

GETTING ENERGY PRICES RIGHT

Ian Parry

Fiscal Affairs Department, IMF

The Energy Transition, INDCs and the Post-COP21 Agenda, Marrakech, September 8-9, 2016

Outline

• Carbon pricing

• Broader energy price reform

Carbon Pricing

Rationale for Carbon Pricing

- Carbon pricing vs. regulatory approaches
 - Far more environmentally effective
 - Raises significant revenue
- Trading systems should look like taxes
 - Combine with taxes for uncovered emissions (e.g., road, heating fuels)
 - Auction allowances
 - Include price ceilings and floors

Design Issues: Domestic

- Administration: ideally upstream
 - Maximizes coverage/minimizes collection points
 - Straightforward extension of fuel taxes
- Revenues: use productively
 - Cut other taxes or fund high-value spending
 - Strong case for carbon taxes in developing countries
- Price trajectories: align with INDCs based on
 - Emission projections and their responsiveness

Design Issues: International

- Price floors more flexible than uniform prices
 - Allow countries to exceed floor (for fiscal, domestic environmental, or political acceptability reasons)
 - Precedents: EU tax floors for VAT, excises
 - Need to monitor broader energy taxes/subsidies (manageable)

Prices for Paris and Revenue (Preliminary)

Country	Mitigation pledge: Reduce	Share of global CO ₂ , 2013	Required CO ₂ price/ton in target year, \$2015	Revenue in target year, percent GDP
Argentina	GHGs 15% below BAU in 2030	0.6	7	0.3
Australia	GHGs 26-28% below 2005 by 2030	1.3	>150	>3.5
Brazil	GHGs 37% below 2005 by 2025	1.5	>150	>3.1
Canada	GHGs 30% below 2005 by 2030	1.7	>150	>3.7
China	CO ₂ /GDP 60-65% below 2005 by 2030	29.0	39	2.0
France	GHGs 40% below 1990 by 2030	1.0	>150	>1.5
Germany	GHGs 40% below 1990 by 2030	2.5	>150	>2.3
India	GHG/GDP 33-35% below 2005 by 2030	6.0	0	0
Indonesia	GHGs 29% below BAU in 2030	1.4	>150	>4.3
Italy	GHGs 40% below 1990 by 2030	1.1	>150	>2.2
Japan	GHGs 25% below 2005 by 2030	4.0	>150	>3.3
Korea	GHGs 37% below BAU in 2030	1.8	>150	>4.3
Mexico	GHGs 25% below BAU in 2030	1.5	>150	>4.3
Russia	GHGs 25-30% below 1990 by 2030	5.0	22	2.4
S. Arabia	GHGs 130 mn tons below BAU by 2030	1.5	>150	>8.9
S. Africa	GHGs 398-614 mn tons in 2025 and 2030	1.4	42	5.0
Turkey	GHGs up to 21% below BAU by 2030	0.9	93	2.8
UK	GHGs 40% below 1990 by 2030	1.4	>150	>1.8
US	GHGs 26-28% below 2005 by 2025	16.5	116	2.3

China: Comparing Policy Effectiveness

8

China: Reductions in Air Pollution Deaths

Broader Energy Price Reform

Other Externalities

- (Outdoor) air pollution from fine particulates
 - 3.2 million deaths a year
 - Requires: tax on emissions or tax on fuel with credits for downstream mitigation (e.g., SO₂ scrubbers)
- Road congestion, accidents, pavement damage
 - London congestion \$40/gal., accidents kill 1.2 million
 - Requires: mileage taxes (e.g., peak period pricing)
- Fuel taxes appropriate for the interim

Valuing Externalities: Air Pollution

- Population exposure
 - Power plant location → number of people in proximity
- Exposure \rightarrow mortality
 - Evidence from GBD
- Monetize health effects
 - Evidence on WTP for health
- Damages per unit of fuels
 - Country-specific emissions factors

Ian Parry, Dirk Heine, Eliza Lis, and Shanjun Li

MONET

Getting Energy Prices Right

From Principle to Practice

Efficient Coal Prices, 2013

FAD

13

Efficient Natural Gas Prices, 2013

Efficient Gasoline Prices, 2013

Efficient Road Diesel Prices, 2013

Large Benefits from Reform, 2013

- Global CO₂
 - Reduced 21%
- Fossil fuel air pollution deaths
 - Reduced 55%
- Revenue gain
 - 4% of global GDP
- Economic welfare gain
 - 2% of global GDP

Concluding: Moving Policy Forward

- Energy price reform largely in countries interests
 - Countries can move ahead unilaterally
- Time is right
 - Low energy prices, fiscal pressures, Paris Agreement
- Need to address domestic obstacles
 - Protect low income households (requires ≈10% of revenues)
 - Assist transition away from uneconomic firms