Job Displacement and Crime: Evidence from Danish Micro Data

Patrick Bennett (Norwegian School of Economics)

Amine Ouazad (Ecole polytechnique)

Global Labor Markets Conference, September 2016
What are the *consequences* of unemployment?

- Impacts above and beyond the employer-employee pair → job separations may not be efficient.

Other significant social costs of crime. Crime a key driver of politicians' approval rates.

1990-2016: coincidence of crime and unemployment peaks in the US and in Denmark.

But Levitt (2004): the economy has too small an effect.

Studies of the effect of unemployment on crime combine county-level (or equiv) data with an IV (exchange rate, industrial spec. a la Bartik).

Captures the overall impacts of unemployment conditional on validity of IV.

Significant impacts of unemployment on property crime.
Unemployment → Crime

- What are the *consequences* of unemployment?
 - Impacts above and beyond the employer-employee pair → job separations may not be efficient.

- What *causes* crime?
 - Significant social costs of crime. Crime a key driver of politicians’ approval rates.
Unemployment → Crime

- **What are the *consequences* of unemployment?**
 - Impacts above and beyond the employer-employee pair → job separations may not be efficient.

- **What *causes* crime?**
 - Significant social costs of crime. Crime a key driver of politicians’ approval rates.

- **1990-2016**: coincidence of crime and unemployment peaks in the US and in Denmark.
 - But Levitt (2004): the economy has too small an effect.
Unemployment \rightarrow Crime

- **What are the *consequences* of unemployment?**
 - Impacts above and beyond the employer-employee pair \rightarrow job separations may not be efficient.

- **What *causes* crime?**
 - Significant social costs of crime. Crime a key driver of politicians’ approval rates.

- **1990-2016:** coincidence of crime and unemployment peaks in the US and in Denmark.
 - But Levitt (2004): the economy has too small an effect.

- Studies of the effect of unemployment on crime combine county-level (or equiv) data with an IV (exchange rate, industrial spec. a la Bartik).
Unemployment → Crime

- **What are the consequences of unemployment?**
 - Impacts above and beyond the employer-employee pair → job separations may not be efficient.

- **What causes crime?**
 - Significant social costs of crime. Crime a key driver of politicians’ approval rates.

- **1990-2016:** coincidence of crime and unemployment peaks in the US and in Denmark.
 - But Levitt (2004): the economy has too small an effect.

- Studies of the effect of unemployment on crime combine county-level (or equiv) data with an IV (exchange rate, industrial spec. a la Bartik).
 - Captures the overall impacts of unemployment conditional on validity of IV.
Unemployment \rightarrow Crime

- What are the *consequences* of unemployment?
 - Impacts above and beyond the employer-employee pair \rightarrow job separations may not be efficient.

- What *causes* crime?
 - Significant social costs of crime. Crime a key driver of politicians’ approval rates.

- 1990-2016: coincidence of crime and unemployment peaks in the US and in Denmark.
 - But Levitt (2004): the economy has too small an effect.

- Studies of the effect of unemployment on crime combine county-level (or equiv) data with an IV (exchange rate, industrial spec. a la Bartik).
 - Captures the overall impacts of unemployment conditional on validity of IV.
 - Significant impacts of unemployment on property crime.
What we’re doing

- Unique Danish administrative 1985-2000 individual data to estimate the impact of individual job separation ⇒ individual crime.
 - Using job displacement as an arguably idiosyncratic driver of job separations.

- Checks placebo tests and pre-displacement trends.
- Estimates family dynamics following displacement.
- How local income inequality magnifies displacement impacts.
- Incarceration periods correlated with larger earnings losses post-displacement.
- Prior contributions use county-level or equivalent analysis:
 - Split total impact of unemployment on crime = Individual impact + Spillover effects.
 - Unemployment effects vs Separations.

- Test of economic theory of crime:
What we’re doing

- Unique Danish administrative 1985-2000 individual data to estimate the impact of individual job separation ⇒ individual crime.
 - Using job displacement as an arguably idiosyncratic driver of job separations.
 - Checks placebo tests and pre-displacement trends.

Prior contributions use county-level or equivalent analysis:

Split total impact of unemployment on crime = Individual impact + Spillover effects.

Unemployment effects vs Separations.

Test of economic theory of crime:

What we’re doing

- Unique Danish administrative 1985-2000 individual data to estimate the impact of individual job separation ⇒ individual crime.
 - Using job displacement as an arguably idiosyncratic driver of job separations.
 - Checks placebo tests and pre-displacement trends.
 - Estimates family dynamics following displacement.
What we’re doing

- Unique Danish administrative 1985-2000 individual data to estimate the impact of individual job separation \Rightarrow individual crime.
 - Using job displacement as an arguably idiosyncratic driver of job separations.
 - Checks placebo tests and pre-displacement trends.
 - Estimates family dynamics following displacement.
 - How local income inequality magnifies displacement impacts.
What we’re doing

- Unique Danish administrative 1985-2000 individual data to estimate the impact of individual job separation \Rightarrow individual crime.
 - Using job displacement as an arguably idiosyncratic driver of job separations.
 - Checks placebo tests and pre-displacement trends.
 - Estimates family dynamics following displacement.
 - How local income inequality magnifies displacement impacts.
 - Incarceration periods correlated with largers earnings losses post-displacement.

Prior contributions use county-level or equivalent analysis:

- Split total impact of unemployment on crime = Individual impact + Spillover effects.
- Unemployment effects vs Separations.

Test of economic theory of crime:

- Earnings losses literature (Jacobson, Lalonde, Sullivan, AER, 1993) with Becker’s (1968) theory of crime. Earnings losses \Rightarrow Property crime?
What we’re doing

- Unique Danish administrative 1985-2000 individual data to estimate the impact of **individual job separation ⇒ individual crime**.
 - Using job displacement as an arguably idiosyncratic driver of job separations.
 - Checks placebo tests and pre-displacement trends.
 - Estimates family dynamics following displacement.
 - How local income inequality magnifies displacement impacts.
 - Incarceration periods correlated with larger earnings losses post-displacement.

- **Prior contributions** use county-level or equivalent analysis:
 - Split total impact of unemployment on crime = Individual impact + Spillover effects.
What we’re doing

- Unique Danish administrative 1985-2000 individual data to estimate the impact of *individual job separation* ⇒ *individual crime*.
 - Using job displacement as an arguably idiosyncratic driver of job separations.
 - Checks placebo tests and pre-displacement trends.
 - Estimates family dynamics following displacement.
 - How local income inequality magnifies displacement impacts.
 - Incarceration periods correlated with larger earnings losses post-displacement.

- **Prior contributions** use county-level or equivalent analysis:
 - Split total impact of unemployment on crime = Individual impact + Spillover effects.
 - Unemployment effects vs Separations.
What we’re doing

- Unique Danish administrative 1985-2000 individual data to estimate the impact of **individual job separation** ⇒ **individual crime**.
 - Using job displacement as an arguably idiosyncratic driver of job separations.
 - Checks placebo tests and pre-displacement trends.
 - Estimates family dynamics following displacement.
 - How local income inequality magnifies displacement impacts.
 - Incarceration periods correlated with larger earnings losses post-displacement.

- **Prior contributions** use county-level or equivalent analysis:
 - Split total impact of unemployment on crime = Individual impact + Spillover effects.
 - Unemployment effects vs Separations.

- **Test of economic theory of crime:**
 - Earnings losses literature (Jacobson, Lalonde, Sullivan, AER, 1993)
 with Becker’s (1968) theory of crime. Earnings losses ⇒ Property crime ?
Outline

1. Danish registry: longitudinal individual history.
2. Correlations of crime and transitions into unemployment.
Outline

1. Danish registry: longitudinal individual history.
2. Correlations of crime and transitions into unemployment.
4. Main Results.
Outline

1. Danish registry: longitudinal individual history.
2. Correlations of crime and transitions into unemployment.
4. Main Results.
5. Two extensions:
 5.1 Family spillovers.
 5.2 Inequality and Crime.
Danish Registry

- Database of every individuals residing in Denmark from 1980-present.
 1. **Employment spells:** *Integrated Database for Labor Market Research.*
Danish Registry

- Database of every individuals residing in Denmark from 1980-present.
 1. **Employment spells:** Integrated Database for Labor Market Research.
 2. **Unemployment spells:** Central Register of Labor Market Statistics.

- Tied by an individual Central Person Register (CPR).

- Focus on men, born 1945 to 1960, continuously in the sample.

 Endogenous exit and reentry not a significant issue.
Database of every individuals residing in Denmark from 1980-present.

1. **Employment spells:** *Integrated Database for Labor Market Research.*
2. **Unemployment spells:** *Central Register of Labor Market Statistics.*
3. **Citations, arrests, convictions, prison terms:** *Central Police Register.*
Danish Registry

- Database of every individuals residing in Denmark from 1980-present.

1. **Employment spells:** *Integrated Database for Labor Market Research.*
2. **Unemployment spells:** *Central Register of Labor Market Statistics.*
3. **Citations, arrests, convictions, prison terms:** *Central Police Register.*
4. **Family ties, education:** *Population Register.*
Danish Registry

- Database of every individuals residing in Denmark from 1980-present.

1. **Employment spells:** *Integrated Database for Labor Market Research.*
2. **Unemployment spells:** *Central Register of Labor Market Statistics.*
3. **Citations, arrests, convictions, prison terms:** *Central Police Register.*
4. **Family ties, education:** *Population Register.*

- Tied by an individual Central Person Register (CPR).
Danish Registry

- Database of every individuals residing in Denmark from 1980-present.
 1. **Employment spells:** *Integrated Database for Labor Market Research.*
 2. **Unemployment spells:** *Central Register of Labor Market Statistics.*
 3. **Citations, arrests, convictions, prison terms:** *Central Police Register.*
 4. **Family ties, education:** *Population Register.*
- Tied by an individual Central Person Register (CPR).
- Focus on men, born 1945 to 1960, continuously in the sample. Endogenous exit and reentry not a significant issue.
(i) Employer-Employee

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>S.D.</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Wage (2000 DKK)</td>
<td>238,170</td>
<td>169,906</td>
<td>141,047</td>
<td>247,029</td>
<td>317,177</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Weeks Fully Unemployed</td>
<td>2.88</td>
<td>9.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Firm size</td>
<td>4124.46</td>
<td>9860.5</td>
<td>20</td>
<td>183</td>
<td>2273</td>
<td>7,494,777</td>
</tr>
</tbody>
</table>

(ii) Demographics and Education

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>S.D.</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>39.23</td>
<td>6.56</td>
<td>35</td>
<td>39</td>
<td>44</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Birth Year</td>
<td>1952.27</td>
<td>4.67</td>
<td>1948</td>
<td>1952</td>
<td>1956</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Married</td>
<td>60.55%</td>
<td>48.87%</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Less than high school</td>
<td>27.23%</td>
<td>44.52%</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>High School</td>
<td>4.20%</td>
<td>20.06%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Vocational</td>
<td>44.33%</td>
<td>49.68%</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>University or beyond</td>
<td>22.75%</td>
<td>41.92%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Missing education</td>
<td>1.49%</td>
<td>12.10%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
</tbody>
</table>
(iii) Family Structure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>S.D.</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family income (2000 DKK)</td>
<td>484,396</td>
<td>451,135</td>
<td>323,507</td>
<td>461,747</td>
<td>588,389</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Wage as fraction of HH Income</td>
<td>50.47%</td>
<td>29.97%</td>
<td>36.11%</td>
<td>53.76%</td>
<td>67.10%</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Family size</td>
<td>2.89</td>
<td>1.35</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Adults in Family</td>
<td>1.89</td>
<td>0.62</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Number of children</td>
<td>1.05</td>
<td>1.14</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8,830,448</td>
</tr>
</tbody>
</table>

(iv) Police and Court Records

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>S.D.</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of charge</td>
<td>2.27%</td>
<td>14.89%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Number of charges</td>
<td>1.66</td>
<td>3.34</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>200,391</td>
</tr>
<tr>
<td>Probability of conviction</td>
<td>1.91%</td>
<td>13.69%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Probability of conviction - Property</td>
<td>0.65%</td>
<td>8.06%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Probability of conviction - Violent</td>
<td>0.13%</td>
<td>3.67%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Probability of conviction - DUI</td>
<td>0.67%</td>
<td>8.14%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Number of convictions</td>
<td>2.26</td>
<td>5.89</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>168,517</td>
</tr>
<tr>
<td>Probability of conviction to Prison</td>
<td>26.29%</td>
<td>44.02%</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168,517</td>
</tr>
<tr>
<td>Length of prison sentence (days)</td>
<td>2341.89</td>
<td>5844.60</td>
<td>14</td>
<td>30</td>
<td>240</td>
<td>44304</td>
</tr>
</tbody>
</table>
Crime: *Citations/Arrests → Conviction*

- We focus on citations/arrests occurring *after* job loss, and which lead to a conviction.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Time from Offense to Charges (days)</th>
<th>Time from Charges to Conviction (days)</th>
<th>Time from Conviction to Prison (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>P25</td>
</tr>
<tr>
<td>At least 1 charge</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Excluding speeding</td>
<td>78.1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Excluding zeros</td>
<td>149.1</td>
<td>42</td>
<td>10</td>
</tr>
</tbody>
</table>

(50.5%)[1] (12.4%)[2]
Unemployment Transitions are Endogenous

<table>
<thead>
<tr>
<th>Dependent:</th>
<th>(1) Total Crime</th>
<th>(2) Property Crime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification:</td>
<td>OLS</td>
<td>Fixed Effect</td>
</tr>
<tr>
<td>Year +7</td>
<td>0.0156***</td>
<td>0.0012***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>Year +6</td>
<td>0.0155***</td>
<td>0.0016***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>Year +5</td>
<td>0.0173***</td>
<td>0.0029***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>Year +4</td>
<td>0.0196***</td>
<td>0.0049***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>Year +3</td>
<td>0.0218***</td>
<td>0.0068***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>Year +2</td>
<td>0.0232***</td>
<td>0.0082***</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>Year +1</td>
<td>0.0249***</td>
<td>0.0098***</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>Unemployment Year</td>
<td>0.0303***</td>
<td>0.0153***</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
</tr>
</tbody>
</table>
Unemployment Transitions are Endogenous

<table>
<thead>
<tr>
<th>Year</th>
<th>Unemployment Year</th>
<th>Year −1</th>
<th>Year −2</th>
<th>Year −3</th>
<th>Year −4</th>
<th>Year −5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0303***</td>
<td>0.0153***</td>
<td>0.0127***</td>
<td>0.0074***</td>
<td>0.0300***</td>
<td>0.0150***</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
<td>(0.0003)</td>
<td>(0.0003)</td>
<td>(0.0005)</td>
<td>(0.0005)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Fixed Effect</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>R Squared</td>
<td>0.005</td>
<td>0.001</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>Observations</td>
<td>8,830,448</td>
<td>8,830,448</td>
<td>8,830,448</td>
<td>8,830,448</td>
</tr>
<tr>
<td>Clusters</td>
<td>551,903</td>
<td>551,903</td>
<td>551,903</td>
<td>551,903</td>
</tr>
</tbody>
</table>
Correlations between Observables and Unemployment Transitions

<table>
<thead>
<tr>
<th></th>
<th>(1) Transition into Unemployment</th>
<th>(2) Total Crime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than High School</td>
<td>0.042***</td>
<td>0.070***</td>
</tr>
<tr>
<td>High School Education</td>
<td>-0.002***</td>
<td>-0.010***</td>
</tr>
<tr>
<td>Vocational Education</td>
<td>0.005***</td>
<td>-0.022***</td>
</tr>
<tr>
<td>University or Greater</td>
<td>-0.053***</td>
<td>-0.053***</td>
</tr>
<tr>
<td>Missing Education</td>
<td>0.011***</td>
<td>0.034***</td>
</tr>
<tr>
<td>Married</td>
<td>-0.069***</td>
<td>-0.073***</td>
</tr>
<tr>
<td>Lag of Tenure</td>
<td>-0.108***</td>
<td>-0.073***</td>
</tr>
<tr>
<td>Lag Firm Size</td>
<td>-0.043***</td>
<td>-0.012***</td>
</tr>
<tr>
<td>Age</td>
<td>-0.084***</td>
<td>-0.039***</td>
</tr>
<tr>
<td>Observations</td>
<td>8,830,448</td>
<td></td>
</tr>
</tbody>
</table>

- Similar signs for the correlation with crime and with displacement → overestimate.
Mass Layoffs and Job Displacement

Focusing on a sample of arguably sudden and unexpected job separations.

- **Mass layoffs**: a decline in firm size of 30% or 40% compared to
 - (i) peak firm size in 1985-1990 (JLS definition)
 - (ii) average firm size in 1985-1990.
 - (iii) firm-specific size trend in 1985-1990 for declining firms.

 \[n_{j,t} = \alpha_j + \beta_j \cdot t + \varepsilon_{j,t} \text{ on } 1985 - 1990 \text{ used to predict} \]

 \[n_{\hat{j},t} = \hat{\alpha}_j + \hat{\beta}_j \cdot t \text{ for } t \geq 1990 \]

- Displaced workers: focus on workers least likely to lose employment during a mass layoff event.
 - Workers continuously employed between 1987 and 1989.
 - Full time employment.
 - Ten or more employees.
 - Not enrolled in education.
Mass Layoffs and Job Displacement

Focusing on a sample of arguably sudden and unexpected job separations.

- **Mass layoffs**: a decline in firm size of 30% or 40% compared to
 - (i) peak firm size in 1985-1990 (JLS definition)
 - (ii) average firm size in 1985-1990.
 - (iii) firm-specific size trend in 1985-1990 for declining firms.
 - \(n_{j,t} = \alpha_j + \beta_j \cdot t + \varepsilon_{j,t} \) on 1985 – 1990 used to predict
 - \(\hat{n}_{j,t} = \hat{\alpha}_j + \hat{\beta}_j \cdot t \) for \(t \geq 1990 \)

- **Displaced workers**: focus on workers least likely to lose employment during a mass layoff event.
Displacement Rate along the Business Cycle

![Graph showing the displacement rate along the business cycle from 1990 to 2000. The graph includes lines for Peak, Average, Firm Trend, and Unemployment (right scale).]
Specification

- Baseline regression.

\[Crime_{it} = \sum_{k=-5}^{+7} \delta_k \cdot 1(\text{Displaced in year } t - k) + \text{Individual}_i \]

\[+ Year_t + \text{Municipality}_{m(i,t)} + x_{it}\beta + \text{Constant} + \varepsilon_{it} \]
Specification

- Baseline regression.

\[Crime_{it} = \sum_{k=-5}^{+7} \delta_k \cdot 1(Displaced \ in \ year \ t - k) + Individual_i \]
\[+ Year_t + Municipality_{m(i,t)} + x_{it}\beta + Constant + \varepsilon_{it} \]

- Effects \(\delta_0, \ldots, \delta_7 \) relative to the pre-displacement year \(-1\).
Specification

- Baseline regression.

\[
Crime_{it} = \sum_{k=-5}^{+7} \delta_k \cdot 1(\text{Displaced in year } t - k) + \text{Individual}_i \\
+ Year_t + \text{Municipality}_{m(i,t)} + x_{it} \beta + \text{Constant} + \varepsilon_{it}
\]

- Effects \(\delta_0, \ldots, \delta_7 \) relative to the pre-displacement year \(-1\).
- Placebo coefficients: \(\delta_{-5}, \ldots, \delta_{-2} \).
Specification

- Baseline regression.

\[Crime_{it} = \sum_{k=-5}^{+7} \delta_k \cdot 1(\text{Displaced in year } t - k) + \text{Individual}_i + Year_t + \text{Municipality}_{m(i,t)} + x_{it}\beta + \text{Constant} + \varepsilon_{it} \]

- Effects \(\delta_0, \ldots, \delta_7 \) relative to the pre-displacement year \(-1\).
- Placebo coefficients: \(\delta_{-5}, \ldots, \delta_{-2} \).
- Individual fixed effect: individual unobservables.
Specification

- Baseline regression.

\[
Crime_{it} = \sum_{k=-5}^{+7} \delta_k \cdot 1(\text{Displaced in year } t - k) + \text{Individual}_i \\
+ Year_t + Municipality_{m(i,t)} + x_{it} \beta + \text{Constant} + \varepsilon_{it}
\]

- Effects \(\delta_0, \ldots, \delta_7 \) relative to the pre-displacement year \(-1\).
- Placebo coefficients: \(\delta_{-5}, \ldots, \delta_{-2} \).
- Individual fixed effect: individual unobservables.
- \(Municipality_{m(i,t)} \): municipality unobservables, differences in policing efforts.
Specification

- Baseline regression.

\[
Crime_{it} = \sum_{k=-5}^{+7} \delta_k \cdot 1(\text{Displaced in year } t - k) + \text{Individual}_i \\
+ \text{Year}_t + \text{Municipality}_{m(i,t)} + \mathbf{x}_{it} \beta + \text{Constant} + \epsilon_{it}
\]

- Effects $\delta_0, \ldots, \delta_7$ relative to the pre-displacement year -1.
- Placebo coefficients: $\delta_{-5}, \ldots, \delta_{-2}$.
- Individual fixed effect: individual unobservables.
- $\text{Municipality}_{m(i,t)}$: municipality unobservables, differences in policing efforts.
- Multinomial, propensity score matching, fixed effect f.d./within \rightarrow similar results.
Impact of Job Displacement on Crime

Panel Regression Coefficient

Year Relative to Displacement

Total
Property
DUI
Violent
Robustness to Alternative Definitions

Panels Regression Coefficient

Year Relative to Displacement

- Original
- 40% Threshold
- Average 1985–1989
- Firm–Specific Trend
Placebo Test: Current convictions of Future Displaced Workers

<table>
<thead>
<tr>
<th>Sample:</th>
<th>dependent</th>
<th>Property</th>
<th>Violent</th>
<th>Property</th>
<th>Violent</th>
<th>Property</th>
<th>Violent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Future Displaced</td>
<td>0.0008</td>
<td>0.0007</td>
<td>0.0005</td>
<td>0.0004</td>
<td>0.0000</td>
<td>-0.0002</td>
</tr>
<tr>
<td></td>
<td>Worker</td>
<td>(0.0008)</td>
<td>(0.0008)</td>
<td>(0.0005)</td>
<td>(0.0005)</td>
<td>(0.0003)</td>
<td>(0.0003)</td>
</tr>
<tr>
<td>1985-1989</td>
<td>Year Dummies</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Municipality Dummies</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>R Squared</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>102,360</td>
<td>102,360</td>
<td>102,360</td>
<td>102,360</td>
<td>511,800</td>
<td>509,955</td>
</tr>
<tr>
<td></td>
<td>Number of Individuals</td>
<td>102,360</td>
<td>102,360</td>
<td>102,360</td>
<td>102,360</td>
<td>102,360</td>
<td>102,360</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1,232</td>
<td>0.315</td>
<td>0.896</td>
<td>0.085</td>
<td>0.011</td>
<td>1.548</td>
</tr>
</tbody>
</table>
Incarceration: Larger Earnings Losses?

- Mechanical incapacitation effect of incarceration on earnings.
Incarceration: Larger Earnings Losses?

- Mechanical incapacitation effect of incarceration on earnings.

- Larger earnings losses than what is predicted by the incapacitation effect.
Impact of displacement is twice as high at P75 of Gini (+0.43) than at the P25 of Gini (+0.2 ppt).
Results hold when excluding Copenhagen and Frederiksberg.
Pre-displacement marital status is a statistical predictor of the impact of displacement on crime.
 - Impact of job displacement on crime is $+0.9$ ppt for single individuals, $+0.3$ ppt for individuals with children, and $+0.19$ ppt for 2-adult or more families.

Displacement leads to long-run increases in the probability of marriage dissolution.
 - 0.9 ppt in the short run (year of displacement), 3.5 ppt seven years after displacement.

Weak evidence of impacts of parental displacement on younger family members’ crime.
 - one year after displacement for sons’ property crime ($+0.3$ ppt).
Conclusion

- Find economically and statistically significant impacts of displacement on crime.
 - Inequality seems to magnify the impact of mass layoffs on crime.
 - Displacement leads to separations, but little evidence of family spillovers.
 - Incarceration correlated with larger, non-mechanical, earnings losses.

- Institutional differences? External validity?

 - ΔSeparation Rate + ΔArrival Rate + ΔWage distribution \sim ΔUnemployment

- Policy implications: Impacts beyond employer-employee pair.
 - Separations unlikely to be efficient: Blanchard and Tirole’s (2008) tax on layoffs.