A Contagious Malady? Open Economy Dimensions of Secular Stagnation

Gauti B. Eggertsson, Neil Mehrotra, Sanjay Singh, Lawrence H. Summers

Secular Stagnation

- Hansen (1938), Summers (2014)
- A situation in which the natural rate of interest is negative for an arbitrarily long time.
- Central bank needs to set *negative real rate of interest* for market to clear.
- Can't get it with nominal interest rate cuts.
- Prospects for a <u>very long</u> demand recession.

The problem

Demographics Fall in relative price of investment Debt Deleveraging Increase in inequality <u>Global savings glut</u>

ZLB and Central bank unwillingness to tolerate inflation puts a bound on this

Open Economy Dimensions of Secular Stagnation

- How does financial markets integration affect the prospect of secular stagnation?
- Is it linked Bernanke's global savings glut hypothesis?
- If so: Should we push for opening up of financial flows to prevent it as suggested by Bernanke?
- Is there role for currency depreciation to escape secular stagnation?
- How is the case for fiscal policy affected by open economy dimension?
- The paper: Address this question in a two country open economy model

Results: World Secular Stagnation

Derive natural rate with an without financial integration

Results: World Stagnation

 $v_t^{n,W}$

- Either domestic or foreign can be stagnated (multiplicity).
- One country can escape a trap at the expense of the other (exchange rate looks like beggar they neighbor policy).
- Expansionary fiscal policies have strong positive externalities (and thus may be undersupplied).
- Strong gains from cooperation.

Stucture of the talk

 Natural rate in OLG.
 Eggertsson and Mehrotra (2014) + open economy + international reserve accumulations

2. Add ZLB and nominal frictions. Autarky or integration better?

Households

 $\max_{C_t^y, C_{t+1}^m, C_{t+2}^o} \mathbb{E}_t \left\{ \log C_t^y + \beta \log C_{t+1}^m + \beta^2 \log C_{t+2}^o \right\}$

Budget constraints

$$C_{t}^{y} = B_{t}^{y}$$

$$C_{t+1}^{m} = Y_{t+1} - (1+r_{t})B_{t}^{y} + B_{t+1}^{m}$$

$$C_{t+2}^{o} = -(1+r_{t+1})B_{t+1}^{m}$$

$$(1+r_{t})B_{t}^{i} \leq D_{t}$$

Equilibrium conditions

International dimensions: An identical country of size 1-ω

Young

$$C_t^y = B_t^y = \frac{D_t}{1 + r_t}$$
 Applies also

Middle aged $(C_t^m)^{-1} = \beta \mathbb{E}_t (1+r_t) (C_{t+1}^o)^{-1}$ for foreign *

Old
$$C_t^o = -(1+r_{t-1})B_{t-1}^m$$
 $1+r_t = 1+r_t^*$

Market

clearing in bond market

$$N_t B_t^{y} \neq N_t^* B_{t+1}^{y*} B_{\overline{t}}^m - N_{t-1} B_t^m - N_{t-1}^* B_t^{m*}$$

$$1 + r_t^W = \frac{1+\beta}{\beta} \frac{\omega D_t + (1-\omega)D_t^*}{\omega Y_t + (1-\omega)Y_t^* - \omega D_{t-1} - (1-\omega)D_{t-1}^*}$$

Open Economy dimensions

$$1 + r_t^{autarky} = \frac{1+\beta}{\beta} \frac{(1+g_t)D_t}{Y_t - D_{t-1}} \qquad 1 + r_t^{autarky*} = \frac{1+\beta}{\beta} \frac{(1+g_t)D_t^*}{Y_t^* - D_{t-1}^*}$$

$$1 + r_t^W = \frac{1+\beta}{\beta} \frac{\omega D_t + (1-\omega)D_t^*}{\omega Y_t + (1-\omega)Y_t^* - \omega D_{t-1} - (1-\omega)D_{t-1}^*}$$

If
$$r_t^{autarky} > r_t^{autarky^*}$$
, then $r_t^{autarky} > r_t^W > r_t^{autarky^*}$

Global saving glut

- After East Asian crisis those countries started accumulating large reserve of US Treasuries without increasing their own debt.
- This reduced world real interest rate.
- Relevant? In principle not in a model with <u>Ricardian</u> <u>Equivalence</u>

Reserve accumulation

Consider each government issuing its own debt. Fiscal rules:

- No taxes on young,
- real value of debt fixed.

$$T_{t+1}^o = \beta \left(1 + r_t\right) T_t^m$$

The holding of foreign government of government debt. f the other.

Imagine now one government buys the debt of the other. Show in paper:

$$1 + r_t^W = \frac{1+\beta}{\beta} \frac{\omega(D_t + B_t^g) + (1-\omega)(D_t^* + B_t^{g*})}{\omega(Y_t - D_{t-1}) + (1-\omega)(Y_t^* - D_{t-1}^* + \frac{1+\beta}{\beta}B_t^{g,F})}$$

Global saving glut

- Introducing open economy OLG gives a natural way of thinking about the global savings glut.
- Breakdown of Ricardian equivalence means the supply of government debt becomes important.
- The "excess" savings in emerging markets is putting downward pressure on interest rate.
- They are piling up US government debt and not creating other saving vehicles to replace them.
- Perfectly compatible with other forces for secular stagnation.

The problem: Globally low interest rates

Demographics Fall in relative price of investment Debt Deleveraging Increase in inequality <u>Global savings glut</u>

Bounded ZLB and Central bank unwillingness to tolerate inflation

AD: Nominal price determination

Woodford's cashless limit

$$(C_t^m)^{-1} = (1+i_t)\beta E_t (C_{t+1}^o)^{-1} \frac{P_t}{P_{t+1}}$$
$$(C_t^m)^{-1} = (1+i_t^*)\beta E_t (C_{t+1}^o)^{-1} \frac{P_t^*}{P_{t+1}^*}$$

$$S_t = \frac{P_t}{P_t^*}$$

Interest rate parity

Government sets *i*

$$1 + i_t^* = (1 + i_t) \frac{S_t}{S_{t+1}}$$

AD: Monetary Policy --Inflation Target

 $\Pi_t = \overline{\Pi} \text{ if } i_t \ge 0 \text{ otherwise } i_t = 0 \text{ and } \Pi_t < 1$ $\Pi_t^* = \overline{\Pi}^* \text{ if } i_t^* \ge 0 \text{ otherwise } i_t^* = 0 \text{ and } \Pi_t^* < 1$

Aggregate Demand: Steady State

$$Y + Y^* = \frac{1+\beta}{\beta} \frac{D+D^*}{1+r^w} + D + D^*$$
 is

$$\Pi = \overline{\Pi} \text{ or } i = 0$$

$$\Pi^* = \bar{\Pi}^* \text{ or } i^* = 0$$

Monetary Policy

$$1 + r^w = \frac{1+i}{\Pi}$$
$$1 + r^w = \frac{1+i^*}{\Pi^*}$$

Fisher Equations

Aggregate Demand: Symmetric

The Model: Aggregate Supply

- Output produce by labor: $Y = AL^{\alpha}$
- Middle aged would like to supply
- Labor demand
- $W/P = \alpha A L^{\alpha}$

L

• Downward nominal wage rigidity

$$W_{t} = \max\{W^{*}, \gamma W_{t-1} + (1 - \gamma)W^{*}\}$$

where $W^{*} = P \alpha A \overline{L}^{\alpha}$

Two regimes:

$$Y = \begin{cases} Y^{f} & \text{if } \Pi \geq 1 \\ Y^{f} \left(\frac{1-\frac{\gamma}{\Pi}}{1-\gamma}\right)^{\frac{\alpha}{1-\alpha}} & \text{otherwise} \end{cases}$$

Aggregate Supply: Symmetric

Equilibrium: Symmetric

Better off in financial autarky?

- Observe that in a symmetric equilibrium: both countries in secular stagnation.
- Implication: Domestic better of imposing capital controls since it has positive natural rate in autarky.

 \rightarrow Eliminates the secular stagnation equilibria.

Multiplicity

• Not pinned down if **<u>both</u>** in secular stagnation

only <u>one</u>

and when so then indetermined if Domestic or Foreign

Monetary Policy: Solutions

Monetary Policy: Currency wars

- Nominal exchange rate is the ratio of the price level in the two countries
- At ZLB each country loses control of its price level.
- Exchange rate pinned down by interest rate parity in the model

$$1 + i_t^* = (1 + i_t) \frac{S_t}{S_{t+1}}$$

Currency wars

- Imagine each country could commit to a given nominal rate path for exchange rate (e.g. via commitment about future policy or "interventions").
- What does it imply for equilibrium?
- Consider a situation in which the domestic economy is in secular stagnation and the foreign is not.

$$\frac{S_{t+1}}{S_t} = (\Pi^D)^{-1} > 1$$

• Exchange rate continously appreciating.

Proposition 8. Suppose $r^{W,Natural} < 0$, the inflation targets are given by $\overline{\Pi} = \overline{\Pi}^* = 1$, and the nominal exchange rate is pegged at $\overline{S}_{t+1} = S_t = \overline{S}$. Then the global symmetric secular stagnation equilibria is the unique solution of the model.

Domestic economy in secular stagnation, exports deflation and SS by pegging its nominal exchange rate.

Proposition 9. Suppose $\frac{S_{t+1}}{S_t} < \Pi^{FS*}$ and the world natural rate of interest is negative. Then there exists no equilibrium in which the domestic economy is in a secular stagnation, but, if $\overline{\Pi}^* = 1$, the foreign economy must always be secular stagnation.

A policy of depreciation of domestic relative to foreign enforces the <u>assymetric</u> secular stagnation (unless the foreign successfully commits to higher inflation as well)

BOTTOMLINE: Problem with exchange rate as way out is that it only tells us something about the price level in a relative to b. What is needed is a general increase in prices. No change in nominal exchange rate needed for that.

Fiscal Policy

- How is fiscal policy affected by opening of economy?
- Consider spending financed by tax on working.
- Fiscal policy has an effect through the world natural rate of interest.
- Very strong spillover effects

$$1 + r_t^A = \frac{1+\beta}{\beta} \frac{D_t}{Y_t - G_t - D_{t-1}}$$
$$1 + r_t^W = \frac{1+\beta}{\beta} \frac{D_t + D_t^*}{Y_t - G_t + Y_t^* - G_t^* - D_{t-1} - D_{t-1}^*}$$

Large multiplier in secular stagnation

Symmetric secular stagnation

Normal

Gains from international coordination

- The gains from fiscal expansion is borne in both countries.
- Countries have an incentive to free-ride on the effort of the other
- Show in the paper some policy games in which case undersupply of government spending without coordination.

Debt

- Can show similar result with debt issuance.
- Key issue: What type of limits might there exist on debt issuance?
- The model is crying for government debt.

$$1 + r_t^W = \frac{1+\beta}{\beta} \frac{\omega(D_t + B_t^g) + (1-\omega)(D_t^* + B_t^{g*})}{\omega(Y_t - D_{t-1}) + (1-\omega)(Y_t^* - D_{t-1}^* + \frac{1+\beta}{\beta}B_t^{g,F})}$$

Fiscal vs. monetary

Conclusions

- Secular Stagnation a global phenomena
- Not at all obvious if increasing financial integration solves it: May simply drag all countries down not experiencing the problem.
- Government spending or debt issued solve the problem.
- Permanent increase in inflation (if credible) also does.