Robust Dynamic Energy Use and Climate Change

OCP Conference, Marrakech

Xin I i **IMF**

Borghan Narajabad Federal Reserve Board

Ted Loch-Temzelides Rice University, Visiting MIT

Introduction

Climate Externality and the Macroeconomy:

Economic activity \rightarrow GHG stock \rightarrow Global Temperatures \rightarrow Damages

- Significant fiscal interventions proposed
- Our knowledge is still limited:
 - GHG emissions effect on global temperatures
 - Effect of global temperatures on output
- How to deal with this uncertainty?
 - Model Uncertainty (as opposed to risk)
 - Robust control

Uncertainty

- Econometrician concerned about misspecification
- Make agents in the model share this concern
 - Departure from Rational Expectations (Hansen, 2013)
- Instead, agents optimize given "worst case scenario" model
- Why "maxmin?"
 - Axiomatics (Gilboa and Schmeidler, 1989)
 - Robust Control (Hansen and Sargent, 2008, Whittle, 1981)

What We Do

- Introduce model uncertainty in growth model with energy sector/environmental externality
- Consider "fat-tailed" distributions for damages
- Consider unconventional sources
- Characterize optimal allocation, energy mix, tax, as functions of model uncertainty
- Concern about uncertainty affects optimal use of coal and oil/gas qualitatively and quantitatively
- Optimal robust tax rate depends on level of GHG concentration

The Setup (Golosov et al, 2014)

Preferences and technology:

$$\max \sum_{t=0}^{\infty} \beta^t u(C_t)$$
 s.t. $\tilde{K}_{t+1} = K^{\theta} E^{\nu} - C$, $\theta + \nu \leq 1$ GHG evolution

- Golosov, Hassler, Krusell, Tsyvinski (2014): three energy sectors: $E = (\kappa_1 E_1^{\rho} + \kappa_2 E_2^{\rho} + \kappa_3 E_3^{\rho})^{1/\rho}$
 - The oil/gas sector produces oil/gas (E_1) at zero cost; subject to a resource feasibility constraint, $R_0 > 0$
 - The coal and the green energy sector use linear technologies $E_i = A_i N_i$, i = 2.3
 - log utility, 100% capital depreciation (period is 10 years)

GHG Evolution

- Fossil fuel use adds to the atmospheric GHG concentration, S
- Permanent and temporary components of S, P and T, respectively, evolve as follows:

$$P' = P + \phi_L(E_1 + E_2)$$

 $T' = (1 - \phi)T + (1 - \phi_L)\phi_0(E_1 + E_2)$
 $S' = P' + T'$

Externality and Uncertainty

- Stochastic process reduces end-of-period capital stock: $K' = e^{-S'\gamma} \tilde{K}'$
- Two-person zero-sum dynamic game: "Malevolent player" chooses worst model specification; social planner best-responds
- Deviation from approximating distribution penalized by adding $\alpha \rho(\hat{\pi}(\gamma), \pi(\gamma))$ to planner's payoff
 - ρ , distance between approximating distribution, π , and malevolent player's distribution choice, $\hat{\pi}$
 - Higher α adds a larger amount to the planner's payoff \rightarrow Large deviation less likely

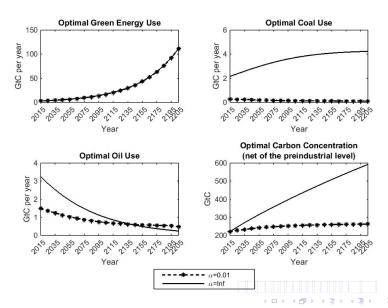
 Lower concern about model uncertainty

Robust Social Optimum

- Approximating distribution of γ : $\pi(\gamma) = \lambda e^{-\lambda \gamma}$
- The malevolent player chooses an alternative distribution $\hat{\pi}(\gamma)$, after observing (\tilde{K}', S')

$$\begin{split} V(K,S) &= \mathsf{max}_{C,E,\tilde{K}',S'} \, \mathsf{min}_{\hat{\pi}} \, \{ u(C) + \beta F \, [V(K',S'),\alpha\varrho(\hat{\pi},\pi)] \} \\ &\quad \text{s.t. feasibility} \\ &\quad \mathsf{law of motion for GHG} \end{split}$$

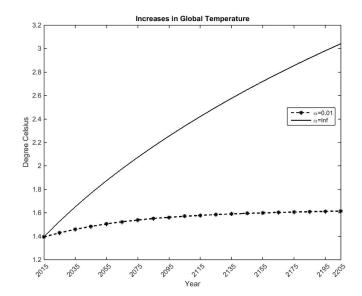
Equilibrium and Decentralization

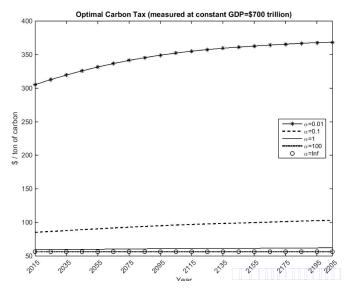

- We characterize the (Markov perfect) equilibrium consumption, energy use, and emissions, as well as the equilibrium distribution regarding damages
- We derive an explicit expression of the marginal externality from emissions
- By imposing the optimal (Pigouvian) tax associated with the externality, and rebating the proceeds as lump-sum payments, the resulting equilibrium allocation is efficient

Calibration

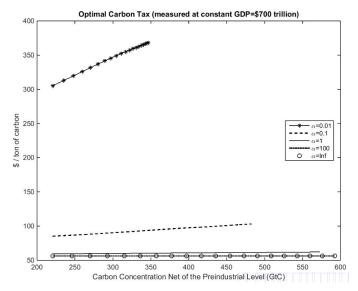
Table: Calibration Summary

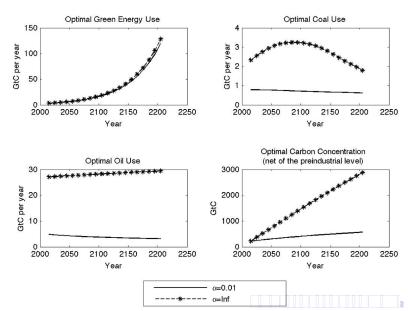
θ	ν	β	R_0
0.3	0.04	0.985^{10}	253.8
κ_1	κ_{2}	ρ	1+g
0.5008	0.08916	-0.058	1.02^{10}
P_0	<i>T</i> ₀	A _{2,0}	A _{3,0}
103	699	7,693	1,311
$\overline{\phi}$	ϕ_{L}	ϕ_{0}	λ^{-1}
0.0228	0.2	0.393	2.38×10^{-5}

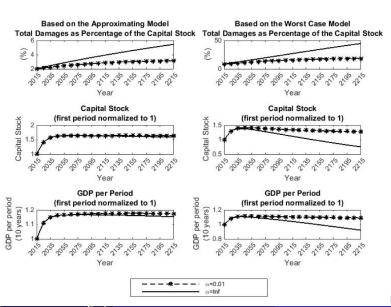

Optimal Energy Path (Excluding Unconventional)


Temperatures

- Map carbon concentrations to temperatures: $T(S_t) = 3 \ln(\frac{S_t}{\overline{c}}) / \ln(2)$
 - \bullet \overline{S} , preindustrial carbon concentration
- Average current temperature 1.4 degrees above preindustrial level
- Carbon concentration over next 200 years implies temperature increase of:
 - More than 1.6 degrees Celsius in non-robust path
 - About 0.2 degrees Celsius in the robust path




Optimal Tax as a Function of Model Uncertainty


Optimal Tax as a Function of Emissions Stock

Optimal Energy Path (Including Unconventional)

Capital and Output

Summary: Concern about Model Uncertainty

- Optimal carbon tax can restore efficiency and GHG concentration matters for optimal tax
 - Example of policy in that spirit (Michael Greenstone): adjust mining leases to reflect full climate damage from corresponding fuels
 - Market forces would lead to fossil fuels having the highest value (net of climate impact) being exploited first
 - Dirtiest fuels might well stay in the ground
- Smoother consumption of oil/gas
- Significant reduction in coal consumption
- Lots to do:
 - Technological progress in renewables and in fossil fuel extraction