The Tail that Wags the Economy: Belief-driven Business Cycles and Persistent Stagnation

Julian Kozlowski Laura Veldkamp Venky Venkateswaran
NYU NYU Stern NYU Stern

June 2015
Introduction

The “Great Recession” spawned two major lines of business cycle research

- Belief shocks: News, sentiments, disaster risk, uncertainty...

- Secular stagnation: Long-lived adverse effects from large shocks
Introduction

The “Great Recession” spawned two major lines of business cycle research

- Belief shocks: News, sentiments, disaster risk, uncertainty...
- Secular stagnation: Long-lived adverse effects from large shocks

These two agendas have largely remained separate

- Most belief-driven theories have no internal propagation
- Effects only as persistent as exogenous persistence of belief shocks
- Cannot explain why some cycles are more persistent than others.
Introduction

The “Great Recession” spawned two major lines of business cycle research

- Belief shocks: News, sentiments, disaster risk, uncertainty...
- Secular stagnation: Long-lived adverse effects from large shocks

These two agendas have largely remained separate

- Most belief-driven theories have no internal propagation
- Effects only as persistent as exogenous persistence of belief shocks
- Cannot explain why some cycles are more persistent than others.

Can belief changes explain persistent responses to transitory shocks?
Yes, when agents are learning about distributions (as opposed to hidden states)
This paper

A new approach to beliefs in business cycles

Agents estimate the distribution of aggregate shocks using real time data

- Empirical discipline on belief formation
- Delivers large, persistent responses to transitory shocks
This paper

A new approach to beliefs in business cycles

Agents estimate the distribution of aggregate shocks using real time data

• Empirical discipline on belief formation
• Delivers large, persistent responses to transitory shocks

Results:

• Tail events have a large, permanent effect on beliefs
• Leverage amplifies belief revisions from left-tail shocks
• A calibrated model predicts a permanent 13% drop in US GDP
Contribution to the Literature

 - We add: new mechanism, acting through belief revisions

Belief-driven business cycles
 - Belief shocks: Gourio (2012), Angeletos and La’O (2013), Bloom (2009)...
 - We add: endogenous belief revisions, persistence
 - Learning models: Johannes et. al. (2012), Cogley and Sargent (2005)...
 - We add: production, flexible non-parametric distributions
 - Endogenous uncertainty: Fajgelbaum et.al. (2014), Straub and Ulbricht (2013)...
 - We add: empirical discipline, larger effects
Model

Preferences: Representative household

\[U_t = \left[(1 - \beta) \left(C_t - \zeta \frac{L_t^{1+\gamma}}{1 + \gamma} \right)^{1-\psi} + \beta \mathbb{E}_t \left(U_{t+1}^{1-\eta} \right)^{\frac{1-\psi}{1-\eta}} \right]^{\frac{1}{1-\psi}} \]

- \(M_{t+1} \equiv \left(\frac{dU_t}{dC_t} \right)^{-1} \frac{dU_t}{dC_{t+1}} \): Stochastic discount factor
Model

Preferences: Representative household

\[U_t = \left[(1 - \beta) \left(C_t - \zeta \frac{L_t^{1+\gamma}}{1 + \gamma} \right)^{1-\psi} + \beta \mathbb{E}_t \left(U_{t+1}^{1-\eta} \right)^{1-\frac{\psi}{1-\eta}} \right]^{\frac{1}{1-\psi}} \]

- \(M_{t+1} \equiv \left(\frac{dU_t}{dC_t} \right)^{-1} \frac{dU_t}{dC_{t+1}} \): Stochastic discount factor

Technology: A continuum of firms, indexed by \(i \)

- Production: \(y_{it} = Ak_{it}^{\alpha} l_{it}^{1-\alpha} \)
- Aggregate capital quality shocks: \(k_{it} = \phi_t \hat{k}_{it} \quad \phi_t \sim G(\cdot) \quad iid \)
- Idiosyncratic shocks, \(\Pi_{it} = v_{it} [y_{it} + (1 - \delta)k_{it}] \)
- \(v_{it} \sim F(\cdot) \), common knowledge, \(iid \int v_{it} di = 1 \)
Model

Preferences: Representative household

$$U_t = \left[(1 - \beta) \left(C_t - \zeta \frac{L_{t+1}^{1+\gamma}}{1 + \gamma} \right)^{1-\psi} + \beta \mathbb{E}_t \left(U_{t+1}^{1-\eta} \right)^{\frac{1-\psi}{1-\eta}} \right]^{\frac{1}{1-\psi}}$$

- $$M_{t+1} \equiv \left(\frac{dU_t}{dC_t} \right)^{-1} \left(\frac{dU_t}{dC_{t+1}} \right)$$: Stochastic discount factor

Technology: A continuum of firms, indexed by $$i$$

- Production: $$y_{it} = A k_{it}^{\alpha} l_{it}^{1-\alpha}$$
- Aggregate capital quality shocks: $$k_{it} = \phi_t \hat{k}_{it} \quad \phi_t \sim G(\cdot) \quad iid$$
- Idiosyncratic shocks, $$\Pi_{it} = v_{it} [y_{it} + (1 - \delta) k_{it}]$$
- $$v_{it} \sim F(\cdot)$$, common knowledge, $$iid \quad \int v_{it} di = 1$$

Beliefs:

- $$\mathbb{E}_t (\cdot) \equiv \mathbb{E} [\cdot | \mathcal{I}_t]$$: More on $$\mathcal{I}_t$$ later
Model

Labor markets

- Hired in advance, i.e. before observing aggregate/idiosyncratic shocks
- Non-contingent wages \implies workers subject to default risk
- Economy-wide wage rate (in period t consumption) $\mathcal{W}_t \equiv \left(\frac{dU_t}{dC_t} \right)^{-1} \frac{dU_t}{dL_{t+1}}$
Model

Labor markets

- Hired in advance, i.e. before observing aggregate/idiosyncratic shocks
- Non-contingent wages → workers subject to default risk
- Economy-wide wage rate (in period t consumption) $\mathcal{W}_t \equiv \left(\frac{dU_t}{dC_t} \right)^{-1} \frac{dU_t}{dL_{t+1}}$

Credit markets

- Competitive lenders offer price schedules $q(\cdot)$ for 1-period bonds
- Total proceeds: $\chi q b_{it+1}$ where $\chi > 1$ reflects tax advantage of debt
Model

Labor markets

- Hired in advance, i.e. before observing aggregate/idiosyncratic shocks
- **Non-contingent** wages \rightarrow workers subject to default risk
- Economy-wide wage rate (in period t consumption) $W_t \equiv \left(\frac{dU_t}{dC_t} \right)^{-1} \frac{dU_t}{dL_{t+1}}$

Credit markets

- Competitive lenders offer price schedules $q(\cdot)$ for 1-period bonds
- Total proceeds: $\chi q b_{it+1}$ where $\chi > 1$ reflects tax advantage of debt

Default

- Firm assets sold to a identical new firm at a discount of $1 - \theta$
- Proceeds distributed pro-rata among bondholders and workers
The firm’s problem

\[V(\Pi_{it}, B_{it}, S_t) = \max \left[0, \max_{d_{it}, \hat{k}_{it+1}, b_{it+1}, w_{it+1}, l_{it+1}} \left(d_{it} + \mathbb{E}_t M_{t+1} V(\Pi_{it+1}, B_{it+1}, S_{t+1}) \right) \right] \]

- **Dividends:**
 \[d_{it} \leq \Pi_{it} - B_{it} - \hat{k}_{it+1} + \chi q_{it} b_{it+1} \]

- **Discounted wages:**
 \[W_t \leq w_{it+1} q(\hat{k}_{it+1}, l_{it+1}, B_{it+1}, S_t) \]

- **Future obligations:**
 \[B_{it+1} = b_{it+1} + w_{it+1} l_{it+1} \]

- **Resources:**
 \[\Pi_{it+1} = v_{it+1} \left[A(\phi_{t+1} \hat{k}_{it+1})^\alpha l_{it+1}^{1-\alpha} + (1 - \delta) \phi_{t+1} \hat{k}_{it+1} \right] \]

- **Bond price:**
 \[q(\hat{k}_{it+1}, l_{it+1}, B_{it+1}, S_t) = \mathbb{E}_t M_{t+1} \left[r_{it+1} + (1 - r_{it+1}) \frac{\theta \tilde{V}_{it+1}}{B_{it+1}} \right] \]

- Dividends \(d_{it} \) can be negative, i.e. no financing constraints
- Default policy \(r_{it+1} \in \{0, 1\} \) and value \(\tilde{V}_{it+1} \equiv V(\Pi_{it}, 0, S_t) \)
- Aggregate state: \(S_t \) (includes information)
Information and learning

- Distribution G of aggregate shocks unknown to agents
 - \mathcal{I}_t: (Finite) History of aggregate variables $\rightarrow \{\phi_{t-s}\}_{s=0}^T$

- Agents construct an estimate \hat{G}_t from observed data
 - Use a standard Gaussian kernel density estimator
Information and learning

- Distribution G of aggregate shocks unknown to agents
 - I_t: (Finite) History of aggregate variables $\rightarrow \{\phi_{t-s}\}_{s=0}^T$

- Agents construct an estimate \hat{G}_t from observed data
 - Use a standard Gaussian kernel density estimator

- Equilibrium concept: anticipated utility
 - Agents myopic with respect to belief changes, but otherwise rational
The mechanism

$$\max_{\hat{k}_{t+1}, l_{t+1}, lev_{t+1}} \quad - \quad \hat{k}_{t+1} - \chi W_t l_{t+1}$$

$$+ \quad \mathbb{E}_t [M_{t+1} \Pi_{t+1}] \quad + \quad (\chi - 1) q_t \cdot lev_{t+1} \cdot \hat{k}_{t+1} \quad - \quad (1 - \theta) \mathbb{E}_t [M_{t+1} (1 - r_{t+1}) \Pi_{t+1}]$$

Output + Undep capital + Tax advantage of debt - Cost of default

A negative shock → More pessimistic beliefs
- $\mathbb{E}_t [M_{t+1} \Pi_{t+1}]$ declines (also present without debt)
- Tax advantage goes down (because q_t declines)
- Default costs rise
⇒ Lower incentives to invest and hire
The mechanism

\[
\max_{\hat{k}_{t+1}, l_{t+1}, lev_{t+1}} - \hat{k}_{t+1} - \chi W_t l_{t+1}
\]

\[
+ \mathbb{E}_t [M_{t+1} \Pi_{t+1}] + (\chi - 1) q_t \cdot lev_{t+1} \cdot \hat{k}_{t+1} - (1 - \theta) \mathbb{E}_t [M_{t+1} (1 - r_{t+1}) \Pi_{t+1}]
\]

Output + Undep capital
Tax advantage of debt
Cost of default

A negative shock → More pessimistic beliefs

- \(\mathbb{E}_t [M_{t+1} \Pi_{t+1}] \) declines (also present without debt)

- Tax advantage goes down (because \(q_t \) declines)

- Default costs rise

⇒ Lower incentives to invest and hire
Calibration

Strategy: Match aggregate and cross-sectional moments of the US economy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.91</td>
<td>Discount factor</td>
</tr>
<tr>
<td>η</td>
<td>10</td>
<td>Risk aversion</td>
</tr>
<tr>
<td>ψ</td>
<td>0.50</td>
<td>1/Intertemporal elasticity of substitution</td>
</tr>
<tr>
<td>γ</td>
<td>0.50</td>
<td>1/Frisch elasticity</td>
</tr>
<tr>
<td>ζ</td>
<td>1</td>
<td>Labor disutility</td>
</tr>
<tr>
<td>α</td>
<td>0.40</td>
<td>Capital share</td>
</tr>
<tr>
<td>δ</td>
<td>0.03</td>
<td>Depreciation rate</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>TFP</td>
</tr>
<tr>
<td>χ</td>
<td>1.06</td>
<td>Tax advantage of debt</td>
</tr>
<tr>
<td>θ</td>
<td>0.70</td>
<td>Recovery rate</td>
</tr>
<tr>
<td>$\hat{\sigma}$</td>
<td>0.33</td>
<td>Idiosyncratic volatility</td>
</tr>
<tr>
<td>lev^{Target}</td>
<td>0.70</td>
<td>Leverage ratio</td>
</tr>
</tbody>
</table>
Measuring capital quality shocks

\[\phi_t = \frac{K_t}{\hat{K}_t} = \frac{\text{value of capital}}{\text{yesterday’s capital + investment}} \]

Observables

\[NFA_{t}^{RC} = \text{Replacement cost of non-financial assets (Flow of Funds)} \]
\[NFA_{t}^{HC} = \text{Historical cost of non-financial assets (Flow of Funds)} \]
\[PINDX_{t}^{k} = \text{Investment price index (BEA)} \]

Model objects

\[P_t^k K_t = NFA_{t}^{RC} \]
\[P_{t-1}^k \hat{K}_t = (1 - \delta) NFA_{t-1}^{RC} + P_{t-1}^k X_{t-1} \]
\[= (1 - \delta) NFA_{t-1}^{RC} + NFA_{t}^{HC} - (1 - \delta) NFA_{t-1}^{HC} \]

\[\Rightarrow \phi_t = \left(\frac{P_t^k K_t}{P_{t-1}^k \hat{K}_t} \right) \left(\frac{PINDX_{t-1}^k}{PINDX_t^k} \right) \]
Capital quality shocks

- Between 1950-2007, ϕ_t in a relatively tight range around 1
- Large negative shocks in 2008-09 \rightarrow significant rise in tail risk
Effect of a transitory shock

Experiment:

- Start with beliefs estimated on 1950-2007 data, add '08 and '09 shocks
- Simulate aggregate variables, holding beliefs fixed
- (For now, leverage is also held fixed - relaxed later).
Effect of a transitory shock

Experiment:

- Start with beliefs estimated on 1950-2007 data, add '08 and '09 shocks
- Simulate aggregate variables, *holding beliefs fixed*
- (For now, leverage is also held fixed - relaxed later).

Baseline results:

- Compare to de-trended data

 GDP close to the data, overshoot on capital and undershoot on labor
Effect of a transitory shock

Experiment:
- Start with beliefs estimated on 1950-2007 data, add '08 and '09 shocks
- Simulate aggregate variables, \textit{holding beliefs fixed}
- (For now, leverage is also held fixed - relaxed later).

Baseline results:
- Compare to de-trended data
 \textit{GDP close to the data, overshoot on capital and undershoot on labor}

Decomposition:
- Role of shock size: Contrast 2008-09 shocks (5\(\sigma\)) to 2001 shock (1\(\sigma\)).
 \textit{Small shocks have transitory effects}
- Role of learning: Use distribution implied by full sample throughout
 \textit{Without learning, initial impact similar, but less persistence}
- Role of leverage: Assume no debt \((\chi = 1, \text{Lev} = 0)\)
 \textit{Debt accounts for a third of the long-run effects}
- Role of higher moments: Assume \(\mathbb{E}(\phi_t) = 1\) throughout
 \textit{Higher moments account for more than half of total effect}
- Role of risk-aversion: Assume \(\psi = \eta = 0\), i.e. preferences are quasi-linear
 \textit{Risk aversion doubles effects, both in the short run and long run}
• A permanent drop in output of 13%
Results: Model vs Data

- Data: Deviations from log-linear, pre-crisis trend
Persistent vs Permanent?

What would temper our long-run effects?
Persistent vs Permanent?

What would temper our long-run effects?

Answer: if long-run beliefs differ significantly from current, e.g. because of

- New data, e.g. a long period without crises or with very good shocks
- Agents discount (or forget) past data
- Agents perceive regime changes (the distribution changes over time)
Results: Role of shock size

- Small shocks → small belief revisions → negligible long-run effects
Results: Role of learning

- No learning → effects are transitory
Results: Role of debt

- Debt accounts for one-third of long-run effects
Results: Role of higher moments

- Higher moments account for half of the long-run effects
Results: Role of risk aversion

- Risk aversion amplifies effects of belief revisions
Conclusion

- A simple, tractable framework of investment and hiring under learning

- Debt and large belief changes combine to generate significant - and *persistent* - declines in economic activity

- A potential explanation for the recent prolonged stagnation?
The quasi-linear case

- $\psi = \eta = 0 \implies M_{t+1} = \beta$

- Isolates the effect of belief revisions on returns

- Results presented for endogenous leverage
Optimality conditions

\[(1 - \theta) \mathbb{E}_t [M_{t+1} \nu f (\nu)] = \left(\frac{\chi - 1}{\chi}\right) \mathbb{E}_t [M_{t+1} (1 - F (\nu))]\]

\[1 = \mathbb{E}_t \left[R^k_{t+1} J^k (\nu) \right] - \chi \mathcal{W}_t \frac{l_{t+1}}{\hat{k}_{t+1}}\]

\[\chi \mathcal{W}_t = \mathbb{E}_t \left[M_{t+1} (1 - \alpha) A_{\phi_{t+1}}^\alpha \left(\frac{\hat{k}_{t+1}}{l_{t+1}} \right)^\alpha J'(\nu) \right]\]

where

\[R^k_{t+1} = \frac{A_{\phi_{t+1}}^\alpha \hat{k}_{t+1}^{1-\alpha} l_{t+1}^{1-\alpha} + (1 - \delta) \phi_{t+1} \hat{k}_{t+1}}{\hat{k}_{t+1}}\]

\[J^k (\nu) = 1 + \nu (\chi - 1) (1 - F (\nu)) + (\theta \chi - 1) h (\nu)\]

\[J' (\nu) = 1 + h (\nu) (\theta \chi - 1) - \nu^2 f (\nu) \chi (\theta - 1)\]

Now,

\[\chi = 1 \Rightarrow \nu = 0 \Rightarrow J^k = J' = 1\]
Simulation with belief revisions post-2009

- Capital quality shock
- GDP
- Capital
- Labor
With belief revisions post-2009

Capital quality shock

GDP

[Graph showing Capital quality shock with blue line and data points representing GDP with red dots and blue line.]

Capital

Labor

[Graphs showing the impact of capital quality shock on capital and labor with blue lines and red data points.]

[Graphs showing the GDP with blue line and red data points for the years 2010 to 2040.]