
 1. Standard loss function
 2. Inflation-stabilizing central banker
 3. Exchange-rate stabilizing central banker
Implications of capital account restrictions

- Two types of capital controls
 - Time-varying tax: Set optimally over cycle [e.g. Jeanne and Korinek (2010)]
 - Simple tax: Constant positive tax rate
 - Infrequently adjusted in practice [Chinn Ito (2002)]

- Compare welfare outcomes under these alternative capital control regimes

- Time-varying policy
 - Very effective in smoothing foreign interest rate shocks
 - Less effective for foreign demand shocks

- Simple policy leaves room for further stabilization through monetary policy
Implications of alternative monetary policy regimes

- Examine outcomes under each regime with simple and optimal capital controls
- “Standard” policy regime places equal weights on inflation and output and also stabilizes household portfolio compositions
- Inflation-stabilizing central banker places higher weight on inflation
 - Improves outcomes under simple controls, but provides no improvement under optimal controls
- Exchange-rate stabilizing central bank places higher weight on real exchange rate
 - Improves outcome under both capital account policies
Related Literature

- Many papers have found potential role for capital account restrictions
 - Jeanne and Korinek (2010): Time-varying Pigouvian tax on borrowing can internalize externalities associated with international borrowing
 - Korinek (2013): Taxes can substitute for global policy coordination
 - Bianchi (2011): Under financial frictions, capital controls can recover constrained-efficient allocations
 - Farhi and Werning (2012): Mitigate effects of excessive capital movements

- This paper first to analyze capital account restrictions in a monetary model
 - Needed for assessing implications of sterilization
 - Important component of monetary response to capital inflows
Key features of model

- Build on NK small open-economy model

 1. Imperfect international asset substitutability
 2. Sticky prices
 3. Sterilization policy
1. Imperfect asset substitutability

- Household maximize utility function subject to

\[
C_t + \frac{M_t}{P_t} + \frac{B_{ht} + e_t B_{ht}^*}{P_t} \left[1 + \frac{\Omega_b}{2} \left(\frac{B_{ht}}{B_{ht} + e_t B_{ht}^*} - \bar{\psi} \right)^2 \right] \\
\leq w_t L_t + \frac{M_{t-1}}{P_t} + \frac{R_{t-1} B_{h,t-1} + e_t R_{t-1} B_{h,t-1}^*}{P_t} + d_t,
\]

- \(\Omega_b\) represents cost of portfolio adjustment
1. Imperfect asset substitutability (cont’d)

- Let ψ_t denote the domestic bond share:

$$
\psi_t = \frac{B_{ht}}{B_{ht} + e_t B_{ht}^*}
$$

- Optimal choices of B_{ht} and B_{ht}^* satisfy

$$
\Omega_b (1 + \psi_t) (\psi_t - \bar{\psi}) = E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} \frac{1}{\pi_{t+1}} \left[R_t - R_t^* \frac{e_{t+1}}{e_t} \right],
$$

- If $\Omega_b = 0$, reduces to the standard UIP condition.

- Foreign demand for domestic bonds

$$
\frac{B_{ft}}{Z^p_t P_t} = f \left(E_t (1 - \tau_t) R_t \frac{e_t}{e_{t+1}} - R_t^* \right),
$$

where $f'(\cdot) > 0$ and τ_t represents taxes on foreign-held bonds.
2. Sticky prices

- Monopolistic competition in product markets
- Quadratic price adjustment costs (Rotemberg, 1982)

\[\frac{\Omega_p}{2} \left(\frac{P_t(j)}{\pi P_{t-1}(j)} - 1 \right)^2 C_t, \]

where \(\Omega_p \) represents price adjustment costs

- Phillips curve relation:

\[\nu_t = \frac{\epsilon - 1}{\epsilon} + \frac{\Omega_p}{\epsilon} \frac{C_t}{Y_t} \left[\left(\frac{\pi t}{\pi} - 1 \right) \frac{\pi t}{\pi} - \beta E_t \left(\frac{\pi t+1}{\pi} - 1 \right) \frac{\pi t+1}{\pi} \right] \]
3. Sterilization policy

- Foreign capital flows

\[ca_t = e_t \frac{B_t^* - B_{t-1}^*}{P_t} - \frac{B_{ft} - B_{f,t-1}}{P_t} \]

- Government flow-of-funds constraint

\[e_t(B_{gt}^* - R_{t-1}^* B_{g,t-1}^*) \leq B_t - R_{t-1} B_{t-1} + M_t^s - M_{t-1}^s + \tau_t R_t B_{ft}, \]

where \(B_{gt}^* \) denotes central bank holdings of foreign bond
External shocks

- Export demand schedule

\[
X_t = \left(\frac{P_t}{e_t P_t^*} \right)^{-\theta} \tilde{X}_t^* Z_t^P = q_t^\theta \tilde{X}_t^* Z_t^P,
\]

where \(Z_t^P \) allows for balanced growth.

- Foreign interest rate and aggregate demand are exogenous

\[
\begin{align*}
\ln \tilde{R}_t^* &= (1 - \rho_r) \ln \tilde{R}_t^* + \rho_r \ln \tilde{R}_{t-1}^* + \sigma_r \varepsilon_{rt} \\
\ln \tilde{X}_t^* &= (1 - \rho_x) \ln \tilde{X}_t^* + \rho_x \ln \tilde{X}_{t-1}^* + \sigma_x \varepsilon_{xt}
\end{align*}
\]
Optimal policy

- Two inefficiency sources: nominal rigidities and imperfect asset substitutability

- Imperfect asset substitutability implies imperfect risk sharing
 - Inefficient even if monopolistic distortions removed [Corsetti, Dedola, and Leduc (2012)]

- Monetary policy alone cannot restore efficient allocations
Policy objective

- Loss function nests 3 alternative monetary regimes

\[\mathcal{L} = \sum_{t} L_t, \quad L_t = \lambda_\pi \hat{\pi}_t^2 + \lambda_y \hat{gdp}_t^2 + \lambda_b \hat{b}_{yt}^2 + \lambda_q \hat{q}_t^2, \]

where \(b_{yt} \) represents ratio of foreign-held bonds to GDP, and \(\lambda_b \) captures desire for financial stability.

- Monetary policy regimes:
 1. Standard policy sets \(\lambda_y = 1, \lambda_\pi = 1, \lambda_b = 0.1, \) and \(\lambda_q = 0 \)
 2. Inflation-stabilizing regime: same as standard except \(\lambda_\pi = 3 \)
 3. Exchange-rate stabilizing regime: same as standard except \(\lambda_q = 0.1 \)
Welfare measure

- Second-order approximation to household period utility function

\[U_t = \hat{C}_t + \Phi_m \hat{m}_t - \Phi_l \left(L^\eta \hat{L}_t + \frac{\eta}{2} L^\eta L^{-1} \hat{L}_t^2 \right). \]

- Welfare defined as

\[(1 - \beta) V = (1 - \beta) E \sum_{t=0}^{\infty} \beta^t U_t = -\Phi_l \frac{\eta}{2} L^{\eta-1} \text{var}(\hat{L}), \]

where \(\text{var}(\hat{L}) \) denotes the unconditional variance of labor hours

- We evaluate household welfare in terms \(\text{var}(\hat{L}) \)
Calibration highlights

- **Non-standard parameters**
 - Portfolio adjustment cost $\Omega_b = 0.117$ [Chang, et al (2012)]
 - SS dom bond share $\bar{\psi} = 0.9$ [Coeurdacier and Rey (2011)]
 - Price adjustment cost $\Omega_p = 30$ (3 qtr contracts [Nakamura (2008)])
 - Average tax rate on capital inflows $\tau = 0.3$
 - Persistence of external shocks $\rho_r = 0.98$ and $\rho_x = 0.95$

- **Standard parameters**
 - Discount factor $\beta = 0.998$
 - Technology growth rate $\bar{\lambda}_z = 1.01$
 - Set $\Phi_m = 0.06$ [Chari, et al (2000)]
 - $\eta = 2$, so Frisch elasticity of labor supply is 0.5
 - Cost share of intermediate goods $\phi = 0.5$
 - Elasticity substitution $\theta = 1.5$ [Feenstra (2012)]
 - $\alpha = 0.756$, implies 20% steady state import-to-GDP ratio
 - Set $\epsilon = 10$ so steady-state markup is 11%
First consider optimal time path for tax (τ_t) on capital inflows

- Given imperfect capital mobility, optimal monetary policy alone cannot achieve first-best
- Evaluate implications of capital account restrictions for macro and financial stability

Solve the Ramsey optimal policy problem for each monetary regime

- Planner chooses all endogenous variables, including τ_t
Optimal tax on foreign-held bonds following foreign interest rate shock

![Optimal tax rate following a negative foreign interest rate shock](image.png)
Optimal tax on foreign-held bonds following export demand shock

![Optimal tax rate following a negative export demand shock](image-url)
Optimal tax responds to R^* shock but not to X^* shock

- Tax rate increases in response to declines in R^*
 - R^* shock raises spread between domestic and foreign rates
 - Adjusting τ mitigates the spread, insulating domestic economy from shock
 - Responses do not depend on monetary regime (irfs not shown to save space)

- Changes in τ do not stabilize against foreign demand shock
 - Optimal policy calls for very small change in τ_t
 - Results in interesting dynamics
Export demand shock: Standard case, optimal capital account policy

- Current account goes into deficit
- Monetary authority lowers interest rate
- Surprisingly, real exchange rate appreciates
 - Central bank stabilizes capital account by buying domestic bonds from domestic citizens (foreign holdings unchanged)
 - With less domestic assets, modified UIP condition allows for real exchange rate appreciation
- Real appreciation \rightarrow marginal cost \downarrow and markup \uparrow \rightarrow employment declines
- Optimal policy insulates inflation and GDP from shock, but decline in employment leads to welfare losses
Impulse responses negative demand shock, optimal policy
Export demand shock: Exchange rate stabilizing, optimal policy

- Exchange-rate targeting central bank has different dynamics
 - Real GDP falls \rightarrow central bank eases to smooth output
 - Inflation picks up, offset by temporary nominal depreciation in exchange rate
 - Foreign agents’ holdings of domestic bonds fall \uparrow domestic rates \uparrow
 - Real exchange rate stabilized

- Overall, exchange-rate targeting regime yields smaller fluctuations than standard case
Simple capital account restrictions

- In practice, do not observe time-varying (and state-contingent) tax policies
 - Examine macroeconomic implications of constant τ subject to the two types of external shocks
- Standard case with decline in foreign interest rate
 - Increased foreign demand for domestic bonds \rightarrow domestic rate falls and real exchange rate appreciates
 - Terms of trade improve \rightarrow inflation ↓ and output ↑ and current account deficit ↑
Impulse responses foreign interest rate shock, simple tax
Foreign interest shock and simple tax: Alternative monetary regimes

- **Inflation stabilization policy**
 - Central banker does not intervene as aggressively
 - More capital inflows \rightarrow bigger boom
 - Results in higher GDP and less deflation than standard case

- **Exchange-rate targeting policy**
 - To mitigate real exchange rate appreciation, central bank sells domestic bonds
 - Foreign bond holdings rise more rapidly
 - Less of a decline in domestic interest rates
Export demand shock under simple controls

- **Standard case**
 - Current account deficit \uparrow and output \downarrow
 - Monetary policy eases by lowering domestic nominal rates
 - Foreign demand for domestic bonds \downarrow
 - Lowers output, inflation stabilizes

- Inflation stabilizing case quite similar
Impulse responses to negative export demand shock under simple controls

- Real GDP
- Domestic inflation
- Nominal interest rate
- Real exchange rate
- Current account
- Foreign demand for bond
Export demand shock: Real exchange rate targeting, simple controls

- With real exchange rate stabilized don’t get expected depreciation that prevailed in standard case
- Foreign bond holdings do not decline as much, and terms of trade improvement is not as large, as standard case
- Inflation is higher, nominal rates rise
- GDP falls more steeply
Both shocks

- **Optimal capital account policy**
 - Optimal policies very effective at stabilizing external shocks
 - Inflation and output almost completely stabilized
 - Welfare losses 1/3 percent of steady-state consumption
 - Little consequence of moving to inflation-stabilizing regime
 - However, smaller losses under exchange rate stabilizing regime

- **Simple capital account policy**
 - Under simple capital account policy, the monetary regime matters more for welfare
 - Inflation stabilizing regime a substantive improvement over standard policy
 - Exchange rate stabilizing does even better; almost as well as under optimal policy
Welfare and macroeconomic volatilities under alternative policy regimes

<table>
<thead>
<tr>
<th></th>
<th>Optimal capital controls</th>
<th>Simple capital controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benchmark</td>
<td>Hawkish</td>
</tr>
<tr>
<td>Welfare</td>
<td>-0.35</td>
<td>-0.35</td>
</tr>
<tr>
<td>σ_π</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>σ_y</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>σ_{ca}</td>
<td>0.0077</td>
<td>0.0077</td>
</tr>
<tr>
<td>σ_{bf}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>σ_l</td>
<td>0.0036</td>
<td>0.0036</td>
</tr>
</tbody>
</table>
Conclusion

- Compare effectiveness of monetary policy and capital controls in smoothing external shocks
 - As environment is one of imperfect risk sharing, potential for policies to improve welfare
 - Consistent model with comparable steady states allows for coherent welfare comparisons
 - To our knowledge, paper is first to examine issues in full monetary model that allows for sterilization

- Optimal capital control policies smooth external shocks well
- However, as complicated policies not observed in practice, also examine simple capital controls
 - Simple controls allow monetary policy to improve welfare
 - Welfare substantively improved by inflation stabilizing regime
 - Real exchange rate stabilizing regime best: Little enhancement from optimal capital policies