Bubbles, Money and Liquidity Traps: an Analytical Perspective

Vladimir Asriyan, Luca Fornaro, Alberto Martin and Jaume Ventura

CREI, UPF and Barcelona GSE

18th June, 2015
Facts and Questions

Key features of the last two decades:

- large fluctuations in net worth
- large fluctuations in money holdings
- low nominal and real interest rates: liquidity trap
- macro aggregates correlated with net worth
Net Worth, 1980-2015

Figure 1: Net worth of US households and nonprofit organizations divided by GDP

Source: Board of Governors of the Federal Reserve System
Money, 1980-2015

Source: Federal Reserve Bank of St. Louis

Figure 2: Ratio of the money stock M1 to nominal GDP
Real Interest Rates, 1980-2015

Source: Board of Governors of the Federal Reserve System (authors' calculation)
Inflation Rate, 1980-2015

Source: US. Bureau of Labor Statistics

Figure 4
Nominal Interest Rates, 1980-2015

Figure 5: Nominal 3-month treasury bill rate (secondary market)

Source: Board of Governors of the Federal Reserve System
Macro aggregates, 1980-2015

![Real Growth Rates (%)](image)

Source: Bureau of Economic Analysis (authors’ calculation)
Facts and questions

Key features of the last two decades:

- large fluctuations in net worth
- large fluctuations in money holdings
- low nominal and real interest rates: liquidity trap
- macro aggregates correlated with net worth

Key questions

- why have fluctuations in net worth and money holdings become so large?
- how are they connected to low interest rates?
- what are their effects on output, consumption and investment?
This paper

- Model of bubbles, money and investment

- Theoretical framework with the following features:
 - liquidity traps appear when there is a shortage of stores of value
 - money holdings expand at the expense of investment in capital
 - bubbles raise collateral, crowd out money and crowd in investment
This paper

- Model of bubbles, money and investment

- Theoretical framework with the following features:
 - liquidity traps appear when there is a shortage of stores of value
 - money holdings expand at the expense of investment in capital
 - bubbles raise collateral, crowd out money and crowd in investment

- Application to recent events:
 - several factors have put downward pressure on interest rates
 - dot.com and housing bubbles temporarily alleviated these pressures
 - after their collapse the economy entered into a liquidity trap
Related literature

- **Rational bubbles**
 - Samuelson (1958), Tirole (1985)

- **Bubbles and financial frictions**

- **Liquidity traps**
Model

- Two-period OLG structure

- All individuals maximize: $U_t^i = E_t C_{t,t+1}^i$

- Savers:
 - Supply one unit of labor when young and receive wage W_t
 - Save by lending to entrepreneurs F_t and by holding money M_t

- Entrepreneurs (or bankers?):
 - Supply one unit of labor when young and receive wage W_t
 - Construct portfolios of capital and bubbles, K_t and B_t
 - Finance their activities by selling credit contracts, F_t
Capital and bubbles

- **Capital:**
 - Investment by entrepreneurs, full depreciation
 - Production: \(F(K_t, N_t) = K_t^\alpha \cdot (\gamma^t \cdot N_t)^{1-\alpha} \), where \(\gamma \geq 1 \)

- **Bubbles:**
 - Intrinsically useless assets only held for resale
 - Initiated and traded by entrepreneurs
 - Law of motion: \(B_{t+1} = g_{t+1} \cdot B_t + N_{t+1} \)
 * \(g_{t+1} \) is growth in the value of old bubbles
 * \(N_{t+1} \) value of new bubbles
Money

- Used to facilitate transactions and as store of value
- Rate of money growth set by government

\[M_{t+1} = \mu \cdot M_t \quad \text{and} \quad T_{t+1} = \frac{M_{t+1} - M_t}{\rho_{t+1}} \]

seignorage rebated lump-sum

- Savers subject to cash-in-advance constraint

\[M_t \geq \frac{1}{\nu} \cdot \rho_{t+1} \cdot C^S_{t+1} \]
Credit

- Entrepreneurs sell credit contracts to savers
 - Promise a contingent gross return R_{t+1}
 - $E_t R_{t+1}$ is the real interest rate
- Credit contracts need to be collateralized:
 \[R_{t+1} \cdot F_t \leq \phi \cdot r_{t+1} \cdot K_{t+1} + B_{t+1} \]
 where r_{t+1} denotes the rental price of capital
- One constraint for each possible future
Market equilibria

- **Factor markets:** \(w_t = (1 - \alpha) \cdot k_t^\alpha \) and \(r_t = \alpha \cdot k_t^{\alpha - 1} \)

- **Market for bubbles:** \(E_t g_{t+1} = E_t R_{t+1} \)

- **Money market clears:**

\[
\frac{1}{\pi_{t+1}} \geq R_{t+1} \cdot \frac{(1 - \varepsilon) \cdot (1 - \alpha) \cdot k_t^\alpha - m_t}{(\nu - \mu) \cdot m_t} \quad \text{and} \quad E_t \left\{ \frac{1}{\pi_{t+1}} \right\} \leq E_t R_{t+1}
\]

where \(\pi_{t+1} \) denotes the inflation rate

- **Credit market clears:**

\[
R_{t+1} = \frac{\gamma \cdot [\phi \cdot \alpha \cdot k_{t+1}^\alpha + b_{t+1}]}{(1 - \varepsilon) \cdot (1 - \alpha) \cdot k_t^\alpha - m_t}
\]

where the borrowing constraint binds
Equilibrium dynamics

- From aggregate resource constraint:

\[\gamma \cdot k_{t+1} = (1 - \alpha) \cdot k_t^\alpha - m_t - b_t \]

- Existence of bubbles requires low interest rates: possible sources
 - Inefficient investment (traditional view)
 - Financial frictions (this paper)
 - here, low rates can also give rise to liquidity traps

- Finding equilibria:
 - Propose process \(\{g_t, n_t, \pi_t\} \) such that \(E_t g_{t+1} = E_t R_{t+1} \) and \(n_t \geq 0 \)
 - Determine all possible sequences for state variables \(\{k_t, b_t, m_t\} \)
 - Check that all sequences satisfy \(k_t \geq 0, b_t \geq 0 \) and \(m_t \geq 0 \)
Case 1: Bubbleless Economy

- If \(b_t = 0 \) for all \(t \),

\[
 m_t = \max \left\{ \frac{\mu \cdot \phi \cdot \alpha}{\nu - \mu}, (1 - \varepsilon) \cdot (1 - \alpha) - \mu \cdot \phi \cdot \alpha \right\} \cdot k_t
\]

The economy is in a liquidity trap if:
- Transaction needs are low: high \(\nu \)
- Credit supply is high relative to credit demand: low \(\varepsilon \) and \(\phi \)
- Inflation tax is low and return on money is high: low \(\mu \)
Case 1: Bubbleless Economy
Case 2: Bubbly Economy

- If \(b_0 = 0 \) and \(n_t = x \cdot k_t^\alpha \) for all \(t \), then the bubble grows and the economy transitions to a steady state \(\{ b, m \} \), where

\[
m = \max \left\{ \frac{\mu \cdot (\phi \cdot \alpha + x^B)}{v - \mu}, (1 - \varepsilon) \cdot (1 - \alpha) - \mu \cdot (\phi \cdot \alpha + x^B) \right\} \cdot k^\alpha
\]

where \(b = x^B \cdot k^\alpha \).
Case 2: Bubbly Economy

Bubble/output, x^B Money/output, x^M Investment rate, s Capital, k

Bubble/output, x^B Money/output, x^M Investment rate, s Capital, k

Bubble/output, x^B Money/output, x^M Investment rate, s Capital, k
Facts and questions

Key features of the last two decades:

- large fluctuations in net worth
- large fluctuations in money holdings
- low nominal and real interest rates: liquidity trap
- macro aggregates correlated with net worth

Key questions:

- why have fluctuations in net worth and money holdings become so large?
- how are they connected to low interest rates?
- what are their effects on output, consumption and investment?
Facts and questions

- Key features of the last two decades:
 - large fluctuations in net worth
 - large fluctuations in money holdings
 - low nominal and real interest rates: liquidity trap
 - macro aggregates correlated with net worth

- Key questions:
 - why have fluctuations in net worth and money holdings become so large?
 - how are they connected to low interest rates?
 - what are their effects on output, consumption and investment?
General narrative

- Declining real and nominal interest rates:
 - financial globalization (increase in $1 - \varepsilon$)
 - improvement in transactions technology (increase in ν)
 - decline of inflation (fall in μ)

- Conditions for liquidity traps, but also for bubbles, to arise
Factors that have put downward pressure on interest rates

Figure 11: Transition from CIA to LT with no bubbles
Dot.com, housing bubbles hid these pressures

Figure 12: Transition from CIA to LT with bubbles
When bubble bursts, economy enters liquidity trap

Figure 13: Transition from CIA to LT with a bubble that crashes
Conclusions

- Model of bubbles, money and investment

- Theoretical framework with the following features:
 - liquidity traps appear when there is a shortage of stores of value
 - money holdings expand at the expense of investment in capital
 - bubbles raise collateral, crowd out money and crowd in investment

- Application to recent events:
 - several factors have put downward pressure on interest rates
 - dot.com and housing bubbles temporarily alleviated these pressures
 - after their collapse the economy entered into a liquidity trap