"Financing Investment with Long-Term Debt and Uncertainty Shocks"

François Gourio
Department of Economics
Boston University and NBER

Michael Michaux
Marshall School of Business
University of Southern California

Workshop: Advances in Numerical Methods for Economics Washington, D.C.

June 28, 2013

Motivation: Long-Term Debt

Recent literature on quantitative corporate finance (Hennessy and Whited (2005)) considers only short-term debt

Largely due to computational reasons!

This is not a costless simplification:

1. No agency costs: bondholders know investment and debt when they lend
2. Built-in maturity mismatch and hence rollover risk
3. Hard to generate large credit spreads

Main effects:

1. Reduces leverage (as in Leland and Toft (1996)), generates more default, and higher credit spreads
2. Amplifies response of investment to changes in credit spreads

Motivation: Uncertainty Shocks

Introduce uncertainty shocks (Bloom (2009)) to replicate empirical results on Q-theory:

1. Tobin's Q is a sufficient statistic for investment (Abel (1979) and Hayashi (1982))
2. Doesn't work well empirically
3. Models appeal to measurement error (Erickson and Whited (2001), Eberly et al. (2008))
4. Q-theory works better with bond prices or credit spreads (Gilchrist and Zakrajsek (2008), Philippon (2009))

Why Do Uncertainty Shocks Help?

Shock to Productivity

1. \nearrow in productivity $\Rightarrow \searrow$ in the probability of default, \searrow credit spreads
2. \nearrow in productivity $\Rightarrow \nearrow$ in investment, \nearrow in Q

Generates: $\operatorname{Corr}(I / K, Q)>0, \operatorname{Corr}(I / K$, spread $)<0$

Shock to Volatility

1. \nearrow in volatility $\Rightarrow \nearrow$ in the probability of default, \nearrow credit spreads
2. \nearrow in volatility $\Rightarrow \searrow$ in investment, \nearrow in Q (growth option value vs assets in place)

Generates: $\operatorname{Corr}(I / K, Q)<0, \operatorname{Corr}(I / K$, spread $)<0$

Contribution

This paper:

1. Extends a standard neoclassical model of financing and investment to incorporate long-term debt and stochastic volatility
2. Explores the quantitative impacts of these new ingredients in a calibrated model

Findings:
Long-term debt and stochastic volatility lead to:

1. Lower and more volatile leverage
2. Higher probability of default, and higher credit spreads
3. An increase in the explanatory power of credit spreads on i / k
4. A decrease in the explanatory power of Tobin's Q on i / k
(compared to model with one-period debt and deterministic volatility of profits)

Environment

This model builds on Gomes and Schmid (2009)

Model Ingredients:

- Dynamic, partial equilibrium, exogenous pricing kernel
- Financial decisions: debt and equity issuance, default
- Real decision: investment

Departure from literature:

- Shocks to volatility of productivity
- Long-term debt

Environment

Time:

- Time is discrete
- Problem is infinite horizon

Uncertainty:

- Aggregate Shocks: productivity z_{a}
- Idiosyncratic Shocks: productivity z_{i}
- Idiosyncratic Shocks: volatility σ
\Rightarrow Tomorrow's shock z_{i}^{\prime} has volatility σ
\Rightarrow Shock σ today has an impact only on tomorrow's realizations of z_{i}

Exogenous State Vector: $s \equiv\left(z_{a}, z_{i}, \sigma\right)$

Firm Problem

Firms:

- Produce: $\pi(k, s)$, using capital k
- Invest in capital k
- Irreversible investment $(i \geq 0)$, and linear adjustment cost ϕ_{+}for $i>0$
- Long-term (exponentially decaying) debt: stock b
- Issue equity: $d<0$
- Default if equity $V<0$
- Taxes: Profits -net of interest expenses- are taxed at rate τ

Equity Value:
Firms maximize the expected discounted stream of dividends

$$
V(k, b, s)=\max _{k^{\prime}, b^{\prime}} \quad d+\mathbb{E}\left[M\left(s, s^{\prime}\right) \max \left(0, V\left(k^{\prime}, b^{\prime}, s^{\prime}\right)\right)\right]
$$

Firm Problem

Budget constraint:

$$
\tilde{d}=\underbrace{(1-\tau) \pi(k, s)}_{\text {After-Tax Profits }}+\underbrace{\tilde{q} \ell}_{\text {New Loan }}-\underbrace{\delta_{b} b}_{\text {Debt Repayment }}-\underbrace{i}_{\text {Investment }}-\underbrace{\phi_{+} i}_{\text {Cost of Investment }}
$$

Dividends or Equity Issuance:

$$
d=(1+\underbrace{\lambda \mathbf{1}_{\{\tilde{d}<0\}}}_{\text {Issuance Cost }}) \tilde{d}
$$

New Loan: (Sells for price q)

$$
\ell=b^{\prime}-\left(1-\delta_{b}\right) b
$$

Lender Problem

Lenders: $(q=$ Price of a $\$ 1$ loan $)$

$$
\begin{aligned}
q_{t}= & \mathbb{E}_{t}\left[M_{t, t+1}\left(\delta_{b} \mathbf{1}_{t+1}+\xi \frac{k_{t+1}}{b_{t+1}}\left(1-\mathbf{1}_{t+1}\right)\right)\right] \\
& +\mathbb{E}_{t}[M_{t, t+2}(\underbrace{\delta_{b}\left(1-\delta_{b}\right)}_{\text {Coupon }} \mathbf{1}_{t+2}+\underbrace{\xi k_{t+2}}_{\text {Default Payoff }} \underbrace{\frac{\left(1-\delta_{b}\right)}{b_{t+2}}}_{\text {Claim }} \underbrace{\mathbf{1}_{t+1}\left(1-\mathbf{1}_{t+2}\right)}_{\text {Default Event }})]
\end{aligned}
$$

$$
+\ldots
$$

As an infinite sum:

$$
\begin{aligned}
q_{t}= & \sum_{s=1}^{\infty} \mathbb{E}_{t}\left[M_{t, t+s}\left(\delta_{b}\left(1-\delta_{b}\right)^{s-1} \mathbf{1}_{t+s}\right)\right] \\
& +\sum_{s=1}^{\infty} \mathbb{E}_{t}\left[M_{t, t+s}\left(\xi \frac{k_{t+s}}{b_{t+s}}\left(1-\delta_{b}\right)^{s-1} \mathbf{1}_{t+s-1}\left(1-\mathbf{1}_{t+s}\right)\right)\right]
\end{aligned}
$$

Lender Problem

Recursive Formulation:
Given firms' policies, $\left(k^{\prime}, b^{\prime}\right)=\left(g_{k}(k, b, s), g_{b}(k, b, s)\right)$, the loan price satisfies,

$$
\begin{aligned}
& q\left(k^{\prime}, b^{\prime}, s\right)=\mathbb{E}\left[M\left(s, s^{\prime}\right)\left(\delta_{b}+\left(1-\delta_{b}\right) q\left(k^{\prime \prime}, b^{\prime \prime}, s^{\prime}\right)\right) \mathbf{1}_{\left\{v^{\prime} \geq 0\right\}}\right] \\
&+\mathbb{E}\left[M\left(s, s^{\prime}\right)\left(1-\delta_{b}\right) \xi \frac{k^{\prime}}{b^{\prime}}\left(1-\mathbf{1}_{\left\{v^{\prime} \geq 0\right\}}\right)\right]
\end{aligned}
$$

Price Schedule Inclusive of Tax Subsidy: $\tilde{q}=\tilde{q}(q ; \tau)$

$$
\tilde{q}=\sum_{t=1}^{\infty}\left(\frac{1}{1+(1-\tau) c(q)}\right)^{t} \delta_{b}\left(1-\delta_{b}\right)^{t-1}=\frac{1}{1+(1-\tau)\left(q^{-1}-1\right)}
$$

Recursive Formulation of the Firm Problem

Recursive Formulation of the Firm Problem:
Given the loan price schedule $q\left(k^{\prime}, b^{\prime}, s\right)$, firms solve the following program,

$$
V(k, b, s)=\max _{k^{\prime}, b^{\prime}} d+\mathbb{E}\left[M\left(s, s^{\prime}\right) \max \left(0, V\left(k^{\prime}, b^{\prime}, s^{\prime}\right)\right)\right]
$$

subject to,

$$
\begin{aligned}
d & =\left(1+\lambda \mathbf{1}_{\{\tilde{d}<0\}}\right)\left\{(1-\tau) \pi(k, s)+\tilde{q}\left(k^{\prime}, b^{\prime}, s\right) \ell-\delta_{b} b-i\left(1+\phi_{+}\right)\right\} \\
i & =k^{\prime}-\left(1-\delta_{k}\right) k \geq 0 \\
\ell & =b^{\prime}-\left(1-\delta_{b}\right) b
\end{aligned}
$$

Recursive Equilibrium

Recursive Competitive Equilibrium:
A recursive competitive equilibrium consists of a loan price schedule $q\left(k^{\prime}, b^{\prime}, s\right)$, a value function $V(k, b, s)$, and optimal decision rules $g_{k^{\prime}}(k, b, s)$ and $g_{b^{\prime}}(k, b, s)$, such that

1 Firms: The value function $V(k, b, s)$ solves the firm problem. The associated optimal decision rules for the firm are denoted by $k^{\prime}=g_{k^{\prime}}(k, b, s)$ and $b^{\prime}=g_{b^{\prime}}(k, b, s)$

2 Lenders: The loan price schedule $q\left(k^{\prime}, b^{\prime}, s\right)$ satisfy the lenders Euler equation

Computational Considerations

Solving the Model:

1. Inner loop: Given bond prices, solve firm problem by VFI (with PFI)
2. Outer loop: Update bond prices given firm's decisions

Computational Issues:
Time-consuming given large number of states
Hard to achieve full convergence with long-term debt (bc non convex constraint set)

- Chatterjee and Eyigungor (2011) provide an algorithm that performs well
- We extended their algorithm to incorporate endogenous investment
- Makes computation even slower!

Algorithm

$\underline{\text { Transforming the model: }}$

1. Add small, continuous i.i.d. shock to profits $m \sim$ truncated $\mathcal{N}\left(0, \sigma_{m}^{2}\right), \quad$ with $\sigma_{m}=0.04$
2. Add a small dividend smoothing motive: Firms maximize PDV of $h(d)=d-\kappa d^{2}, \quad$ with $\kappa=0.01$

Algorithm:

1. Requires exact computation of default thresholds
2. Use very slow relaxation for bond price updates,

$$
q^{k+1}=\zeta q^{k}+(1-\zeta) q^{\text {new }}, \quad \text { with } \zeta=0.95
$$

Modified Firm Problem

Modified Firm Problem:

Given the loan price schedule $q\left(k^{\prime}, b^{\prime}, s\right)$, firms solve,

$$
V(k, b, s)=\max _{k^{\prime}, b^{\prime}} \quad h(d)+\mathbb{E}\left[M\left(s, s^{\prime}\right) \max \left(0, V\left(k^{\prime}, b^{\prime}, s^{\prime}\right)\right)\right]
$$

subject to,

$$
d=\left(1+\lambda \mathbf{1}_{\{\tilde{d}<0\}}\right)\left\{(1-\tau)(\pi(k, s)+m)+\tilde{q}\left(k^{\prime}, b^{\prime}, s\right) \ell-\delta_{b} b-i\left(1+\phi_{+}\right)\right\}
$$

where m is the i.i.d. cash flow shock

Numerical details

Practical implementation:

1. State Space: $\left(k, b, z_{a}, z_{i}, \sigma\right)$ with $\left(96^{*} 96^{*} 4^{*} 16^{*} 2\right)=1.2 m$ grid points
2. Implementation: CUDA code run on NVIDIA Fermi card Typical run is ≈ 5 hours (Speed up 500x)

Monte Carlo Simulations:

1. Simulate a panel of 10,000 firms for 200 periods (drop first 5 periods)
2. Compute statistics/run regressions with simulated data

Calibration: Aggregate Exogenous States

Productivity Process: Follows an $\operatorname{AR}(1)$ process

$$
\log z_{a}^{\prime}=\rho_{a} \log z_{a}+\sigma_{a} \epsilon_{a}^{\prime}
$$

Discretized as a Markov Chain, with $\rho_{a}=0.85, \sigma_{a}=0.02$

Stochastic Discount factor:

$$
M\left(z_{a}, z_{a}^{\prime}\right)=\beta e^{-\gamma_{0}\left(\log z_{a}^{\prime}-\rho_{a} \log z_{a}\right)}
$$

Set $\gamma_{0}=15$
Note that $\mathbb{E}_{s^{\prime} \mid s}\left[M\left(s, s^{\prime}\right)\right]=\beta$, so term structure is flat

Calibration: Idiosyncratic Exogenous States

Idiosyncratic Productivity Process: Follows an $\mathrm{AR}(1)$ process

$$
\log z_{i}^{\prime}=\rho_{i} \log z_{i}-\sigma^{2} / 2+\sigma \epsilon_{i}^{\prime}
$$

Discretized as a Markov Chain, with $\rho_{i}=0.9$

Idiosyncratic Volatility Process: Follows a Markov chain with 2 states

$$
\sigma \in\left\{\sigma_{L}, \sigma_{H}\right\}
$$

Set $\sigma_{L}=0.10, \sigma_{H}=0.25$, with transition matrix $\Gamma_{\sigma \sigma^{\prime}}$ given by

$$
\Gamma=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right]
$$

Calibration: Real Side

Parameters chosen to match means of the data: Tobin's $Q, i / k$, and π / k

Profits:

$$
\pi(k, s)=z_{a} z_{i} k^{\alpha}-f
$$

Set $\alpha=0.4, f=0.92, \delta_{k}=0.14$

Adjustment Cost:

$$
\phi(i, k)=\phi_{+} i \quad \text { for } i>0
$$

Set $\phi_{+}=0.05$

Parameters

	Parameter	Model	Description
Preference	β	0.98	Subjective discount rate
	α	0.4	Production parameter
Technology	ϕ_{+}	0.05	Cost of positive investment
	f	0.92	Fixed cost of operation
	δ_{k}	0.14	Capital depreciation rate
	δ_{b}	0.2	Exponential decay for debt
	λ	0.25	Linear cost of issuing equity
Institution	ξ	0.80	Recovery rate in bankruptcy
	τ	0.20	Average corporate tax rate
	ρ_{a}	0.85	Autocorrelation of z_{a}
Uncertainty	σ_{a}	0.02	Volatility of z_{a}
	ρ_{i}	0.90	Autocorrelation of z_{i}
	σ_{L}	0.10	Low Volatility of z_{i}
	σ_{H}	0.25	High Volatility of z_{i}

Definition: Variables

Real Policies:

Tobin's Q

$$
\begin{aligned}
& Q=\frac{V(k, b, s)+b^{\prime}}{k^{\prime}} \\
& \frac{i}{k}=\frac{k^{\prime}-\left(1-\delta_{k}\right) k}{k}
\end{aligned}
$$

Investment Rate

Profitability

$$
\frac{\pi}{k}=\frac{z k^{\alpha}-f+m}{k}
$$

Financial Policies:

Leverage
$\frac{b^{\prime}}{k^{\prime}}$
Credit Spreads

$$
C S=\delta_{b} q\left(k^{\prime}, b^{\prime}, s\right)^{-1}-\beta^{-1}+1-\delta_{b}
$$

Default

$$
I^{D F}=\mathbf{1}_{\{V(k, b, s)<0\}}
$$

Financing Investment with Long-Term Debt and Uncertainty Shocks
$\left\llcorner_{\text {Optimal Policy Rules }}\right.$

$$
\mathrm{B}\left(\sigma_{\mathrm{H}}\right)-\mathrm{B}\left(\sigma_{\mathrm{L}}\right)
$$

$$
\operatorname{CS}\left(\sigma_{H}\right)-\operatorname{CS}\left(\sigma_{L}\right)
$$

$$
I\left(\sigma_{H}\right)-I\left(\sigma_{L}\right)
$$

$\operatorname{TOBIN} Q\left(\sigma_{H}\right)-\operatorname{TOBIN} Q\left(\sigma_{L}\right)$

Simulation Results: Summary Statistics

Model Specification		Data	(4)
Debt			5 period Stochastic
Volatility			
Real Policies:	$\mathrm{E}(Q)$	1.30	2.51
Tobin's Q	$\sigma(Q)$	0.63	0.55
Investment Rate	$\mathrm{E}(i / k)$	0.15	0.15
	$\sigma(i / k)$	0.06	0.25
Profitability	$\mathrm{E}(\pi / k)$	0.17	0.18
	$\sigma(\pi / k)$	0.08	0.18
Financing Policies:			
Leverage	$\mathrm{E}(b / k)$	0.35	0.39
	$\sigma(b / k)$	0.09	0.30
Credit Spreads (\%)	$\mathrm{E}\left(c-R^{f}\right)$	1.09	1.26
	$\sigma\left(c-R^{f}\right)$	0.41	3.14
Default (\%)	$\mathrm{E}\left(I^{D F}\right)$	0.40	1.02

Both Effects: Long-Term Debt + Stochastic Volatility

Model Specification		Data	(1)	(4)
Debt		1 period Deterministic	5 period Stochastic	
Volatility				
Real Policies:	$\mathrm{E}(Q)$	1.30	$\mathbf{2 . 6 1}$	$\mathbf{2 . 5 1}$
Tobin's Q	$\sigma(Q)$	0.63	$\mathbf{0 . 3 6}$	$\mathbf{0 . 5 5}$
Investment Rate	$\mathrm{E}(i / k)$	0.15	0.15	0.15
	$\sigma(i / k)$	0.06	0.19	0.25
Profitability	$\mathrm{E}(\pi / k)$	0.17	0.17	0.18
	$\sigma(\pi / k)$	0.08	0.14	0.18
Financing Policies:				
Leverage	$\mathrm{E}(b / k)$	0.35	$\mathbf{0 . 7 6}$	$\mathbf{0 . 3 9}$
	$\sigma(b / k)$	0.09	0.27	0.30
Credit Spreads $(\%)$	$\mathrm{E}\left(c-R^{f}\right)$	1.09	$\mathbf{0 . 0 0 8}$	$\mathbf{1 . 2 6}$
	$\sigma\left(c-R^{f}\right)$	0.41	0.03	3.13
Default $(\%)$	$\mathrm{E}\left(I^{D F}\right)$	0.40	$\mathbf{0 . 0 0 7}$	$\mathbf{1 . 0 2}$

Both Effects: Long-Term Debt + Stochastic Volatility

Model Specification	(1)	(4)
Debt	1 period Deter.	5 period Stoch.
Volatility		
Correlations:	0.31	0.36
Corr $(i / k$, Tobin's $Q)$	$\mathbf{0 . 0 1}$	$\mathbf{- 0 . 1 7}$
Corr(i/k,Credit Spreads)	$\mathbf{0 . 0}$	

Financing Investment with Long-Term Debt and Uncertainty Shocks
L Numerical Results

Effect of Stochastic Volatility

Model Specification		Data	(1)	(2)
Debt		1 period Deter.	1 period Stoch.	
Volatility				
Real Policies:	$\mathrm{E}(Q)$	1.30	$\mathbf{2 . 6 1}$	$\mathbf{2 . 4 6}$
Tobin's Q	$\sigma(Q)$	0.63	$\mathbf{0 . 3 6}$	$\mathbf{0 . 5 8}$
	$\mathrm{E}(i / k)$	0.15	0.15	0.15
Investment Rate	$\sigma(i / k)$	0.06	0.19	0.26
	$\mathrm{E}(\pi / k)$	0.17	0.17	0.17
Profitability	$\sigma(\pi / k)$	0.08	0.14	0.18
Financing Policies:				
Leverage	$\mathrm{E}(b / k)$	0.35	$\mathbf{0 . 7 6}$	$\mathbf{0 . 4 1}$
	$\sigma(b / k)$	0.09	0.27	0.25
Credit Spreads (\%)	$\mathrm{E}\left(c-R^{f}\right)$	1.09	$\mathbf{0 . 0 0 8}$	$\mathbf{1 . 0 0}$
	$\sigma\left(c-R^{f}\right)$	0.41	0.03	5.66
Default (\%)	$\mathrm{E}\left(I^{D F}\right)$	0.40	$\mathbf{0 . 0 0 7}$	$\mathbf{0 . 8 0}$

Effect of Stochastic Volatility

Model Specification	(1)	(2)
Debt	1 period	1 period
Volatility	Deter.	Stoch.
Correlations:		
Corr(i / k, Tobin's $Q)$	0.31	0.33
Corr(i/k,Credit Spreads)	$\mathbf{- 0 . 0 1}$	$\mathbf{- 0 . 1 0}$

Financing Investment with Long-Term Debt and Uncertainty Shocks
L Numerical Results

Effect of Long-Term Debt

Model Specification		Data	(2)	(4)
Debt		1 period Stoch.	5 period Stoch.	
Volatility				
Real Policies:	$\mathrm{E}(Q)$	1.30	$\mathbf{2 . 4 6}$	$\mathbf{2 . 5 1}$
Tobin's Q	$\sigma(Q)$	0.63	$\mathbf{0 . 5 8}$	$\mathbf{0 . 5 5}$
	$\mathrm{E}(i / k)$	0.15	0.15	0.15
Investment Rate	$\sigma(i / k)$	0.06	0.26	0.25
	$\mathrm{E}(\pi / k)$	0.17	0.17	0.18
Profitability	$\sigma(\pi / k)$	0.08	0.18	0.18
Financing Policies:				
Leverage	$\mathrm{E}(b / k)$	0.35	$\mathbf{0 . 4 1}$	$\mathbf{0 . 3 9}$
	$\sigma(b / k)$	0.09	0.25	0.30
Credit Spreads (\%)	$\mathrm{E}\left(c-R^{f}\right)$	1.09	$\mathbf{1 . 0 0}$	$\mathbf{1 . 2 6}$
	$\sigma\left(c-R^{f}\right)$	0.41	5.66	3.14
Default (\%)	$\mathrm{E}\left(I^{D F}\right)$	0.40	$\mathbf{0 . 8 0}$	$\mathbf{1 . 0 2}$

Effect of Long-Term Debt

Model Specification	(2)	(4)
Debt	$\mathbf{1}$ period	5 period
Volatility	Stoch.	Stoch.
Correlations:		
Corr(i/k,Tobin's $Q)$	0.33	0.36
Corr(i/k,Credit Spreads)	$\mathbf{- 0 . 1 0}$	$\mathbf{- 0 . 1 7}$

Impulse Response: z shock, 1 period debt

Impulse Response: z shock, 5 period debt

Impulse Response: σ shock, 1 period debt

Impulse Response: σ shock, 5 period debt

Using Regressions

Regression:

$$
\left(\frac{i}{k}\right)_{j t}=\beta_{0}+\beta_{1} \log \left(c_{j t}\right)+\beta_{2} \log \left(Q_{j t}\right)+\varepsilon_{j t}, \quad \text { for all firm } j, \text { and time } t
$$

Data: (From Gilchrist and Zakrajsek)
Firm-level dataset on individual bond issues (period 1983-2006, 800 firms)

	$\log (c)$	$\log (Q)$	R^{2}
Data	-0.035		0.054
	(0.005)		
		0.051	0.064
		(0.016)	
	-0.034	0.002	0.062
	(0.005)	(0.002)	

Simulation Results: Regression results

Model Specification	$\log (c)$	$\log (Q)$	R^{2}
Data	-0.035		0.054
		0.051	0.064
	$\mathbf{- 0 . 0 3 4}$	0.002	0.062
(1) Deterministic σ	-0.105		0.000
1 period		0.362	0.088
	$\mathbf{0 . 2 3 7}$	0.364	0.089
(2) Stochastic σ	-0.087		0.025
1 period		0.167	0.065
	$\mathbf{0 . 0 4 4}$	0.207	0.068
(4) Stochastic σ	-0.108		0.041
5 period		0.222	0.086
	$\mathbf{0 . 0 1 7}$	0.240	0.087

Simulation Results: Regression results

Model Specification	$\log (c)$	$\log (Q)$	R^{2}
Data	-0.035		0.054
		0.051	0.064
	-0.034	$\mathbf{0 . 0 0 2}$	0.062
(1) Deterministic σ	-0.105		0.000
1 period		0.362	0.088
	0.237	$\mathbf{0 . 3 6 4}$	0.089
(2) Stochastic σ	-0.087		0.025
1 period		0.167	0.065
	0.044	$\mathbf{0 . 2 0 7}$	0.068
(4) Stochastic σ	-0.108		0.041
5 period		0.222	0.086
	0.017	$\mathbf{0 . 2 4 0}$	0.087

Where is the Effect Stronger?

Model Specification	$\log (c)$	$\log (Q)$	R^{2}
Data	-0.035		0.054
		0.051	0.064
	-0.034	0.002	0.062
(4) Stochastic σ	-0.108		0.041
5 period		0.222	0.086
	$\mathbf{0 . 0 1 7}$	0.240	0.087
Far from default:	$\mathbf{0 . 3 0 4}$	0.782	0.135
Close to default:	$\mathbf{- 0 . 0 3 4}$	$\mathbf{0 . 0 9 8}$	0.092

Where is the Effect Stronger?

Model Specification	$\log (c)$	$\log (Q)$	R^{2}
Data	-0.035		0.054
		0.051	0.064
	-0.034	0.002	0.062
(4) Stochastic σ	-0.108		0.041
5 period		0.222	0.086
	0.017	$\mathbf{0 . 2 4 0}$	0.087
Far from default:	0.304	$\mathbf{0 . 7 8 2}$	0.135
Close to default:	-0.034	$\mathbf{0 . 0 9 8}$	0.092

Conclusion

We propose a neoclassical investment model with stochastic volatility in firms' productivity shocks and long-term defaultable debt

In our calibrated model, we find that these new ingredients:

1. Reduce the mean leverage, increase the probability of default
2. Increases the explanatory power of credit spreads on i / k
3. Decreases the explanatory power of Tobin's Q on i / k

Model extensions:

1. Experiment with idiosyncratic 'disaster' shocks (compare to stochastic volatility)
2. Use model to measure agency costs of debt (induced by multi-period maturity)

Questions.

