
6 Benchmarking and Reconciliation

Benchmarking methods in the national accounts 
are used to derive quarterly series that are consistent 
with their corresponding annual benchmarks and, at 
the same time, preserve the short-term movements of 
quarterly economic indicators. Similarly, reconciliation 
methods may be necessary to adjust quarterly series 
that are subject to both annual and quarterly aggrega-
tion constraints. This chapter presents benchmarking 
and reconciliation methods that are considered suit-
able for QNA compilation. Practical guidance is also 
provided to address and resolve specific issues arising 
from the application of these methods in the national 
accounts.

Introduction
1  Benchmarking deals with the problem of com-

bining a series of high-frequency data (e.g., quarterly 
data) with a series of low-frequency data (e.g., an-
nual data) for the same variable into a consistent time 
series. The two series may show different levels and 
movements, and need to be made temporally con-
sistent. Because low-frequency data are usually more 
comprehensive and accurate than high-frequency 
ones, the high-frequency series is benchmarked to the 
low-frequency data. 

2  This chapter discusses the use of benchmark-
ing to derive quarterly national accounts (QNA) 
estimates that are consistent with annual national ac-
counts (ANA) estimates. Annual estimates derived 
from the ANA system provide benchmark values for 
the QNA estimates. Usually, quarterly data sources 
rely on a more limited set of information than annual 
data. For this reason, quarterly data may present non-
negligible differences in levels and movements with 
respect to annual data. Consequently, the annual data 
provide the most reliable information on the overall 
level and long-term movements for the national ac-
counts variable, while the quarterly source data pro-
vide the only available explicit information about the 

short-term movements in the series. Benchmarking 
is a necessary step to combine the quarterly pattern 
in the indicator with the annual benchmarks of the 
ANA variable.

3  Benchmarking techniques help improve the 
quality of QNA series by making them consistent with 
ANA benchmarks and coherent with the short-term 
evolution of quarterly economic indicators. However, 
the accuracy of QNA data ultimately depends on the 
accuracy of the annual benchmarks and quarterly in-
dicators. A prerequisite of quality for the QNA data is 
to rely on information that measures precisely what is 
happening in the economy, both in normal times and 
during periods of sudden and unexpected changes. 
The role of benchmarking is to combine in the best 
possible way the annual and quarterly information at 
disposal. 

4  While quarterly-to-annual benchmarking is the 
most relevant case in QNA compilation, benchmark-
ing can also be conducted to adjust national accounts 
data available at other frequencies. For example, a 
monthly activity indicator can be benchmarked to a 
quarterly GDP series (monthly-to-quarterly bench-
marking). Benchmarking can also be useful for ANA 
data, when preliminary annual accounts need to be 
adjusted to meet comprehensive benchmark revisions 
of national accounts available every five or ten years. 
Even though this chapter is focused on the quarterly-
to-annual benchmarking, principles and methods 
outlined here apply to benchmarking of any other 
high-frequency to low-frequency data. 

5  For some variables, quarterly data sources are 
used directly to derive the annual data of the ANA 
system. In this situation, annual totals automatically 
meet their quarterly counterparts and the benchmark-
ing step is unnecessary. This happens, for instance, 
when annual data are derived from the aggregation of 
monthly or quarterly information that is not subject 
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to future revisions. In a few cases, quarterly data may 
be superior and so may be used to replace the annual 
data. One instance is annual deflators that are best built 
up from quarterly data as the ratio between the annual 
sums of the quarterly current and constant price data 
(as explained in Chapter 8 ). Another example is when 
annual data are derived using nonstandard account-
ing practices. More generally, annual data should be 
quality assured prior to any benchmarking. Compil-
ers should not adjust good-quality quarterly data to 
lower-quality annual data. However, such cases are 
infrequent and the standard practice in the QNA is to 
use quarterly data as indicators to break down more 
comprehensive and accurate annual figures. 

Objectives of Benchmarking
6  In the QNA, benchmarking serves two purposes:

·	 quarterly distribution (or interpolation)1 of an-
nual data to construct time series of bench-
marked QNA estimates (“back series”) and 

·	 quarterly extrapolation to derive the QNA esti-
mates for quarters for which ANA benchmarks 
are not yet available (“forward series”). 

7  Ideally, both distribution and extrapolation of 
QNA series must be based on quarterly indicators 
that are statistically and economically correlated to the 
annual variables considered.2 The term “indicator” is 
adopted in a broad sense in this context. It indicates 
either a sub-annual measurement of the same target 
variable or a proxy variable that closely approximates 
the (unknown) quarterly behavior of the target vari-
able. An example in the first group is the quarterly 
value of merchandise imports (or exports) from for-
eign trade statistics as a short-term approximation 
of imports (exports) of goods at current prices in the 
ANA; in the second group, the quarterly industrial pro-
duction index could be used as a proxy of the volume 
measure of the annual gross value added of manufac-
turing. When such indicators are absent, it is advisable 

1 Distribution is associated with flow series, when the annual 
series is calculated as the sum (or the average) of the quarterly 
data. Interpolation usually applies to stock series, when quarterly 
series needs to match the annual value in a specified time of 
the year (e.g., January 1st). As this manual focuses on quarterly 
GDP, which is a flow series, the term “quarterly distribution” 
will be used in the chapter to indicate quarterly-to-annual 
benchmarking.
2 More details on the selection process of indicators are given in 
Chapter 5.

to look at other indicators that are closely related to 
the concept measured by the variable to be estimated 
or consider the movements of related QNA aggregates. 
Application of mathematical procedures to distribute 
annual totals into quarters without the use of related 
quarterly indicators should be minimized (see para-
graphs 6.75–77 for further details on when this ap-
proach can be considered feasible). To be relevant for 
the user, short-term movements of the QNA should 
closely reflect what is happening in the economy.

8  The format and level of the indicators should 
not influence the benchmarking results of the QNA.3 
In the benchmarking framework, the objective is to 
combine the quarterly movements of the indicator 
with the annual levels of the ANA variables. The quar-
terly indicator may be in the form of index numbers 
(value, volume, or price) with a reference period that 
may differ from the base period in the QNA, may be 
expressed in physical units, may be expressed in mon-
etary terms, or may be derived in nominal terms as the 
product of a price index and a volume index. The in-
dicator serves only to determine the quarterly move-
ments in the estimates (or quarter-to-quarter change), 
while the annual data determine the overall level and 
long-term trend. However, the annual movements of 
the indicator are used to assess whether the indicator 
is a good approximation of the annual movements of 
the ANA target variable. Therefore, the annual rela-
tionship between the ANA variable and the quarterly 
indicator directly affects the preservation of move-
ments and the accuracy of extrapolation.

9  In this chapter, quarterly distribution and ex-
trapolation are unified into one common benchmark-
to-indicator (BI) ratio framework for converting 
quarterly indicator series into QNA variables. The 
relationship between the annual data and the quar-
terly indicator can be assessed by looking at the move-
ments of the annual BI ratio: namely, the ratio of the 
annual benchmark to the sum of the four quarters of 
the indicator. In mathematical terms, the annual BI 
ratio can be expressed as follows:

A
I

n

n
  for n y=1,..., � (1)

3 For this reason, benchmarking methods should produce results 
that are invariant to level difference in the same indicator. The 
proportional benchmarking methods discussed in this chapter 
satisfy this requirement. 
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where

An	 is the ANA target variable for a generic year n;

In 	 is the annual sum of the quarterly observations of the 

indicator for the same year n, that is, I In t
t n

n

=
= −
∑

4 3

4

;  

and 

y	 is the time index of the last available year. 4 

When the BI ratio changes over time, it signals dif-
ferent patterns between the indicator and the annual 
data; instead, a constant annual BI ratio means that 
the two variables present the same rates of change.5 
As a result, movements in the annual BI ratio (equa-
tion (1)) can help identify the quality of the indicator 
series in tracking the movements of the ANA variable 
over the years. The benchmarking methods consid-
ered in this chapter distribute and extrapolate the an-
nual BI ratio on a quarterly basis.

10  In the QNA, the main objectives of benchmark-
ing are the following:

·	 to estimate quarterly data that are temporally 
consistent with the ANA data: that is, to ensure 
that the sum (or the average) of the quarterly 
data is equal to the annual benchmark; 

·	 to preserve as much as possible the quarterly 
movements in the indicator under the restric-
tions provided by the ANA data; and 

·	 to ensure, for forward series, that the sum of the 
four quarters of the current year is as close as 
possible to the unknown future ANA data.

11  The ideal benchmarking method for QNA 
should be able to meet all three objectives. Quarterly 
movements in the indicator need to be preserved 
because they provide the only available explicit in-
formation on a quarterly basis that are deemed to 
approximate the unknown quarterly pattern of QNA 
series. This strict association with the indicator series 
applies to both the back series and the forward series. 
In addition, the forward series should be as close as 
possible to the annual benchmark when it becomes 

4 In this chapter, index n denotes the years and index t denotes the 
quarters. The quarterly index of the four quarters of a generic year 
n are identified by 4n – 3 (first quarter), 4n – 2 (second quarter), 
4n – 1 (third quarter), and 4n (fourth quarter). As an example, 
t 5 1, 2, 3, 4 for the first year (n 5 1).
5 When the BI ratio is constant, any level difference between the 
annual sum of the indicator and the annual data can be removed 
by simply multiplying the indicator series by the constant BI ratio.

available. These two requirements, however, might be 
at odds: in some cases, quarterly extrapolation should 
deviate from the quarterly movements in the origi-
nal indicator in order to obtain better estimate of the 
ANA variable for the next year.

12  Benchmarking can also be useful to identify 
and correct distortions in the national accounts com-
pilation, and reduce revisions in the preliminary esti-
mates of QNA. Bad-quality results of benchmarking 
can highlight inconsistencies between quarterly and 
annual sources as soon as they happen. The use of 
benchmarking methods could help identify areas of 
research to improve the consistency between annual 
and quarterly accounts data. In seasonal adjustment, 
benchmarking can detect when seasonally adjusted re-
sults drift away from unadjusted data (see Chapter 8).

Overview of Benchmarking Methods
13  The pro rata method, which is a simple method 

of benchmarking, should be avoided. The pro rata 
method distributes the temporal discrepancies—the 
differences between the annual sums of the quarterly 
estimates and the annual data—in proportion to the 
value of the indicator in the four quarters of each year. 
The next section shows that the pro rata approach 
produces unacceptable discontinuities from one year 
to the next (the so-called step problem) and therefore 
does not preserve the movements in the indicator 
from the fourth quarter of one year to the first quarter 
of the next. Techniques that introduce breaks in the 
time series seriously hamper the usefulness of QNA 
by distorting economic developments and possible 
turning points. They also thwart forecasting and con-
stitute a serious impediment for seasonal adjustment 
and trend analysis. 

14  To avoid the step problem, proportional bench-
marking methods with movement preservation of 
indicators should be used to derive QNA series. The 
preferred solution is the proportional Denton method. 
The proportional Denton method keeps the quarterly 
BI ratio as stable as possible subject to the restrictions 
provided by the annual data. Paragraph 6.31 shows 
that minimizing the movements of the quarterly BI 
ratio correspond to preserving very closely the quar-
terly growth rates of the indicator.

15  In extrapolation, the proportional Denton 
method may yield inaccurate results when the most 
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recent annual BI ratios deviate from the historical BI 
average. This happens when the annual movement in 
the indicator diverges from the annual movement 
in  the ANA variable for the most recent years. This 
problem can be circumvented using an enhancement 
for extrapolation to the proportional Denton tech-
nique. The enhanced version provides a convenient 
way of adjusting for a temporary bias6 and still maxi-
mally preserving the short-term movements in the 
source data. However, the enhanced solution requires 
an explicit forecast of the next annual BI ratio to be 
provided by the user. 

16  As an alternative to the Denton method, the 
proportional Cholette–Dagum method with first-
order autoregressive (AR) error can be used to obtain 
extrapolations adjusted for the historical bias.7 This 
method is derived as a particular case of the more 
general Cholette–Dagum regression-based bench-
marking model (illustrated in Annex 6.1). As shown 
in paragraph 6.56, under specific conditions for the 
value of the AR coefficient, the proportional Cholette–
Dagum method with AR error provides movements 
in the back series that are sufficiently close to the in-
dicator (and similar results to the Denton method). 
More importantly, it returns extrapolations for the 
forward series that takes into account the historical 
bias with the indicator.

17  The chapter tackles more specific issues arising 
from the application of benchmarking in the compi-
lation of QNA. The Boot–Feibes–Lisman smoothing 
method—a method equivalent to the proportional 
Denton method with a constant indicator—provides 
an appropriate solution for benchmarking ANA vari-
ables without the use of a related indicator. Practical 
solutions are given to solve difficult benchmarking 
cases, such as short series, series with breaks, series 
requiring specific seasonal effects, or series presenting 
negative or zero values. The chapter also discusses the 
impact on benchmarking when either (preliminary) 
annual benchmarks or (preliminary) quarterly values 
of the indicator are revised. 

18  Finally, the chapter extends the benchmarking 
methodology to solve reconciliation problems in the 

6 Instead, when the bias in the movements is permanent, the 
basic proportional Denton method may still provide accurate 
extrapolations. 
7 In a first-order autoregressive model, the current value of the 
error is linearly dependent to the value of the previous period. 

QNA. Reconciliation is required to restore consis-
tency in quarterly series that are subject to both an-
nual and quarterly aggregation constraints. The main 
difference with benchmarking is that the reconciled 
estimates have to satisfy both annual benchmarks and 
quarterly constraints. As an example, quarterly value 
added by institutional sector may be required to be in 
line with ANA estimates by institutional sector and 
independently derived quarterly value added for the 
total economy. 

19  The multivariate proportional Denton method 
is recommended for reconciling QNA series subject 
to both ANA benchmarks and quarterly aggregates. 
However, when the number of variables is large, the 
multivariate solution could be computationally chal-
lenging. To avoid this complication, the following 
two-step procedure is suggested as a close approxima-
tion of the multivariate Denton approach:

·	 use the proportional Denton method to bench-
mark each quarterly indicator to the correspond-
ing ANA variable and

·	 use a least-squares balancing procedure to rec-
oncile one year at a time the benchmarked series 
obtained at the first step with the given annual 
and quarterly constraints of that year.

20  Benchmarking and reconciliation techniques 
should be an integral part of the compilation process. 
These techniques are helpful to convert short-term in-
dicators into estimates of QNA variables that are con-
sistent with the ANA system. While benchmarking and 
reconciliation techniques presented in this chapter are 
technically complicated, it is important to emphasize 
that shortcuts generally will not be satisfactory unless 
the indicator shows almost the same trend as the bench-
mark. The weaker the indicator is, the more important 
it is to use proper benchmarking and reconciliation 
techniques. While there are some difficult conceptual 
issues that need to be understood before setting up a 
new system, the practical operation of benchmark-
ing and reconciliation are typically automated and are 
not problematic or time consuming using computers 
nowadays available. In the initial establishment phase, 
the issues need to be understood and the processes au-
tomated as an integral part of the QNA production sys-
tem. Thereafter, the techniques will improve the data 
and reduce future revisions without demanding time 
and attention of the QNA compilers.
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21  Box 6.1 presents a brief overview of the bench-
marking software available at the time of preparing 
this manual. Countries introducing QNA or improv-
ing their benchmarking techniques may find it worth-
while to obtain existing software for direct use or 
adaptation to their own processing systems. Alterna-
tively, Annex 6.1 provides the algebraic solution (in 
matrix notation) of the proportional Denton method 
and the proportional Cholette–Dagum method. This 
formal presentation can facilitate the implementation 
of the two benchmarking solutions in any computing 
software.

The Pro Rata Distribution and the 
Step Problem

22  The aim of this section is to illustrate the step 
problem created by pro rata distribution and extend 
the pro rata approach to cover extrapolation from 
the last available benchmark. The ratio of the QNA 
benchmarked estimates to the indicator (the quarterly 
BI ratio) implied by the pro rata distribution method 
shows that this method introduces unacceptable dis-
continuities into the time series. Also, viewing the 
quarterly BI ratios implied by the pro rata distribution 
method together with the quarterly BI ratios implied 
by the basic extrapolation with an indicator technique 

shows how distribution and extrapolation with indi-
cators can be put into the same BI framework. Be-
cause of the step problem, the pro rata distribution 
technique is not acceptable.

23  In the context of this chapter, distribution refers 
to the allocation of an annual total of a flow series to 
its four quarters. A pro rata distribution splits the an-
nual total according to the proportions indicated by 
the four quarterly observations. A numerical example 
is shown in Example 6.1 and Figure 6.1.

24  In mathematical terms, pro rata distribution 
can be formalized8 as follows:

X = I   A
It t

n

n
⋅










 for n y=1,...,  and t n n= −4 3 4,..., � (2)

where

Xt 	is the level of the QNA estimate for quarter t,

It 	 is the level of the quarterly indicator for quarter t

An 	is the level of the ANA estimate for year n,

In 	 is the annual aggregation (sum or average) of the 
quarterly values of the indicator for year n,

8 Unless otherwise specified, in this chapter, the annual bench-
marks are denoted with An, the quarterly indicator series with It , 
and the quarterly benchmarked series with Xt .

Box 6.1  Software for Benchmarking

The benchmarking methods presented in this chapter are available in some commercial and open-source software. Com-
piling agencies using a specific package for QNA compilation should consult the technical guide to see if built-in bench-
marking functions are available. If not, an Internet search can reveal if a plug-in or toolbox containing benchmarking 
routines is available for the specific package. 

At the time of writing, compiling agencies may also consider two off-the-shelf solutions that have been specifically 
designed for the production of QNA and other official statistics:

•	 XLPBM (IMF). XLPBM is an add-in function to Microsoft Excel for benchmarking quarterly series to annual series 
using the proportional Denton method and the proportional Cholette–Dagum method with first-order autore-
gressive error. It also implements the enhanced solution of the Denton method. It has been developed by the 
IMF Statistics Department to assist member countries within its technical assistance and training program. It is 
particularly suited for QNA compilation systems based on spreadsheets. It can be downloaded from the QNA 
manual webpage on IMF.org.

•	 JDemetra+ (National Bank of Belgium, Eurostat). JDemetra+ contains a plug-in offering several options for 
temporal disaggregation and benchmarking. The Denton and Cholette–Dagum methods are provided, as well 
as a generalization of the Denton multivariate case. It also implements regression-based methods such as Chow–
Lin, Fernandez, and Litterman. It can deal with any valid combination of frequencies. For more information on 
JDemetra+ for seasonal adjustment, see Box 7.1. 

Compiling agencies may also choose to implement benchmarking techniques in their preferred computing environment. 
Annex 6.1 offers a matrix formulation of the Denton and Cholette–Dagum benchmarking solutions. Both methods can 
easily be coded in any programming language that offers matrix algebra operations.
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Example 6.1  Pro Rata Method and the Step Problem

  Indicator     Pro Rata Method  

  Indicator Quarter-to- 
Quarter Rate 

of Change 
(%)

Year-on- 
Year  

Rate of 
Change 

(%)

Annual 
Data

Annual  
BI Ratio

Benchmarked Data Quarter-to- 
Quarter Rate 

of Change 
(%)

Year-on- 
Year  

Rate of 
Change 

(%)
  (1) (2) (3)=(2)/(1) (1) × (3) = (4)

q1 2010 99.4         99.4 × 2.5000 = 248.5    

q2 2010 99.6 0.2       99.6 × 2.5000 = 249.0 0.2  

q3 2010 100.1 0.5       100.1 × 2.5000 = 250.3 0.5  

q4 2010 100.9 0.8       100.9 × 2.5000 = 252.3 0.8  

2010 400.0     1,000.0 2.5000         1,000.0    

q1 2011 101.7 0.8 2.3     101.7 × 2.5329 = 257.6 2.1 3.7

q2 2011 102.2 0.5 2.6     102.2 × 2.5329 = 258.9 0.5 4.0

q3 2011 102.9 0.7 2.8     102.9 × 2.5329 = 260.6 0.7 4.1

q4 2011 103.8 0.9 2.9     103.8 × 2.5329 = 262.9 0.9 4.2

2011 410.6 2.7 1,040.0 2.5329         1,040.0   4.0

q1 2012 104.9 1.1 3.1     104.9 × 2.4884 = 261.0 −0.7 1.3

q2 2012 106.3 1.3 4.0     106.3 × 2.4884 = 264.5 1.3 2.2

q3 2012 107.3 0.9 4.3     107.3 × 2.4884 = 267.0 0.9 2.4

q4 2012 107.8 0.5 3.9     107.8 × 2.4884 = 268.2 0.5 2.0

2012 426.3 3.8 1,060.8 2.4884         1,060.8   2.0

q1 2013 107.9 0.1 2.9     107.9 × 2.4884 = 268.5 0.1 2.9

q2 2013 107.5 −0.4 1.1     107.5 × 2.4884 = 267.5 −0.4 1.1

q3 2013 107.2 −0.3 −0.1     107.2 × 2.4884 = 266.8 −0.3 −0.1

q4 2013 107.5 0.3 −0.3     107.5 × 2.4884 = 267.5 0.3 −0.3

2013 430.1   0.9 — —         1,070.3   0.9

The Annual Data and the Quarterly Indicator 
In this example, we assume that the annual data are expressed in monetary terms and the quarterly indicator is an index with 2010 = 400. 
The annual data and the quarterly indicator show different movements in 2011 and 2012. The quarterly indicator shows a stable, smooth 
upward trend since 2010, with annual growth rates of 2.7 and 3.8 percent in 2011 and 2012, respectively. The annual data are characterized 
by a much stronger growth in 2011 than in 2012 (4.0% compared with 2.0%). 

Pro Rata Distribution 
The annual BI ratio for 2010 (2.5) is calculated by dividing the annual value (1,000) by the annual sum of the index (400.0). This ratio is then 
used to derive the benchmarked estimates for the individual quarters of 2010. For example, the benchmarked estimate for q1 2010 is 248.5: 
that is, 99.4 times 2.5.

The Step Problem 
Observe that quarter-to-quarter rates are different only in the first quarters: +2.1% in the benchmarked data versus +0.8% in the indicator 
in q1 2011 and −0.7% versus +1.1% in q1 2012. These discontinuities (or steps) are caused by the different pace of growth of the two series, 
which causes sudden changes of the annual BI ratios in the years 2011 and 2012.

Extrapolation 
The 2013 indicator data are linked to the benchmarked data for 2012 by carrying forward the BI ratio for the year 2012 (2.4884). For 
instance, the extrapolation for q3 2013 (266.8) is derived as 107.2 times 2.4884. Note that all extrapolated quarters present the same quarter-
to-quarter rates and year-on-year rates of the indicator. In addition, the annual rate of change is the same (0.9%).

(These results are illustrated in Figure 6.1. Rounding errors in the table may occur.)
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Figure 6.1  Pro Rata Method and the Step Problem
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In this example, the step problem shows up as an increase in the benchmarked series from q4 2010 
to q1 2011 and as a subsequent drop from q4 2011 to q1 2012. Both movements are not matched by 
similar movements in the indicator.

Benchmark-to-Indicator Ratio

It is easier to recognize the step problem from charts of the BI ratio. It shows up as abrupt upward 
or downward steps in the BI ratios between q4 of one year and q1 of the next year. In this example, 
the step problem shows up as a large upward jump in the BI ratio between q4 2010 and q1 2011 and 
a subsequent drop between q4 2011 and q1 2012.
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The Indicator and the Derived Benchmarked Series
(The corresponding data are given in Example 6.1)
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n	 is the temporal index for the years,

y	 is the last available year, and

t	 is the temporal index for the quarters.

Equation (2) derives the QNA estimate by raising 
each quarterly value of the indicator It by the corre-
sponding annual BI ratio A In n( ).

25  The step problem arises because of discontinui-
ties in the annual BI ratio between years. If an indi-
cator shows different annual growth rates than the 
annual benchmark, as in Example 6.1, then the BI 
ratio will move from one year to the next. When the 
annual BI ratio is used to elevate the indicator’s value 
for all the quarters, the entire difference in the quar-
terly growth rates is put into the first quarter, while 
other quarterly growth rates are left unchanged.9 The 
significance of the step problem depends on the size 
of variations in the annual BI ratio.

26  Extrapolation with an indicator refers to using the 
movements in the indicator to update the QNA time 
series with estimates for quarters for which no annual 
data are yet available (the forward series). A numerical 
example is shown in Example 6.1 and Figure 6.1.

27  In mathematical terms, extrapolation with an 
indicator can be formalized using the same BI ratio 
presentation used for the distribution case:

X = I
A
It t

y

y
⋅











 for t y y y y= + + + +4 1 4 2 4 3 4 1, , , ( ) � (3)

where y indicates the year with the last available an-
nual benchmark and extrapolations are needed for 
the quarterly values of the year y+1. It is assumed 
that the indicator is available for all the quarters of 
year y+1.

28  When equation (3) is applied, quarterly growth 
rates in the forward series reproduce exactly the quar-
terly growth rates in the indicator in year y+1. This can 
be shown by dividing equation (3) for two adjacent quar-
ters: the common BI ratio for year y in the right-hand 
side of equation (3) cancels out and the remaining ratios 

4

4 1

4

4 1
1y k

y k

y k

y k

X
X

= I
I

k+

+ −

+

+ −






















=for ,, , ,2 3 4

9 In addition, the distributed series with the pro rata method pres-
ents year-on-year growth rates (i.e., one quarter compared with 
the corresponding quarter of the previous year) that differ from 
those of the indicator in all the quarters. 

show that the QNA series (equation (3)) present the 
same quarter-to-quarter rates of the indicator. Simi-
larly, it can be shown that the QNA series has the same 
year-on-year growth rates of the indicator in the ex-
trapolated quarters. Although in general these features 
may look like desirable properties, the extrapolated 
series might need to deviate from the movements of 
the indicator to match different annual movements in 
the ANA series for the next year. 

29  In summary, pro rata distribution calculates 
the back series by using the corresponding BI ratios 
for each year where ANA benchmark is available as 
adjustment factors to scale up or down the indicator. 
The forward series is calculated by carrying forward 
the last annual BI ratio. This method is unacceptable 
for QNA benchmarking because it could introduce 
a step in the first quarter of the year, thus violating 
the stated objective of preserving the original move-
ments in the indicator. The next section illustrates 
proportional benchmarking methods that are de-
signed to preserve the movements in the indicator 
in all quarters. 

Proportional Benchmarking Methods 
with Movement Preservation 

30  From a quarterly perspective, the main objec-
tive of benchmarking is to preserve the quarterly 
movements in the indicator. The most common mea-
surement of movement in quarterly (seasonally ad-
justed) series is the quarter-to-quarter (or quarterly) 
growth rate, which is measured by the ratio of the 
level of one quarter (It) to the level of the previous 
quarter It−( )1 .10 Another common way of measuring 
movements on quarterly (unadjusted) series is with 
year-on-year growth rates: the ratio of the level of 
one quarter (It) to the level of the same quarter in the 
previous year It−( )4 . Year-on-year quarterly growth 
rates are useful in benchmarking, because they can 
be directly related to the annual growth11 computed 
from the ANA series. 

31  Ideally, the benchmarked series should maxi-
mally preserve the quarterly growth rates in the 

10 For example, if the ratio I It t/ -1 is 1.021, the indicator has 
increased by 2.1 percent in quarter t compared with the previous 
quarter t-1.
11 Approximately, the annual average of year-on-year rates from 
a quarterly series returns the annual growth computed from the 
annually aggregated quarterly variable.
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indicator subject to the constraints given by the an-
nual benchmarks. In mathematical terms, this state-
ment can be formulated as the minimization of the 
objective (penalty) function:12

min
X

t

t

t

tt

q

t

X
X

I
I− −=
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subject to the annual constraints
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= =
= −
∑ for 1

4 3

4

, ..., ,� (5)

where 

q is the last quarter for which quarterly source data are 
available, denoting either the fourth quarter of the last 
available year (q y= 4 ) in case of a distribution prob-
lem or any subsequent quarter (q y> 4 ) for a problem 
with extrapolation. 

Solving problem (4) subject to (5) corresponds to 
finding the quarterly (unknown) values Xt (i.e., the 
QNA series) that match the required annual bench-
marks and present growth rates that are as close as 
possible to the growth rates of the indicator. Problem 
(4) is also known as growth rate preservation (GRP) 
function. 

32  Despite being an ideal criterion for benchmark-
ing from a theoretical viewpoint, the GRP problem (4) 
is a rational function of the target values and as such 
can only be minimized using nonlinear optimization 
algorithms.13 The implementation of these algorithms 
requires advanced knowledge of optimization theory 
and use of commercial software (see Annex 6.1 for ref-
erence). Furthermore, these algorithms may be char-
acterized by slow convergence and possible troubles 
in finding actual minima of the objective function. 
For this reason, GRP-based benchmarking proce-
dures are considered impractical for QNA purposes. 

33  The next section introduces the proportional 
Denton method, which is a close linear approximation 
of the GRP function and obtains the benchmarked se-
ries using simple matrix algebra operations.

12 The quadratic expression in equation treats positive and nega-
tive differences symmetrically and assigns proportionally higher 
weights to large differences than small ones.
13 Formula presents the benchmarked values at the denominator 
and therefore is a nonlinear function of the benchmarked series.

The Proportional Denton Method 

34  The proportional Denton benchmarking tech-
nique keeps the ratio of the benchmarked series to the 
indicator (i.e., the quarterly BI ratio) as constant as 
possible subject to the constraints provided by the an-
nual benchmarks. A numerical illustration of its op-
eration is shown in Example 6.2 and Figure 6.2.

35  Using the same notation of equations (4) and (5), 
the proportional Denton technique can be expressed 
as the constrained minimization problem:14

min
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36  The individual term of the penalty function (6) 
minimized by the proportional Denton method (also 
known as proportional first difference variant of the 
Denton method) —is the first difference of the quar-
terly BI ratio. With the Denton method, movement 
preservation is achieved by distributing the quarterly 
BI ratios smoothly from one quarter to the next under 
the annual restrictions (equation (7)). Implicitly, the 
quarterly benchmarked series will present growth 
rates similar to those of the indicator. It can be shown 
that function (6) approximates very closely the ideal 
GRP function (4). More importantly, the constrained 
minimization problem is a linear function of the ob-
jective values (Xt only appears in the numerator). The 
first-order conditions for a minimum permits to de-
rive a closed-form solution of the problem, and the 
benchmarked series can be calculated using standard 
matrix algebra operations (see Annex 6.1).

37  Under the BI framework, the proportional Den-
ton technique implicitly constructs from the annual 
observed BI ratios a time series of quarterly BI ratios 

14 This presentation deviates from Denton’s original proposal by 
omitting the requirement that the value for the first period be 
predetermined. As pointed out by Cholette (1984), requiring that 
the values for the first period be predetermined implies minimiz-
ing the first correction and can in some circumstances cause dis-
tortions to the benchmarked series. Also, Denton’s (1971) original 
proposal dealt only with estimating the back series.
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Example 6.2  The Proportional Denton Method

Indicator     Denton Proportional Method
Estimated 
Quarterly 
BI RatiosIndicator

Quarter-to- 
Quarter 
Rate of 

Change (%)

Year-on- 
Year  

Rate of 
Change 

(%)

Annual 
Data

Annual BI 
Ratio

Benchmarked 
Data

Quarter-to- 
Quarter 
Rate of 

Change (%)

Year-on- 
Year  

Rate of 
Change 

(%)(1) (2) (3)=(2)/(1) (4) (5)=(4)/(1)

q1 2010 99.4         247.5     2.4897

q2 2010 99.6 0.2       248.4 0.4   2.4938

q3 2010 100.1 0.5       250.4 0.8   2.5020

q4 2010 100.9 0.8       253.7 1.3   2.5143

2010 400.0     1,000.0 2.5000 1,000.0      

q1 2011 101.7 0.8 2.3     257.4 1.5 4.0 2.5308

q2 2011 102.2 0.5 2.6     259.4 0.8 4.4 2.5382

q3 2011 102.9 0.7 2.8     261.0 0.6 4.2 2.5366

q4 2011 103.8 0.9 2.9     262.2 0.4 3.4 2.5259

2011 410.6 2.7 1,040.0 2.5329 1,040.0   4.0  

q1 2012 104.9 1.1 3.1     262.9 0.3 2.1 2.5060

q2 2012 106.3 1.3 4.0     264.8 0.7 2.1 2.4910

q3 2012 107.3 0.9 4.3     266.2 0.5 2.0 2.4810

q4 2012 107.8 0.5 3.9     266.9 0.3 1.8 2.4760

2012 426.3 3.8 1,060.8 2.4884 1,060.8   2.0  

q1 2013 107.9 0.1 2.9     267.2 0.1 1.6 2.4760

q2 2013 107.5 −0.4 1.1     266.2 −0.4 0.5 2.4760

q3 2013 107.2 −0.3 −0.1     265.4 −0.3 −0.3 2.4760

q4 2013 107.5 0.3 −0.3     266.2 0.3 −0.3 2.4760

2013 430.1   0.9 — — 1,064.9   0.4  

BI Ratios
•  For the back series (2010–2012)
 � The quarterly estimates of 2010 sum to 1,000: that is, the weighted average BI ratio for 2010 is 2.5.
 � The quarterly estimates of 2011 sum to 1,040: that is, the weighted average BI ratio for 2011 is 2.5329.
 � The quarterly estimates of 2012 sum to 1,060.8: that is, the weighted average BI ratio for 2012 is 2.4884.
 � The estimated quarterly BI ratio (column 5) increases through q2 2011 to match the increase in the observed annual BI ratio in 2011, and 

then it goes down to match the drop in the BI ratio in 2012. 
• � For the forward series (2013), the quarterly estimates are obtained by carrying forward the quarterly BI ratio (2.4760) for the last quarter 

of 2012 (the last benchmark year).

Rates of Change for the Back Series and the Forward Series
• � For the back series, the quarterly percentage changes in 2011 and 2012 are adjusted upwards from q1 2010 to q2 2011 and then down-

wards from q3 2011 to q4 2012. These adjustments to the quarterly indicator series are needed to match the different annual rates of 
change of the target annual variable. 

• � For the forward series, the quarterly percentage changes in 2013 are identical to those of the indicator. However, the annual (extrapo-
lated) growth for 2013 in the benchmarked series (+0.4%) is lower that the annual rate of the indicator (+0.9%). The mechanical extrapo-
lation of the Denton method takes into account the slower growth of the ANA variable for 2012 (+2.0%) compared with that of the 
indicator (+3.8%).

 
(These results are illustrated in Figure 6.2. Rounding errors in the table may occur.)
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Figure 6.2  Solution to the Step Problem: The Proportional Denton Method
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that is as smooth as possible and such that, in the case 
of flow series,

·	 the quarterly BI ratios are in line with weighted 
averages of the annual BI ratios for each year for 
the back series (t y=1 4,..., ), with weights given 
by the indicator’s quarterly share in each year and

·	 the quarterly BI ratios are kept constant and 
equal to the ratio for the fourth quarter of the last 
benchmark year (t y= 4 ) for the forward series 
(t y> 4 ).

Because the forward series has no constraints, the 
minimum impact on equation (6) is attained when 
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38  For the back series, the Denton method returns 
a QNA series that optimally inherits the growth rates 
from the indicator—under the close approximation 
of the ideal GRP function—and fully incorporates 
the information contained in the annual data. The 
quarter-to-quarter growth rates of the QNA variable 
generally differ from those in the indicator (e.g., see 
Example 6.2). The size of the difference between the 
quarterly movements depends on the size of the dif-
ference between the annual movements shown by 
the ANA series and the indicator; in other words, the 
movements in the annual BI ratio. 

39  For the forward series, the proportional Den-
ton method results in quarter-to-quarter growth 
rates that are identical to those in the indicator but 
also in an annual growth rate for the first year of the 
forward series that differs from the corresponding 
growth rate of the annually aggregated indicator (see 
Example 6.2). This difference in the annual growth 
rate is caused by the way the indicator is linked in. By 
carrying forward the quarterly BI ratio for the fourth 
quarter of the last benchmark year, the proportional 
Denton method implicitly “forecasts” the next annual 
BI ratio as different from the last observed annual BI 
ratio and equal to the quarterly BI ratio for the fourth 
quarter of the last benchmark year: that is,
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40  Carrying forward the quarterly BI ratio for the 
fourth quarter of the last benchmark year is equivalent 
to extrapolating in the next year the diverging pattern 
between the ANA variable and the indicator arising 
from the last available year. Technically, with the Denton 
method in extrapolation, the value of the last quarterly BI 
ratio depends to a large extent on the last two annual BI 
ratios. When the annual BI ratio of the last available year 
is larger than the annual BI ratio of the previous year, 
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the quarterly BI ratio for the fourth quarter of year y is 
likely to be larger than the annual BI ratio of the whole 
year (Ay): that is,

X
I
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y

y

y
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4
> .

Consequently, the annual BI ratio for the next year 
Ay+1 will be higher than the last observed one Ay. Put 
differently, if the ANA variable grows faster than the 
indicator in year y, this (local) diverging pattern is 
mechanically extrapolated into year y+1 by assuming 
that the QNA variable grows faster than the indicator 
(even though the extrapolated quarterly growth rates 
are identical to those in the indicator). The opposite 
happens when the annual BI ratio of the last available 
year is smaller than the annual BI ratio of the previous 
year (i.e., when the ANA variable grows at a slower 
rate than the indicator in year y), 15 
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,

which is likely to generate a quarterly BI ratio for the 
fourth quarter of year y that is lower than the annual 
BI ratio16 (i.e., the QNA variable will be extrapolated 
at a lower annual rate than the indicator) 

X
I

A
I

y

y

y

y

4

4
< .

41  The proportional Denton method mechanically 
extrapolates the quarterly values of the current year 

15 The inequalities shown may not apply to cases when the last two 
annual BI ratios are very close to each other (i.e., similar annual 
growth rates between the ANA variable and indicator for the last 
available year) and the previous values of the BI series follows a 
systematic trend.
16 This is the case shown in Example 6.2, where the extrapolated 
QNA variables show an annual rate of 0.4 percent compared with 
the original 0.9 percent annual growth of the indicator.
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from the last quarterly BI ratio. To overcome the draw-
backs of this solution, two alternative approaches can 
be followed. First, the proportional Denton method 
can be enhanced in extrapolation when external in-
formation is available on the development of the an-
nual BI ratio for the year with no annual benchmark. 
Second, this section illustrates the Cholette–Dagum 
method—an alternative benchmarking method to the 
Denton approach that can be used to calculate auto-
matically bias-adjusted extrapolation based on the 
historical relationship between the annual variable 
and the quarterly indicator. 

Enhancement for Extrapolation of the 
Proportional Denton Method 

42  The forward series is the most relevant informa-
tion for many QNA users. The main purpose of the 
QNA is to provide timely information on the current 
economic developments before the ANA data become 
available. When the benchmarking framework is used 
to extrapolate QNA series, the method used should 
make efficient use of the complete time-series infor-
mation available to generate reliable estimates for the 
current quarters. 

43  The proportional Denton method mechanically 
extrapolates the quarterly BI ratio from the fourth quar-
ter of the last available year in all the subsequent quar-
ters. Consequently, the last quarterly BI ratio provides 
an implicit forecast for the next annual BI ratio. As men-
tioned before, the value of the last quarterly BI ratio is 
largely dominated by the values of the last two annual 
BI ratios only. When the annual BI ratio presents sys-
tematic or identifiable patterns historically, it could be 
possible to incorporate this information for improving 
the estimates for the most recent quarters (the forward 
series) and reducing the size of later revisions. 

44  To understand whether it is possible to improve 
the Denton extrapolations, it is convenient to look at 
the historical series of annual BI ratio in the observed 
sample:

A
I

n

n

    for n y=1,..., .

A simple plot of the annual BI series would suffice to 
identify instability and breakdowns in the historical 
relationship between the ANA variable and the indi-
cator. For this purpose, it may be useful to tabulate 

the growth rates of the BI ratio (i.e., the ratio of one BI 
ratio to the previous one), which has a useful interpre-
tation in terms of annual growth rates of the variables 
involved. The growth rate of the BI ratio in a generic 
year n is equivalent to the ratio between the growth 
rate of the ANA variable to the growth rate of the (an-
nualized) indicator in that year, as shown below by 
simply rearranging the terms involved:
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When the growth rate of the BI ratio is larger than 
one, the ANA variable grows faster than the indica-
tor. Conversely, when the growth rate of the BI ratio is 
smaller than one, the ANA variable’s growth is smaller 
than the indicator’s growth. When the BI ratio is con-
stant, the ANA variable and the indicator move at the 
same rate.

45  The enhanced proportional Denton method for 
extrapolation requires an explicit forecast for the an-
nual BI ratio of the year y+1. Possible ways to fore-
cast the next annual BI ratio are indicated as follows:

·	 If the annual BI ratio fluctuates symmetrically 
around its mean, on average, the best forecast 
of the next year’s BI ratio is the long-term aver-
age BI value. This approach is very close to the 
solution offered by the proportional Cholette–
Dagum method with AR error.

·	 If the annual BI ratio shows a systematic upward 
or downward tendency (i.e., growth rates in the 
indicator are biased compared to the annual 
data), then, on average, the best forecast of the 
next year’s BI ratio is a trend extrapolation in the 
next year. A deterministic trend could be used to 
generate the extrapolation. If the trend is stochas-
tic (i.e., random walk process), the best forecast 
is the annual BI ratio of the last year. However, 
the basic Denton method may also provide satis-
factory extrapolations for this case.

·	 If a historically stable annual BI ratio presents 
a structural break in the last year, which is ex-
pected to continue in the future, then the best 
forecast of the next year’s BI ratio is the previ-
ous annual value. For example, the BI ratio may 
show a structural break in the last year because of 
changes introduced in the calculation of the ANA 
variable. Assuming the same annual BI ratio for 
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the next year implies that the structural break is 
carried forward in the QNA extrapolations.

·	 If the movements in the annual BI ratio follow a 
stable, predictable time-series model, then, on av-
erage, the best forecast of the next year’s BI ratio 
may be obtained from that model. However, a suffi-
cient number of observations (minimum 10 years) 
is required to fit time-series models and calculate 
forecasts with an acceptable level of confidence.

·	 If the fluctuations in the annual BI ratio are cor-
related with the business cycle (e.g., as manifested 
in the indicator), then, on average, the best fore-
cast of the next year’s BI ratio may be obtained by 
modeling that correlation.

46  One convenient way to derive a forecast of the 
next annual BI ratio is by applying a rate of change 
from the last available annual BI ratio:
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1δ .� (8)

The rate δ̂ y+1 can be interpreted as the expected (ap-
proximate) difference between the ANA growth rate 
and the indicator growth rate in the year y+1. For 
example, if δ̂y+ =1 1 02. , the growth rate of Ay+1 com-
pared to Ay is expected to be approximately 2 percent 
higher than the growth rate of I y+1 compared to I y . 
This kind of information may be available to national 
accountants through internal discussion with subject-
matter and survey experts.

47  The same principles used by Denton to formu-
late the constrained minimization problems (6) and 
(7) can be used to incorporate the annual forecast 
(equation (8)). An additional constraint is included to 
impose that the estimated quarterly BI ratios for the 
extrapolated quarters are consistent with the forecast. 
More specifically, the additional constraint is that a 
weighted average of the estimated quarterly BI ratios 
for the year n+1 be equal to the forecast annual BI 
ratio. Formula (6) is extended to minimize the im-
pact on period-to-period change in the extrapolated 
quarterly BI ratios (see Annex 6.1 for reference to the 
mathematical solution of the enhanced problem). A 
consequence of the enhanced extrapolation is that the 
quarter-to-quarter rates of the QNA variable diverge 
from the quarter-to-quarter rates of the indicator 
(provided the annual forecast is different from the last 
quarterly BI ratio). 

48  The enhanced Denton method requires that 
only the annual BI ratio, and not the annual bench-
mark value, has to be forecast. The rationale behind 
this choice is that the BI ratio could be easier to fore-
cast than the annual benchmark value itself. When 
the ANA variable displays a predictable pattern over 
the years, the basic Denton method can also be used 
in conjunction with a direct forecast of the ANA vari-
able for the next year. National accountants are usu-
ally reluctant to make forecasts, because they increase 
the estimation uncertainty of the variables and are 
subject to criticisms from users. However, all possible 
extrapolation methods are based on either explicit 
or implicit forecasts, and implicit forecasts are more 
likely to be wrong because they are not scrutinized.17 

49   It should be common practice to check the ef-
fects of new and revised benchmarks on the BI ratios. 
A table of observed annual BI ratios over the past 
several years should be regularly updated. While it 
is common that the BI ratio forecasts have errors of 
different degrees from the actual ones, the important 
question is whether the error reveals a pattern that 
would allow better forecasts to be made in the future. 
In addition, changes in the annual BI ratio reveal is-
sues related to the indicator.

50  The annual series of the BI ratio should be regu-
larly assessed as a way to determine whether the pro-
portional Denton method requires an enhancement 
for extrapolation. Whenever a predictable behavior is 
noted in the annual BI series—especially in the last 
two years—compilers should try to incorporate such 
information in extrapolation by calculating an annual 
forecast of the next BI ratio and including it as an ad-
ditional constraint for the benchmarked series.

The Proportional Cholette–Dagum Method 
with Autoregressive Error

51  Cholette and Dagum (1994) proposed a bench-
marking method based on the generalized least 
squares regression model. The Cholette–Dagum 
method provides a very flexible framework for 
benchmarking. It is grounded on a statistical model 
that allows for (a) the presence of bias and autocor-
related errors in the indicator and (b) the presence 
of nonbinding benchmarks. The benchmarked series 

17 For additional reference on forecasting time series in the QNA, 
see Chapter 10.
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is calculated as the generalized least squares solu-
tion of a regression model with deterministic effects 
and autocorrelated and heteroscedastic disturbance 
(for details see Annex 6.1). The Denton method can 
be regarded as a particular (approximate) case of the 
Cholette–Dagum regression-based model. 

52  The proportional Cholette–Dagum benchmark-
ing method with first-order AR error is a convenient 
way to calculate extrapolations of QNA series when 
the indicator is an unbiased measurement of the ANA 
variable. The proportional Cholette–Dagum method 
with AR error is obtained as a particular case of the 
Cholette–Dagum regression-based model. The (first-
order) AR model for the error—under specific values 
for the AR coefficient—guarantees that (i) movements 
in the indicator are sufficiently preserved in the back 
series and (ii) extrapolations of the forward series are 
adjusted for a local level bias in the indicator. The im-
plicit forecast of the next annual BI ratio converges to 
the historical BI ratio, which takes into account the 
full relationship between the ANA series and the in-
dicator in the period. A numerical illustration of the 
Cholette–Dagum method is shown in Example 6.3 
and Figure 6.3.

53  The proportional Cholette–Dagum bench-
marking method with AR error consists of the follow-
ing two equations:

I X et
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t t= +     for t q=1,..., � (9)
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where

It
a	 is the quarterly indicator It  adjusted for the his-

torical level bias, 

Xt 	 is the QNA target series, 

et 	 is a quarterly autocorrelated and heteroscedastic 
error, 

An	 is the ANA benchmark series, and 

q	 is the number of quarters available, possibly with 
extrapolation (q y≥ 4 ).

Equation (9) defines the quarterly bias-adjusted indi-
cator It

a as a measurement of the unknown quarterly 
series Xt plus the error et. Equation (10) establishes 
the identity at the annual level between each bench-

mark An and the corresponding sum of quarterly val-
ues Xt .18

54  The bias-adjusted indicator It
a is calculated by 

rescaling the original indicator It as follows:

I d It
a

t= ⋅ � (11)

where d is the historical BI ratio
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that is, the ratio between the sum of the annual bench-
marks over the available years and the sum of the 
quarterly values of the indicator over the same period. 
The factor d can be interpreted as an estimate of the 
level bias in the indicator It in measuring the bench-
mark An. The rescaling factor d shrinks or amplifies 
the original values of the indicator, but never gener-
ates negative values unless the original values are 
negative. It also exactly preserves the growth rates of 
the original series, because I I I It t t

a
t
a

− −=1 1. Rescal-
ing the indicator series is a convenient way to cancel a 
level bias and avoid the estimation of a constant term 
in the regression model. 

55  The quarterly error et is assumed to be both 
autocorrelated and heteroscedastic. The heterosce-
dasticity assumption is required to make the error ad-
justment proportional to the value of the indicator. It 
is possible to calculate a standardized quarterly error 
by dividing et  by It

a,19 that is,

′ =e
e
It

t

t
a     for t q=1,..., .� (12)

It is assumed that the standardized error ′et  follows a 
first-order stationary AR model: 

′ = ′ +e e vt t tφ ,� (13)

where φ <1 is a necessary condition for stationar-
ity of the AR model and the vt’s are independent and 
identically distributed innovations. 

18 As shown in Annex 6.1, the Cholette–Dagum regression-based 
model allows for nonbinding benchmarks by assuming an error 
term in the annual equation .
19 This corresponds to assuming that the error is heteroscedastic 
with standard deviation equal to the value of the indicator in pe-
riod t. The Cholette–Dagum method offers alternative options for 
standardization; for more details, see Dagum and Cholette (2006).
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Example 6.3  The Proportional Cholette–Dagum Method with Autoregressive Error

  Indicator     Proportional Cholette–Dagum Method
Estimated 
Quarterly 
BI Ratios  Indicator

Bias-
adjusted 
Indicator

Quarter-to- 
Quarter 
Rate of 
Change 

(%)

Year-on- 
Year  

Rate of 
Change 

(%)

Annual 
Data

Annual 
BI Ratio

Benchmarked 
Data (Ø = 0.8)

Quarter-to- 
Quarter 
Rate of 
Change 

(%)

Year-on- 
Year  

Rate of 
Change 

(%)  (1) (2)  (3)
(4)=(3)/

(1)
(5) (6)

q1 2010 99.4 249.2         247.7     2.4917

q2 2010 99.6 249.7 0.2       248.4 0.3   2.4940

q3 2010 100.1 250.9 0.5       250.4 0.8   2.5010

q4 2010 100.9 252.9 0.8       253.6 1.3   2.5131

2010 400.0       1,000.0 2.5000 1,000.0      

q1 2011 101.7 255.0 0.8 2.3     257.4 1.5 3.9 2.5307

q2 2011 102.2 256.2 0.5 2.6     259.4 0.8 4.4 2.5386

q3 2011 102.9 258.0 0.7 2.8     261.0 0.6 4.3 2.5368

q4 2011 103.8 260.2 0.9 2.9     262.1 0.4 3.4 2.5255

2011 410.6   2.7 1,040.0 2.5329 1,040.0   4.0  

q1 2012 104.9 263.0 1.1 3.1     262.7 0.2 2.1 2.5040

q2 2012 106.3 266.5 1.3 4.0     264.6 0.7 2.0 2.4894

q3 2012 107.3 269.0 0.9 4.3     266.2 0.6 2.0 2.4812

q4 2012 107.8 270.2 0.5 3.9     267.3 0.4 2.0 2.4794

2012 426.3   3.8 1,060.8 2.4884 1,060.8   2.0  

q1 2013 107.9 270.5 0.1 2.9     268.0 0.3 2.0 2.4838

q2 2013 107.5 269.5 −0.4 1.1     267.4 −0.2 1.1 2.4875

q3 2013 107.2 268.7 −0.3 −0.1     267.0 −0.2 0.3 2.4906

q4 2013 107.5 269.5 0.3 −0.3     268.0 0.4 0.3 2.4932

2013 430.1   0.9 — — 1,070.4   0.9  

Historical BI Ratio and Bias-Adjusted Indicator
The historical BI ratio (2.5069) is calculated as the ratio of the sum of the annual data from 2010 to 2012 (3,100.8) to the sum of the quarterly 
values of the indicator from q1 2010 to q4 2012 (1,236.9). The historical BI ratio is shown as a dotted horizontal line in the bottom panel of 
Figure 6.3. It represents the long-term average of the annual BI ratio. The bias-adjusted indicator in column 2 is obtained by multiplying the 
indicator series by the historical BI ratio (2.5069).

Extrapolation with AR Error 
In this example, we use the value 0.84 for the AR parameter. The error for q4 2012 is equal to 2.9709 (i.e., 270.2452 − 267.2743). Using formulas , 
, and , quarterly extrapolations for 2013 are derived as the sum of the bias-adjusted indicator in the four quarters of 2013 and AR extrapolation 
of the last quarterly error in q4 2012:

q1 2013 270.5 – [(0.84) × 2.9709] = 270.5 − 2.4956 = 268.0

q2 2013 269.5 – [(0.842) × 2.9709] = 269.5 − 2.0963 = 267.4

q3 2013 268.7 – [(0.843) × 2.9709] = 268.7 − 1.7609 = 267.0

q4 2013 269.5 – [(0.844) × 2.9709] = 269.5 − 1.4791 = 268.0

The extrapolated quarterly BI ratio for q4 2013 (2.4932) is the midpoint between the quarterly BI ratio for q4 2012 (2.4794) and the historical BI 
ratio (2.5069). In fact, as explained in the text, a value of 0.84 for Ø eliminates 50 percent of the bias after one year from the last available quar-
ter. It is worth noting that for 2013 (i) the annual growth rate of the QNA extrapolated series is 0.9 percent (the Denton method extrapolates a 
0.4% increase in 2013) and (ii) the quarterly extrapolated growth rates of the QNA series are different from the quarterly growth rates shown by 
the indicator. 

(These results are illustrated in Figure 6.3. Rounding errors in the table may occur.)
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Figure 6.3 � Solution to the Extrapolation Problem: The Proportional Cholette–Dagum Method with 
Autoregressive Error

The Indicator and the Derived Benchmarked Series
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(The corresponding data are given in Example 6.3)
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56  The AR model assumption for the standardized 
error ′et  implies that the quarterly BI ratio is also dis-
tributed according to a first-order AR model. In fact, 
the standardized error ′et  is proportional to the quar-
terly BI ratio. This is easily shown by rearranging the 
elements of equations (9) and (12)

X I e

X I e I

e
I X

I

t t
a

t

t t
a

t t
a

t
t
a

t

t
a

= −

= − ′

′ =
−

� (14)

which corresponds to the term (with opposite sign) 
that defines the proportional criterion minimized 
by the Denton method. It can be shown that as the 
value of φ  in model (13) approaches 1, the bench-
marked series obtained with the proportional Cho-
lette–Dagum method converges to the solution given 
by the proportional Denton method.

57  In extrapolation, the quarterly (standardized) 
error is calculated by multiplying the AR parameter 
recursively by the last quarterly error observed: 

′ = ′+e ey k
k

yˆ4 4φ     for any k>0. � (15)

When φ  lies between 0 and 1, the extrapolated error 
′ +e y kˆ4  tends to zero as k increases (at different rates 

depending on the value of φ). As ′ →+e y k4 0 (and so 
does e y k4 + ), the extrapolated QNA variable converges 
to the bias-adjusted indicator:

X I d Iy k y k
a

y k
ˆ

4 4 4+ + +→ = ⋅ .

The previous expression is equivalent to say that the 
extrapolated BI ratio converges to the historical BI 
ratio:

X
I

d
A

I

y k

y k

nn

y

tt

y
4

4

1

1

4
+

+

=

=

→ =
∑
∑

.

58  The value of the AR parameter φ determines 
how fast the QNA extrapolated series converges to the 
bias-adjusted indicator. Values of φ closer to zero tend 
to eliminate quickly the bias and provide fast conver-
gence rates to I y k

a
4 + ; on the contrary, values closer to 

1 would maintain the bias in extrapolated quarters. 
However, a value of φ too far from 1 would generate 
a QNA series with growth rates distant from those of 

the indicator (both in the back series and in the for-
ward series). An optimal value of φ should balance 
the trade-off between adjusting extrapolations for the 
current bias and maintaining close adherence to the 
growth rates of the indicator.20

59  A convenient value for the AR parameterφ in 
model (13) is 0.84. This particular value ensures that 
(about) 50 percent of the bias observed in the last 
quarterly error is eliminated after one year. In fact, 
using formula (15) with φ= 0 84.  and k= 4  returns

ê′ = ′ ≈ ′+˘ ( . ) .e e ey y y4 4
4

4 40 84 0 5 .

A 50 percent reduction in the bias implies that the 
quarterly BI ratio in the fourth quarter of the next 
year is the midpoint between the last observed quar-
terly BI ratio and the historical BI ratio d. Although 
not grounded on strong theoretical arguments, this 
solution appears pragmatic and suitable to many 
practical benchmarking problems. However, different 
values may be chosen according to the development 
of the annual BI ratio in the most recent years:

•	 When the annual BI ratio is erratic, it is best to 
eliminate rapidly the bias. In such situations, the 
value ofφ should be selected in a range between 
0.71 and 0.84. The minimum value 0.71 leads to a 
75 percent reduction of the bias after one year.

•	 When the annual BI ratio shows persistent 
movements, it may be convenient to maintain 
(part of) the bias in extrapolation. A value ofφ
between 0.84 and 0.93 would serve this purpose. 
The maximum value 0.93 yields a 25 percent re-
duction of the bias after one year.

60  To sum up, the proportional Cholette–Dagum 
method with AR error method leads, on average, to 
more accurate extrapolation (and smaller revisions) 
than the Denton method when the indicator is an un-
biased measurement of the ANA variable. Using the 
Cholette–Dagum solution, a local bias in the indica-
tor arising in the most recent years can be adjusted 
through an AR convergence process from the last cal-
culated quarterly error toward the historical BI ratio. 

20 For quarterly series, Dagum and Cholette (2006) suggest a range 
of values ofφ between 0.343 and 0.729 (temporally consistent 
with the range [0.7; 0.9] suggested for monthly series). However, 
this range could lead to sizable differences between the short-
term dynamics of the QNA series and the indicator. 
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The Cholette–Dagum method provides an automatic 
solution to overcome the shortcomings of the Denton 
method in extrapolation. Clearly, the relative perfor-
mance of the Cholette–Dagum and Denton methods 
should be assessed on a continuous basis by com-
paring their QNA extrapolations with the new ANA 
benchmarks. 

61  Ultimately, the choice between the Denton 
method (with or without adjustment for extrapola-
tion) and Cholette–Dagum method could be a sub-
jective call. Compilers may decide to use either of the 
two methods based on the properties of each bench-
marking problem in the QNA. For the same variable, 
however, a definite choice between the two methods 
should be done. The same method should be used 
for calculating both the back series and forward se-
ries of ANA variables. Once a method is chosen for 
a variable, the method should be used consistently 
over time. Switching between Denton and Cholette–
Dagum methods for the same variable may cause re-
visions that are difficult to explain. If a change in the 
method is warranted, it should be done at a time of a 
major revision of national accounts. The use of bench-
marking methods in the QNA should be documented 
clearly in the metadata. 

62  It is worth noting here that the regression-based 
temporal disaggregation method proposed by Chow 
and Lin (1971) and its variants21 can also be considered 
particular cases of the Cholette–Dagum regression-
based framework. The Chow–Lin method is used by 
some countries for the compilation of the QNA. Simi-
lar to the Cholette–Dagum solution described in this 
section, the Chow–Lin method assumes a first-order 
AR model to distribute smoothly the quarterly error 
and preserve as much as possible the movements of 
the indicator. However, this method requires that re-
gression parameters are estimated from the data. Bad 
estimation of the parameters may lead to inaccurate 
QNA results, therefore a more careful investigation of 
the benchmarking results is required when using the 
Chow–Lin approach.22

63  When the Chow–Lin method is chosen, com-
pilers should be aware that this approach requires 
expertise and statistical background to validate the 
results of the estimation process. Estimated param-

21 See Fernández (1981) and Litterman (1983). 
22 Further details on the Chow–Lin method are given in Annex 6.1.

eters of the regression model should be validated 
using standard diagnostics (residual tests, correla-
tion, etc.). The value of regression coefficient for the 
related indicator should be positive and statistically 
different from zero. Only one indicator should be 
used in the regression model, with a possible con-
stant term to adjust for the different levels of the 
variables. Finally, the estimated value for the AR 
coefficient should be positive and sufficiently close 
to one to preserve the short-term dynamics of the 
indicator. 

Specific Issues
Fixed Coefficient Assumptions

64  The benchmarking methodology can be used 
to avoid potential step problems in different areas 
of national accounts compilation. One important 
example is the frequent use of assumptions of fixed 
coefficients relating inputs (total or part of interme-
diate consumption or inputs of labor and capital) to 
output: input–output (IO) ratios. IO ratios or similar 
coefficients may be derived from annual supply and 
use tables, production surveys, or other internal in-
formation available. Fixed IO ratios can be consid-
ered a benchmark–indicator relationship, where the 
available series (usually output) is the indicator for the 
missing one (usually intermediate consumption) and 
the IO ratio (or its inverse) is the BI ratio. If IO ratios 
are changing from year to year but are kept constant 
within each year, a step problem is created. Accord-
ingly, the Denton technique can be used to generate 
smooth time series of quarterly IO ratios based on 
annual (or less frequent) IO coefficients. The missing 
variable can be reconstructed by multiplying (or di-
viding) the quarterly IO ratios (derived by the Denton 
technique) by the available series. For instance, the 
derived quarterly IO ratios multiplied by quarterly 
output will provide an implicit estimate of quarterly 
intermediate consumption. Systematic trends can be 
identified to forecast IO ratios for the most recent 
quarters. Alternatively, the Cholette–Dagum method 
can be used to improve extrapolations of IO ratios 
based on historical behavior. 

Seasonal Effects

65  It is possible to assign specific seasonal varia-
tions to a QNA variable when applying benchmark-
ing. This solution may be needed when the true 
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underlying seasonal pattern in the QNA variable is 
not fully represented by the indicator. For example, an 
indicator may be available only in seasonally adjusted 
form, whereas the QNA variable is known to have a 
seasonal component. Specific seasonal effects may 
also be assumed in the distribution of annual coef-
ficients, when the coefficients are subject to seasonal 
variations within the year. IO ratios may vary cycli-
cally owing to inputs that do not vary proportionally 
with output, typically fixed costs such as labor, capital, 
or overhead (e.g., heating and cooling). Similarly, the 
ratio between income flows (e.g., dividends) and their 
related indicators (e.g., profits) may vary between 
quarters. 

66  To incorporate a known seasonal pattern in the 
target QNA variable, without introducing steps in 
the series, the following multistep solution should be 
adopted:

1.	 Seasonally adjust the quarterly indicator. This 
step is needed to remove any unwanted sea-
sonal effects in the indicator (if any) from the 
QNA series. Seasonal adjustment procedures 
should be applied using the guidelines pro-
vided in Chapter 7. Misguided attempts to 
correct the problem in the original data could 
distort the underlying trends. This step is not 
required if the indicator is already seasonally 
adjusted.

2.	 Multiply the seasonally adjusted indicator se-
ries by the known seasonal factors. The sea-
sonal pattern can be fixed or variable over the 
years. It is convenient to impose quarterly sea-
sonal factors that average to 1 in each year,23 
so that the underlying trend of the original 
indicator is not changed. Seasonal factors can 
also be extracted from another series through 
a seasonal adjustment procedure, when the 
seasonal behavior of that particular series is 
deemed to approximate the seasonality in the 
QNA variable.

3.	 Benchmark the quarterly series with superim-
posed seasonal effects derived at step 2 to the 
ANA target variable. 

23 As an example, quarterly seasonal coefficients that average to 
1 are [0.97, 1.01, 0.99, 1.03]. This pattern would assume lower-
than-average activity in the first (q1) and third (q3) quarters and 
higher-than-average activity in the second (q2) and fourth (q4) 
quarters.

Dealing with Difficult Benchmarking 
Problems
Short Series

67  For the back series, the Denton and Cholette–
Dagum methods require a minimum of two years in 
the ANA variable and eight quarters in the indicator 
series. The results obtained with two years are in line 
with the stated objectives of benchmarking. For the 
forward series, however, two years of data may not 
be enough to appreciate the extrapolation accuracy 
of the methods. A longer period is needed to moni-
tor the movements in the BI ratio, in order to identify 
possible divergence between the movements in the 
indicator and those in the ANA variable. When the 
Denton or Cholette–Dagum methods are used for ex-
trapolation, a minimum of five years in both the ANA 
variable and the indicator series is recommended. 

Series with Breaks

68  Benchmarking can produce inaccurate results 
when an annual variable contains a structural break 
in one year and the corresponding indicator does not 
include the same break (and vice versa).24 The quar-
terly benchmarked series could indicate an incorrect 
timing of the start of the break and affect adjacent 
quarters that are not supposed to be affected. These 
situations typically happen when the ANA variable 
and the quarterly indicator have different coverage. 
For example, the national accounts data may include 
informal activities of a specific industry, while the 
quarterly indicator may only cover formal ones. If a 
break occurs in the informal sector only, the indicator 
will not show any change. 

69  The first step to tackle this problem is to under-
stand the nature of the break and verify the underlying 
reasons why the break does not show up consistently in 
the two measurements. When the break is in the ANA 
variable but not in the indicator, the quarterly indi-
cator should be adjusted to match the corresponding 
shift in the ANA variable. The best possible measure-
ment of the timing of the break should be done in the 
quarterly pattern of the adjusted indicator. When the 
break is in the indicator and not in the ANA variable, 
compilers should investigate whether the indicator is 

24 In this context, a structural break is defined as a sizeable (up-
ward or downward) change in the level of a variable. The break 
can be either permanent or transitory. 
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still a good proxy of the ANA variable. If not, a better 
indicator should be identified. On the other hand, it 
may turn out that the break in the indicator is cor-
rect and the ANA variable is not showing the break 
due to a measurement error. In that case, the break 
should be accounted for in the compilation of the an-
nual accounts. Compilers should also verify whether 
the break is permanent or transitionary, and extend 
the necessary adjustments to the periods affected. 

Zeroes and Negative Values  
in the Indicator

70  The Denton method provides a solution to a 
benchmarking problem when the indicator contains 
nonzero values only. 25 When an indicator contains 
zeroes, penalty function (6) is undefined and there is 
no minimum satisfying the constrained minimization 
problem (equations (6) and (7)). For series with ze-
roes, the problem can be circumvented by simply re-
placing the zeroes with values infinitesimally close to 
zero (e.g., 0.001). The benchmarked series will present 
zeroes (or approximate zeroes) in the corresponding 
periods. However, the nature of the zeroes in the indi-
cator should be investigated. If a benchmarked series 
is zero in a particular period, it means that the un-
derlying national accounts transaction is either absent 
or zero by definition. In the former case, this result 
should be verified in contrast with other national ac-
counts variables and indicators. Furthermore, move-
ments in the neighbor quarters may be overadjusted 
as a result of this assumption. When the benchmarked 
series can only assume strictly positive values, the 
zeroes in the indicator could be adjusted (upward) 
before benchmarking to generate a strictly positive 
benchmarking series. Finally, the Cholette–Dagum 
regression-based model could be used to impose the 
zero values as quarterly benchmarks. 

71  The proportional Denton method generally 
keeps the sign of the original value in the indicator. 
This feature may be considered a positive outcome 
of benchmarking from compilers when both positive 
and negative values are acceptable in the QNA series. 
However, for series with both negative and positive 
values, the Denton method may introduce spurious 
movements in the benchmarked series nearby the 
change of sign and amplify the original movements 

25 Annual benchmarks can contain zeroes.

shown by the indicator. This may be seen as undesir-
able when the annual movements are smooth and the 
national accounts variable is required to be positive. 
A numerical illustration of this problem is given in 
Example 6.4 and Figure 6.4.

72  To overcome such problem, the indicator 
should be transformed in such a way that it shows 
strictly positive values only and its additive changes 
are all maintained. The following transformation pro-
cedure can be used:

a.	 Calculate the quarterly additive bias of the in-
dicator in relation to the annual series: that is, 
the average difference between the sum of the 
quarterly values of the indicator and the sum of 
the annual benchmarks.

b.	 Derive a bias-adjusted indicator by subtracting 
the quarterly additive bias from the original 
values.

c.	 If the bias-adjusted indicator still presents 
negative values, remove the negative values by 
adding to the series the minimum value in ab-
solute terms multiplied by two. This step makes 
the transformed indicator strictly positive. The 
minimum value of the transformed indica-
tor will correspond to the minimum value of 
the bias-adjusted indicator taken in absolute 
terms. This transformation modifies the per-
centage growth rates, but maintains the same 
additive changes in all the quarters. 

An example of this solution is shown in Example 6.4 
and Figure 6.4. The best approach for dealing with se-
ries with negative and positive values is to compare 
the proportional Denton benchmarking results using 
the original indicator and the transformed indicator, 
and select the solution which seems more sensible in 
the national accounts and guarantees better consis-
tency with other variables of the QNA system. 

73  For series with negative and positive values that 
are derived as differences between two nonnegative 
series, the problem can be avoided by applying the 
proportional Denton method to the nonnegative com-
ponents of the difference rather than to the difference 
itself. One possible example is changes in inventories, 
where benchmarking can be applied to the opening and 
closing of inventory levels rather than to the change. 

74  Solutions for negative values may work under 
certain circumstances, but may fail in others. No 
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Example 6.4 � Benchmarking Series with Positive and Negative Values: Use of Strictly Positive 
Indicators

Indicator Proportional Denton Method Transformed Indicator
Proportional Denton Method using 

the Transformed Indicator

Level

Quarter-to- 
Quarter 
Rate of 
Change

Benchmarked 
Series

Quarter-to- 
Quarter Rate 

of Change
Level

Quarter-to- 
Quarter 
Rate of 
Change

Benchmarked 
Series

Quarter-to- 
Quarter Rate of 

Change

q1 2010 20.0 107.8 94.6 67.8

q2 2010 15.0 −25.0 64.5 −40.2 89.6 −5.3 63.6 −6.3

q3 2010 10.0 −33.3 23.9 −62.9 84.6 −5.6 58.8 7.5

q4 2010 −60.0 −700.0 3.7 −84.5 14.6 −82.8 9.8 −83.3

2010 −15.0 200.0 283.3 200.0

q1 2011 10.0 −116.7 7.6 104.4 84.6 480.0 55.1 460.8

q2 2011 20.0 100.0 29.8 294.5 94.6 11.8 61.2 11.0

q3 2011 45.0 125.0 92.8 211.1 119.6 26.4 79.0 29.2

q4 2011 75.0 66.7 169.8 82.8 149.6 25.1 104.7 32.4

2011 150.0 300.0 448.3 300.0

q1 2012 90.0 20.0 166.1 −2.1 164.6 10.0 126.6 21.0

q2 2012 100.0 11.1 151.8 −8.6 174.6 6.1 143.7 13.5

q3 2012 110.0 10.0 141.8 −6.6 184.6 5.7 158.7 10.4

q4 2012 120.0 9.1 140.3 −1.0 194.6 5.4 171.0 7.7

2012 420.0 600.0 718.3 600.0

Negative Values in the Indicator and Growth Rates
In column 1, the indicator presents a negative value in q4 2010 (−60). The growth rate for q1 2011  
[10–(–60)]/–60 = –1.167 ⇒ – 116.7%  
is misleading because it would signal negative growth while the series increases from −60 to 10.

Derive a Bias-Adjusted, Strictly Positive Indicator 
The following procedure produces a bias-adjusted indicator with strictly positive values: 

1. � Calculate the quarterly additive bias of the indicator in relation to the annual series, that is, the average difference between the sum of 
the quarterly values of the indicator and the sum of the annual benchmarks: 

Sum of quarterly values:      20 + 15 + 10 − 60 + … + 120 = 555  
Sum of annual benchmarks:   200 + 300 + 600 = 1,100  
Quarterly additive bias:       (555 − 1,100)/12 = −45.4.

2.  Derive a bias-adjusted indicator by subtracting the quarterly additive bias from the original values: 

q1 2010:	 20 – (−45.4) = 65.4  
q2 2010:	 15 – (−45.4) = 60.4  
q3 2010:	 10 – (−45.4) = 55.4  
q4 2010:	 –60 – (−45.4) = −14.6, and so forth. 

3. � If the bias-adjusted indicator still contains negative values, transform the series by adding the minimum value in absolute terms multi-
plied by two, that is, 

q1 2010:	 65.4 + (2 × 14.6) = 94.6  
q2 2010:	 60.4 + (2 × 14.6) = 89.6  
q3 2010:	 55.4 + (2 × 14.6) = 84.6  
q4 2010:	 −14.6 + (2 × 14.6) = 14.6, and so forth. 

The minimum value in the transformed indicator (column 3) is the minimum value of the bias-adjusted indicator taken in absolute terms 
(14.6 in q4 2010). Note that the transformation modifies the growth rates, but the additive changes of the transformed indicator are equal 
to those of the original indicator in all quarters. 

Annual Benchmarks with Strictly Positive Values  
In this example, the annual benchmarks are positive and all distant from zero (200 in 2010, 300 in 2011, and 600 in 2012). It is reasonable  
to assume that the quarterly values are also strictly positive. Applying the proportional Denton method with the original indicator  
(column 2) would force the quarterly benchmarked series to preserve the negative value in q4 2010 (−79.2). Conversely, the proportional 
Denton method with the bias-adjusted, strictly positive indicators (column 4) produces a benchmarked series that correctly reproduce the 
additive changes and returns all positive values (9.8 in q4 2010). 

(These results are illustrated in Figure 6.4. Rounding errors in the table may occur.)
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Figure 6.4  Solution to Positive and Negative Values: Use of Strictly Positive Indicators

The Indicator and the Derived Benchmarked Series
(The corresponding data are given in Example 6.4)
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matter how good the method is, a new combination 
of negative and positive values may appear in the data 
that can create discontinuity in the series. Bench-
marking problems with negative and positive values 
should always be treated with care. 

Benchmarking Without  
a Related Indicator

75  Quarterly values may have to be derived by 
using mathematical techniques that distribute the an-
nual values into quarters without using a related quar-
terly indicator. These techniques should be avoided as 
much as possible in the compilation of QNA series 
because they do not reflect the true movements in the 
economy. These situations should be prevented when 
the QNA system is put in place by defining an ap-
propriate level of detail of the ANA variables, taking 
into account the quarterly sources available from data 
providers. Benchmarking without a related indicator 
is acceptable only for series that move smoothly from 
one quarter to the next. Moreover, the size of the vari-
able should be contained in order to reduce its impact 

on the levels of GDP and other main aggregates. A 
possible example of a stable series is consumption of 
fixed capital (when capital formation is fairly stable). 
In such cases, the ANA series should be interpolated 
in a way such that the quarterly values provide move-
ments that are as stable as possible. This approach 
minimizes the impact of these items on the dynamics 
arising from the rest of the accounts. 

76  The optimal method is provided by the inter-
polation technique suggested by Boot, Feibes and 
Lisman (1967). The Boot–Feibes–Lisman method 
looks for the quarterly values that minimize the 
sum of squares of the difference between successive 
quarters:

min
X t t

t

y

t

X X− −
=
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2
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77  Conveniently, the Boot–Feibes–Lisman solu-
tion can be derived by applying the proportional 
Denton method with a constant indicator. If we as-
sume I Ct = , penalty function (6) becomes

min min ,
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which corresponds to the penalty function mini-
mized by the Boot–Feibes–Lisman shown in equation 
(16) multiplied by a constant factor (which does not 
change the solution of the minimization problem). 
When extrapolations are needed, the quarterly vari-
able can be extrapolated based on time-series models 
(see Chapter 10). Alternatively, an annual forecast of 
the next benchmark could be included in the bench-
marking process. In both cases, because the variable 
is expected to be highly predictable, revisions to QNA 
variables would be very limited in future releases. 

Benchmarking and Compilation Procedures

78  Benchmarking should be an integral part of 
the compilation process and should be conducted at 
the most detailed compilation level. In practice, this 
may imply benchmarking different series in stages, 
where data for some series—which have already been 
benchmarked—are used to estimate other series, fol-
lowed by a second or third round of benchmarking. 
The actual arrangements will vary depending on the 
particularities of each case.

79  As an illustration, annual data may be avail-
able for all products, but quarterly data are available 
only for the main products. If it is decided to use 
the sum of the quarterly data as an indicator for the 
other products, the ideal procedure would be first to 
benchmark each of the products for which quarterly 
data are available to the annual data for that prod-
uct, and then to benchmark the quarterly sum of the 
benchmarked estimates for the main products to the 
total. Of course, if all products were moving in simi-
lar ways, this would give similar results to directly 
benchmarking the quarterly total to the annual total.

80  In other cases, a second or third round of bench-
marking may be avoided and compilation procedure 
simplified. For instance, a current price indicator can 
be constructed as the product of a quantity indicator 
and a price indicator without first benchmarking the 
quantity and price indicators to any corresponding 

annual benchmarks. Similarly, a volume indicator can 
be constructed as a current price indicator divided by 
a price indicator without first benchmarking the cur-
rent price indicator. Also, if output at constant prices 
is used as an indicator for intermediate consumption, 
the (unbenchmarked) constant price output indicator 
can be benchmarked to the annual intermediate con-
sumption data directly. It can be shown that the result 
is identical to first benchmarking the output indicator 
to annual output data, and then benchmarking the re-
sulting benchmarked output estimates to the annual 
intermediate consumption data.

81  To derive quarterly constant price data by deflat-
ing current price data, the correct procedure would 
be first to benchmark the quarterly current price in-
dicator and then to deflate the benchmarked quarterly 
current price data. If the same price indices are used 
in the annual and quarterly accounts, the sum of the 
four quarters of constant price data should be taken 
as the annual estimate, and a second round of bench-
marking is unnecessary. As explained in Chapter 8, 
annual deflators constructed as unweighted averages 
of monthly or quarterly price data can introduce an 
aggregation over time error in the annual deflators and 
subsequently in the annual constant price data that can 
be significant if there is quarterly volatility. Moreover, 
if, in those cases, quarterly constant price data are de-
rived by benchmarking a quarterly constant price in-
dicator derived by deflating the current price indicator 
to the annual constant price data, the aggregation over 
time error will be passed on to the implicit quarterly 
deflator, which will differ from the original price in-
dices. Thus, in those cases, annual constant price data 
should in principle be derived as the sum of quarterly 
or even monthly deflated data if possible. If quarterly 
volatility is insignificant, however, annual constant 
price estimates can be derived by deflating directly 
and then benchmarking the quarterly constant price 
estimates to the annual constant price estimates.

82  Finally, benchmarking can be performed before 
or after seasonal adjustment. When benchmarking is 
applied on the unadjusted data only, seasonal adjust-
ment is performed on the results of benchmarking 
(i.e., the benchmarked series). On the other hand, sea-
sonal adjustment can be done prior to benchmarking 
when the seasonal adjustment method is applied to 
the short-term indicators (monthly or quarterly). In 
this case, the seasonally adjusted indicator should be 
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benchmarked to the annual accounts. Chapter 7 dis-
cusses in more details about benchmarking of season-
ally adjusted data. 

Benchmarking and Revisions

83  To avoid introducing distortions in the series, 
incorporation of new annual data for one year will 
generally require revision of previously published 
quarterly data for several years. Benchmarking meth-
ods with movement preservation (like the Denton 
method and the Cholette–Dagum method) minimize 
the impact of revisions on the historical movements 
of the QNA series. In principle, previously published 
QNA estimates for all preceding and following years 
may have to be adjusted to maximally preserve the 
short-term movements in the indicator, if the errors 
in the indicator are large. In practice, however, with 
most benchmarking methods, the impact of new an-
nual data will gradually be diminishing and zero for 
sufficiently distant periods. 

84  Ideally, revisions to quarterly indicators 
should be incorporated in the QNA series as soon 
as possible to reflect the most up-to-date short-term 
information available. This is particularly relevant 
for the forward series, which should immediately 
incorporate revisions to preliminary values of the 
indicators for the previous quarters on the basis of 
more up-to-date and comprehensive source data. If 
revisions to preliminary information in the current 
year are disregarded, the QNA may easily lead to bi-
ased extrapolations for the next years. For the back 
series, revisions to previous years of the indicator 
should be reflected in the QNA series at the time 
when revisions to new or revised ANA benchmarks 
are incorporated.

85  Revisions to some previously published QNA 
estimates can be avoided by freezing the quarterly 
values for those periods. This practice should be 
defined clearly in the revision policy of QNA data 
and not be changed from one quarter to the next 
without advance communication to users. To avoid 
introducing significant distortions to the bench-
marked series, however, at least two to three years 
preceding (and following) years should be allowed 
to be revised each time new annual data become 
available. In general, the impact on more distant 
years will be negligible.

Reconciliation of QNA Series
86  The benchmarking methods discussed in this 

chapter adjust one indicator at a time to generate 
quarterly values in line with corresponding ANA 
benchmarks. The benchmarking adjustment pro-
cess is applied individually to each variable and 
does not take into account any accounting relation-
ship between the QNA series. Consequently, the 
benchmarked quarterly series may not automati-
cally form a consistent set of accounts. For example, 
the independently derived quarterly estimates of 
GDP from the production side may differ from the 
independently derived quarterly estimates of GDP 
from the expenditure side, even though the annual 
data are consistent. Another example is when quar-
terly totals derived from estimates by institutional 
sector differ from the same quarterly totals derived 
from estimates by economic activity. Finally, quar-
terly discrepancies may arise when seasonal adjust-
ment is applied directly to both QNA components 
and aggregates (see Chapter 7 for more details 
on the direct versus indirect seasonally adjusted 
approaches).

87  Quarterly inconsistencies between QNA se-
ries should be addressed and resolved at the vari-
ous stages of QNA compilation. Discrepancies can 
be minimized by using coherent (when not equal) 
quarterly indicators for production, expenditure, 
and income flows pertaining to the same industry 
or product. Large discrepancies indicate that there 
are large inconsistencies between the short-term 
movements of interconnected QNA series. Some 
discrepancies in the accounts can also be elimi-
nated in the compilation stage by benchmarking 
(or seasonally adjusting) different parts of the 
accounts at the most detailed level and building 
aggregates from the benchmarked (or seasonally 
adjusted) components. The discrepancies that 
remain after this careful investigation process 
should be eliminated using automatic adjustment 
procedures.  

88  This section presents statistical methods to 
transform a set of quarterly indicators into a consistent 
system of QNA series that satisfy both annual con-
straints and quarterly constraints. These methods are 
called reconciliation methods. The annual constraints 
are those from the ANA system and correspond to the 
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same ANA totals considered for benchmarking. The 
quarterly constraints are linear, contemporaneous 
aggregations26 of the QNA series. These can be of two 
different types:27 

·	 Endogenous constraints. In the national ac-
counts there are endogenous accounting re-
strictions that should be met by the variables 
at any frequency: for example, the sum of gross 
output and imports of a product should be 
equal to the sum of final and intermediate uses 
of that product (net of valuation and adjust-
ment items) or the difference of gross output 
and intermediate consumption is equal to gross 
value added. These identities can be added as 
quarterly accounting restrictions between the 
variables involved in the constrained minimi-
zation problem. 

·	 Exogenous constraints. These are usually QNA 
aggregates that are independently derived from 
the system under adjustment. For example, 
quarterly estimates of value added by institu-
tional sectors can be adjusted so that their sum 
is equal to quarterly gross value added for the 
total economy derived by economic activity. It 
has to be noted that exogenous constraints must 
satisfy the set of annual constraints. In the exam-
ple above, the annual total gross value added by 
industry must be equal to the annual total gross 
value added by institutional sector. A numeri-
cal illustration of a three-variable QNA system 
with an independently derived quarterly sum is 
shown in Example 6.5.

89  In the QNA, the main objectives of reconcilia-
tion are as follows:

·	 to provide quarterly data that are (i) temporally 
consistent with the ANA data that is such that the 
sum (or the average) of the quarterly data is equal 
to the annual benchmark and, at the same time, 
(ii) consistent with (endogenous and exogenous) 

26 Contemporaneous means that the quarterly constraints refer 
to the current quarter only (no lead or lagged relationships). 
It is also assumed that these quarterly relationships are linear 
combination of the variables. Nonlinear restrictions between the 
variables may also be useful in the adjustment process (e.g., be-
tween price and volume measures, or unadjusted and seasonally 
adjusted series), but they are not dealt with in this presentation 
for the sake of simplicity. 
27 This manual considers only quarterly binding constraints. 
Quarterly constraints are nonbinding when they are subject to 
changes in the reconciliation process. 

quarterly constraints that is such that linear com-
binations of the quarterly adjusted data are equal 
to given values available in every observed quar-
ter; and

·	 to preserve as much as possible the quarterly 
movements in the indicator under the restric-
tions provided by the ANA data and the quar-
terly aggregation constraints.

90  Differently from benchmarking, reconciliation 
methods have to satisfy quarterly constraints in ex-
trapolation. The forward series return quarterly val-
ues that are consistent with the quarterly extrapolated 
constraints. When there are exogenous constraints, 
they should always include estimates for the extrapo-
lated quarters (either derived with the enhanced Den-
ton method or the Cholette–Dagum method with AR 
error). The variables of the system will be extrapo-
lated in accord with the quarterly extrapolated con-
straints. When there are endogenous constraints only, 
the individual variables of the system should be first 
extrapolated using the preferred univariate method 
for extrapolation. The extrapolated QNA variables 
can then be used as input series of the reconciliation 
methods. 

91  Given the stated objectives of reconciliation, 
the multivariate proportional Denton method is 
the best solution for deriving QNA series subject 
to both annual and quarterly constraints (see para-
graph 6.93). The penalty function is a multivariate 
extension of the univariate proportional Denton 
method to include all the quarterly series in the 
system. In addition, the constrained minimization 
problem is augmented to include the endogenous 
and exogenous quarterly constraints of the QNA 
system. 

92  When the dimension of the system is too 
large, it may become difficult to apply the multivar-
iate Denton approach using standard algorithms. 
For large QNA systems, a convenient two-step 
reconciliation procedure could be used to approxi-
mate the results of the optimal multivariate Denton 
method. This two-step procedure is based on the 
application of the proportional Denton method for 
each individual series at the first step, and a least-
squares adjustment of the system of benchmarked 
series one year at a time as the second step (para-
graph 6.97). 
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The Multivariate Proportional Denton 
Method

93  The multivariate proportional Denton method28 
derives the quarterly values that keep the ratio of 
the reconciled series to the indicators as constant as 
possible subject to the given annual and quarterly 
constraints. In mathematical terms, the multivariate 
proportional Denton method minimizes the con-
strained minimization problem:

28 The multivariate extension of the proportional Denton method 
(and its solution in matrix notation) is presented in Di Fonzo and 
Marini (2011). 
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Example 6.5  A Small Reconciliation Problem

QNA Components
Sum QNA 

Components
QNA 

Aggregate

Quarterly 
Discrepancies  

(%)

(a) (b) (c) (5) (6) [(6) − (5)]/(6)

q1 2010 7.0 18.0 1.5 26.5 27.1 2.2

q2 2010 7.2 19.5 1.8 28.5 29.8 4.3

q3 2010 8.1 19.0 2.0 29.1 29.9 2.7

q4 2010 7.5 19.7 2.5 29.7 31.2 4.9

2010 QNA (1) 29.8 76.2 7.8 113.8 118.0

2010 ANA (2) 30.0 80.0 8.0 118.0 118.0

Annual Discrepancies (%) [(1) − (2)]/(2) −0.7 −4.8 −2.5 −3.6 0.0

q1 2011 8.5 18.5 2.0 29.0 29.3 1.1

q2 2011   7.8 19.0 1.5 28.3 27.9 −1.3

q3 2011   8.1 20.3 1.7 30.1 30.9 2.6

q4 2011   8.4 20.0 2.0 30.4 31.7 4.2

2011 QNA (3) 32.8 77.8 7.2 117.8 119.9

2011 ANA (4) 30.6 81.2 8.1 119.9 119.9

Annual Discrepancies (%) [(3) − (4)]/(4) 7.2 −4.2 −11.1 −1.8 0.0

Reconciliation Problem 
The example consists of three QNA components a, b, and c that have to be reconciled with their corresponding annual benchmarks and an 
independent quarterly sum. The quarterly sum is considered a more accurate estimate of the total than the sum of the individual compo-
nents. The annual and quarterly series are available for the years 2010 and 2011. Note the relative size of the three variables, with the larg-
est variable (b) being about 10 times larger than the smallest variable (c).

The preliminary QNA components show both annual and quarterly discrepancies. For example, the sum of the quarterly values for com-
ponent b in 2010 (76.2) is 4.8 percent lower than the ANA benchmark for 2010 (80.0). At the same time, the contemporaneous sum of the 
quarterly components differs from the quarterly values of the independent sum. For 2010, 

q1 2010:	 7.0 + 18.0 + 1.5 = 26.5	 ≠	 27.1 
q2 2010:	 7.2 + 19.5 + 1.8 = 28.5	 ≠	 29.8 
q3 2010:	 8.1 + 19.0 + 2.0 = 29.1	 ≠	 29.9 
q4 2010:	 7.5 + 19.7 + 2.5 = 29.1	 ≠	 31.2 

Note also that the QNA aggregate is in line with the sum of the ANA benchmarks. For example, the sum of the quarterly total and the sum 
of the ANA benchmarks are both 118.0 in 2010 and 119.9 in 2011. This consistency is a prerequisite for running any reconciliation methods. 
Low-frequency variables should satisfy any high-frequency relationships defined for the variables.
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where 

m	 is the number of QNA series in the system to be 
adjusted,

j	 is the generic index for a QNA series, 

k 	 is the number of quarterly relationships between 
the QNA series, 

h	 is the generic index for a quarterly relationship, 

X j t
R
, 	 is the level of the QNA reconciled series j for 

quarter t,

I j t, 	 is the level of the quarterly indicator j for quarter t,

Aj n, 	 is the level of the ANA benchmark j for year n,

ch j, 	 is the coefficient of component j in the quarterly 
constraint h,

Th t, 	 is the level of the quarterly constraint h for quar-
ter t, and

t, n, and y are defined in equation (2). 

94  The target values of the constrained mini-
mization problem (equations (17)–(19)) are the 
quarterly values of the m series of the QNA sys-
tem (specifically a total of 4y m⋅ values to be de-

termined). The penalty function is designed to 
preserve the overall movement in the indicators 
used in the QNA system. The minimization prob-
lem allows for as many quarterly relationships as 
are established between the QNA series (for a single 
quarterly relationship, k = 1). 

95  Coefficients ch j,  and the constraint values Th t, ,  
for h k=1,..., , define the type of quarterly relation-
ships between the variables. For example, when the 
sum of QNA components (e.g., value added by eco-
nomic activity) matches an independently derived 
aggregate estimate (e.g., value added by institutional 
sector), the values ch j,  are equal to 1 for any j and 
Th t, is the value of the aggregate estimate for quarter 
t. For national accounts applications, the values of 
ch j,  can be 1 (addition to the aggregate), −1 (sub-
traction to the aggregate), or 0 (not included in the 
aggregate).

96  As for benchmarking, the reconciled series 
X j t

R
,  are derived as the solution of the constrained 

minimization problem (equations (17)−(19)). 
The multivariate Denton method is illustrated in 
Example 6.6.

Example 6.6  The Multivariate Proportional Denton Method

Reconciled QNA Components
Sum QNA 

Components QNA Aggregate
Quarterly 

Discrepancies (%)

(a) (b) (c) (5) (6) [(6) − (5)]/(6)

q1 2010 7.1 18.5 1.5 27.1 27.1 0.0

q2 2010 7.3 20.6 1.8 29.8 29.8 0.0

q3 2010 8.1 19.8 2.0 29.9 29.9 0.0

q4 2010 7.4 21.1 2.6 31.2 31.2 0.0

2010 QNA 30.0 80.0 8.0 118.0 118.0

2010 ANA 30.0 80.0 8.0 118.0 118.0

q1 2011 8.1 19.1 2.2 29.3 29.3 0.0

q2 2011 7.2 19.1 1.7 27.9 27.9 0.0

q3 2011 7.5 21.4 1.9 30.9 30.9 0.0

q4 2011 7.8 21.6 2.3 31.7 31.7 0.0

2011 QNA 30.6 81.2 8.1 119.9 119.9

2011 ANA 30.6 81.2 8.1 119.9 119.9

Solution with the Multivariate Proportional Denton Method 
The multivariate proportional Denton method adjusts the QNA components to meet both temporal and cross-sectional benchmarks in one 
step. The ratios between the reconciled QNA components and the preliminary QNA indicators (reconciled-to-indicator ratios) are presented 
in Example 6.9. The annual discrepancies are removed in a way so that the overall movement in the preliminary estimates of the QNA com-
ponents is preserved. The quarterly discrepancies are distributed in proportion to the size of the preliminary QNA variables. These charac-
teristics are more visible by looking at the results of the two-step reconciliation procedure (presented in Examples 6.7. and 6.8), which is an 
approximation of the multivariate proportional Denton method.
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derived using the Denton method, movements in the 
indicator are already preserved in the X j t

B
, . Therefore, 

in the second step, there is no need to preserve again 
movements in the objective function. A simple least-
squares adjustment of the X j t

B
,  values is sufficient 

to fulfill both the annual and quarterly constraints. 
Moreover, this adjustment can be done for each 
year separately, because the movement between one 
year and the next is already preserved by the bench-
marked series.

100  Taking a generic year n, the second step is 
given by the least-squares solution of the constrained 
minimization: 
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where 

X j t
R
,  � is the level of the QNA reconciled series j for 

quarter t that satisfy both the corresponding 
ANA benchmarks Aj n, and the quarterly ac-
counting relationships. 

101  Penalty function (22) shows that the discrep-
ancies ( ), ,X Xj t

R
j t
B− are distributed in proportion to 

the level of the benchmarked series.30 The relative 
size of the variables determines the amount of dis-
crepancy to be distributed. The largest variables are 

30 From a statistical viewpoint, taking the level of the bench-
marked series at the denominator in function corresponds to 
assuming equal reliability of all variables (notwithstanding their 
relative size). An alternative solution for the second step has been 
suggested in Quenneville and Rancourt (2005), which takes the 
square root of the benchmarked series as normalizing factor of 
the discrepancy ( ), ,X Xj t

R
j t
B− . This assumption assumes that large 

variables are relatively more reliable than small variables, and 
therefore are touched less in the second step of the procedure. 

A Two-Step Reconciliation Procedure

97  When the dimension of the system is too 
large, it could become time consuming, or even 
inefficient, to solve the constrained minimization 
problem (equations (17)–(19)). A convenient ap-
proximation of the multivariate Denton method 
can be achieved using the following two-step 
procedure:29

·	Benchmarking each of the m indicators to the 
corresponding ANA benchmarks using the uni-
variate proportional Denton method. The first 
step provides temporally consistent QNA series, 
but it is likely to leave inconsistency in the quar-
terly benchmarked series toward the quarterly 
accounting constraints.

·	For each year separately, balancing the quarterly 
benchmarked series obtained at the first step to 
both annual and quarterly constraints relevant to 
the year. The balancing procedure is performed 
using a least-square adjustment. The second step 
splits the full system observed over the available 
span of years into y small systems covering one 
year at a time. 

98  The first step is straightforwardly achieved 
by applying the univariate Denton method to the m 
variables in the system: that is, by solving the m con-
strained minimization problems:
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where

X j t
B
,  � is the level of the QNA benchmarked series j for 

quarter t to the corresponding ANA benchmarks.

99  The second step is needed to restore the con-
temporaneous consistency in the benchmarked se-
ries X j t

B
,  obtained at the first step. Because they are 

29 Two-step reconciliation procedures are discussed in Quenn-
eville and Fortier (2012). The approximation of the multivariate 
Denton method of the proposed two-step solution is illustrated 
with real-life examples in Di Fonzo and Marini (2011). 
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Example 6.7  Two-Step Reconciliation Procedure: Univariate Benchmarking Step

Benchmarked QNA Components
Sum QNA 

Components QNA Aggregate
Quarterly 

Discrepancies (%)

(a) (b) (c) (5) (6) [(6) (5)]/(6)

q1 2010 7.2 18.9 1.5 27.6 27.1 −1.8

q2 2010 7.3 20.5 1.8 29.6 29.8 0.5

q3 2010 8.1 19.9 2.1 30.1 29.9 −0.8

q4 2010 7.4 20.6 2.6 30.7 31.2 1.8

2010 QNA 30.0 80.0 8.0 118.0 118.0

2010 ANA 30.0 80.0 8.0 118.0 118.0

q1 2011 8.1 19.3 2.2 29.7 29.3 −1.1

q2 2011 7.3 19.8 1.7 28.8 27.9 −3.2

q3 2011 7.5 21.2 1.9 30.6 30.9 1.1

q4 2011 7.7 20.8 2.3 30.8 31.7 2.8

2011 QNA 30.6 81.2 8.1 119.9 119.9

2011 ANA 30.6 81.2 8.1 119.9 119.9

Example 6.8  Two-Step Reconciliation Procedure: Balancing Step

Reconciled QNA Components
Sum QNA 

Components QNA Aggregate
Quarterly Discrepancies 

(%)

(a) (b) (c) (5) (6) [(6) − (5)]/(6)

q1 2010 7.1 18.5 1.5 27.1 27.1 0.0

q2 2010 7.3 20.6 1.8 29.8 29.8 0.0

q3 2010 8.1 19.7 2.0 29.9 29.9 0.0

q4 2010 7.4 21.1 2.6 31.2 31.2 0.0

2010 QNA 30.0 80.0 8.0 118.0 118.0

2010 ANA 30.0 80.0 8.0 118.0 118.0

q1 2011 8.1 19.1 2.2 29.3 29.3 0.0

q2 2011 7.2 19.1 1.7 27.9 27.9 0.0

q3 2011 7.5 21.5 1.9 30.9 30.9 0.0

q4 2011 7.8 21.6 2.3 31.7 31.7 0.0

2011 QNA 30.6 81.2 8.1 119.9 119.9

2011 ANA 30.6 81.2 8.1 119.9 119.9

Solution with the Two-Step Reconciliation Procedure 
In the first step (Example 6.7), each QNA component is benchmarked to the 2010 and 2011 annual benchmarks using the univariate propor-
tional Denton method. This step removes the temporal discrepancies, but still leaves difference between the sum of the quarterly bench-
marked series and the QNA aggregate. 

In the second step (Example 6.8), the benchmarked series are adjusted to comply with both the annual constraints and the QNA aggregate 
values for each year separately. This adjustment is performed using a least-squares procedure which takes the value of the temporally bench-
marked series as a normalizing factor of the discrepancy to be distributed.
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•	 When quarterly indicators are of inferior quality than annual data, benchmarking methods should be used to 
derive QNA series that (i) are temporally consistent with the ANA benchmarks, (ii) preserve as much as possible 
the quarterly movements in the indicators, and (iii) provide accurate extrapolations for the current year.

•	 The pro rata method is not an appropriate method for benchmarking QNA series, because it may distort the 
quarter-to-quarter movement in the first quarter of each year. 

•	 The preferred option for benchmarking QNA series is the proportional Denton method. The enhanced Denton 
formula for extrapolation could be used in place of the basic Denton method to improve the QNA estimates for 
the current year. This method requires a forecast of the next annual BI ratio, which should be determined exter-
nally by the user looking at the development of the annual BI ratio series. 

•	 As an alternative to the Denton method, the proportional Cholette–Dagum method with first-order AR error 
could be used to obtain bias-adjusted QNA extrapolations based on historical behavior. The recommended value 
of the AR parameter is 0.84, or alternatively chosen in a range between 0.71 and 0.93, depending on the move-

Example 6.9  Results from Multivariate Denton Method and Two-Step Procedure

Multivariate Denton 
Method Two-Step Reconciliation Procedure

Reconciled-to-Indicator 
Ratios

Reconciled-to-Indicator 
Ratios

Benchmarking Step (BI 
Ratios)

Balancing Step 
(Reconciled-to-

Benchmark Ratios)

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

q1 2010 1.016 1.027 0.998 1.015 1.027 0.999 1.024 1.051 1.002 0.992 0.977 0.998

q2 2010 1.020 1.057 1.009 1.020 1.058 1.009 1.017 1.051 1.009 1.003 1.006 1.000

q3 2010 1.000 1.040 1.024 1.001 1.039 1.024 1.004 1.050 1.026 0.997 0.990 0.998

q4 2010 0.993 1.073 1.055 0.993 1.073 1.055 0.984 1.048 1.052 1.009 1.024 1.002

q1 2011 0.950 1.031 1.090 0.951 1.031 1.089 0.957 1.046 1.091 0.994 0.985 0.998

q2 2011 0.920 1.004 1.116 0.923 1.003 1.115 0.936 1.044 1.120 0.986 0.961 0.996

q3 2011 0.929 1.057 1.140 0.928 1.057 1.141 0.923 1.043 1.140 1.005 1.014 1.001

q4 2011 0.932 1.080 1.153 0.929 1.081 1.155 0.916 1.042 1.150 1.014 1.037 1.004

Reconciled-to-Indicator Ratios 
The reconciled-to-indicator ratios of the multivariate Denton method and of the two-step reconciliation procedure are presented in the 
table. It can be seen that the ratios of the two-step procedure are very close to those from the multivariate Denton approach. 

The table also presents the ratios of the benchmarked series to the indicator series obtained at the first step (i.e., the BI ratio) and the ratios 
of the reconciled series obtained at the second step and the benchmarked series obtained at the first step (reconciled-to-benchmark ratios). 
As seen in the benchmarking section, the BI ratios obtained using the Denton method move smoothly between the quarters. Instead, the 
reconciled-to-benchmark ratios show that the quarterly discrepancies—reported in the last three columns of Example 6.9—are distributed 
in proportion to the size of the variable. In fact, most of the quarterly discrepancy for each quarter is assigned to component b, which is the 
largest variable in the system, while component c gets the smallest portion.

Summary of Key Recommendations

those receiving the highest portion of contempora-
neous discrepancy. 

102  The solutions to systems (equations (22)–
(24)) for all the available years (i.e., n y=1,..., )  
generate quarterly reconciled series X j t

R
,  that are 

close approximations of the optimal solution 
provided by the multivariate Denton propor-

tional method. An illustration of the two-step 
procedure is given in Examples 6.7 and 6.8. The 
results from the multivariate Denton method and 
the two-step procedure are compared in Exam-
ple  6.9 using the ratios between the reconciled 
series X j t

R
, , the benchmarked series X j t

B
, , and the 

indicators I j t, . 
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ments in the BI ratio. These values guarantee that movements in the indicator are adequately preserved for the 
back series.

•	 The Denton method and Cholette–Dagum method should be tested on the specific benchmarking cases in the 
QNA. The method providing the most accurate results should be chosen. Ultimately, the choice between the two 
methods could be a subjective call. The same method should be used for calculating both the back series and the 
forward series of the same variable. Once a method is chosen for a variable, the method should be used consis-
tently over time.

•	 For reconciliation problems, the multivariate proportional Denton method should be used for deriving a system 
of QNA series subject to both annual and quarterly constraints. 

•	 When the dimension of the QNA system is too large to be solved efficiently in one step, the following two-step 
procedure may be used to approximate the optimal results of the multivariate Denton method:

•	 benchmarking each quarterly indicator to the corresponding ANA benchmarks using the proportional Denton 
method and

•	 for each year separately, balancing the quarterly benchmarked series obtained at the first step using a least-
squares procedure that proportionally adjusts the original values to realign them with both annual and quar-
terly constraints relevant to the year.
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1  Benchmarking refers to the procedures used to 
maintain consistency among the time series available 
at different frequencies for the same target variable. 
In the QNA, benchmarking usually consists of ad-
justing quarterly data to match annual (or quinquen-
nial) benchmarks. 31 Quarterly values of indicators are 
modified so that the annual sums (or average) of the 
adjusted values are equal to the corresponding ANA 
benchmarks, which are considered the more compre-
hensive and accurate measurement in level of national 
accounts variables. 

2  Benchmarking methods can be grouped into 
two main approaches: the numerical approach and 
the model-based approach. Numerical methods de-
termine the target values as the solution of an ad hoc 
constrained optimization problem, where an objec-
tive function is defined to preserve some characteris-
tics of the original information available. Examples of 
numerical methods preserving the movements in the 
indicator are the benchmarking methods proposed by 
Denton (1971) and Monsour and Trager (1979). This 
group also includes mathematical solutions to decom-
pose annual data into consistent quarterly data with-
out the use of a quarterly related indicator, such as 
the methods by Lisman and Sandee (1964) and Boot, 
Feibes and Lisman (1967). 

3  Model-based benchmarking methods perform 
the adjustment under the assumption of a statisti-
cal model for the unknown values to be determined. 
Model-based benchmarking methods encompass 
ARIMA32 model-based methods of Hillmer and Tra-
belsi (1987), regression-based methods proposed by 
Cholette and Dagum (1994), and state space models 
of Durbin and Quenneville (1997). In addition, Chow 
and Lin (1971) proposed a multivariable general least-
squares regression approach for interpolation, distri-
bution, and extrapolation of time series. 33 While not 

31 The term “benchmarking” was first introduced in Helfand, 
Monsour, and Trager (1977) to describe the historical revision of 
monthly survey data to incorporate census benchmarks every five 
years.
32 Autoregressive-integrated moving average.
33 Related works to the Chow–Lin solution are Fernández (1981), 
Litterman (1983), and Wei and Stram (1990). 

a benchmarking method in a strict sense, the Chow–
Lin method is related to the regression-based model 
developed by Cholette and Dagum (as explained later 
in this annex).

4  This annex provides a brief review of benchmark-
ing methods for compiling QNA. The annex is not in-
tended to provide an extensive survey of all alternative 
benchmarking methods proposed in the literature.34 
The aim of this annex is to offer a more technical dis-
cussion of the two benchmarking methods identified 
in the chapter as suitable for QNA purposes: namely,

·	The benchmarking method proposed by Denton 
(1971), with its enhancement for extrapolation. 
The Denton proportional method is the pre-
ferred option for benchmarking. The enhanced 
version should be used for extrapolation when a 
forecast of the next annual BI ratio is available.

·	The regression-based benchmarking method 
proposed by Cholette and Dagum (1994). An al-
ternative solution to the Denton approach is the 
proportional Cholette–Dagum method with AR 
extrapolation, which preserves the movements 
in the indicator for the back series and automati-
cally adjusts QNA extrapolations for a temporary 
bias in the indicator. 

5  This annex illustrates the two benchmarking meth-
ods mentioned above using a standardized formal no-
tation. Each method (including the Cholette–Dagum 
approach) can be interpreted as the solution to a con-
strained minimization problem under a specific ob-
jective (or penalty) function. Further details for each 
method will be highlighted in both distribution and 
extrapolation steps. Finally, solutions of both methods 
are presented in matrix notation. Conveniently, a ma-
trix representation permits to express the constrained 
minimization problem as a linear system and derive the 
benchmarked series as (part of) its solution using simple 
algebra operations. The technical presentation provided 
in this annex is intended to facilitate the implementa-
tion of these benchmarking methods in any preferred 
programming language with matrix capabilities.

34 For further reference, see Dagum and Cholette (2006). 

Annex 6.1 Benchmarking Methods
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6  The annex presents briefly the regression-based 
benchmarking (or temporal disaggregation) method 
proposed by Chow and Lin (1971). The Chow–Lin ap-
proach is presently used in many countries for com-
piling QNA variables. The annex explains how the 
Chow–Lin method relates to the Denton and Cho-
lette–Dagum methods.

The Denton Benchmarking Method

7  Denton (1971) proposed a method to adjust quar-
terly (or monthly) series so that the annual sums of the 
adjusted values are equal to independent annual totals 
and the resulting quarterly series be free of artificial dis-
continuities between the years. The adjustment method 
proposed by Denton (later became known as bench-
marking) is grounded on a principle of movement 
preservation, whereby the adjusted values are sought to 
preserve maximally the movement in the original se-
ries. The adjustment follows thus a purely mechanical 
scheme, with no explicit statistical models or assump-
tion describing the behavior of the series involved. The 
Denton benchmarking method has become popular in 
the QNA and in other areas of official statistics for its 
easy implementation and its flexibility and robustness 
to handle different kinds of benchmarking problems. 

8  Denton formulated the benchmarking prob-
lem as a constrained quadratic minimization of a 
penalty function, designed to minimize the impact 
of the adjustment on the movements in the original 
values. Denton proposed two penalty functions: an 
additive solution and a proportional solution. 35 They 
are shown below with the modifications proposed by 
Cholette (1984) to deal with the starting condition: 36

·	 Additive First Difference (AFD) Function
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35 Denton also proposed additive and proportional solutions that 
minimize the impact on second or higher-order differences in 
the original series. The proportional second difference solution 
is particularly convenient with stock variables, as discussed in 
Dagum and Cholette (2006). 
36 The original proposal by Denton assumed that the value for the 
first period of the series was predetermined. For more details on 
the original Denton method and the modified solution for the 
starting condition, see Dagum and Cholette (2006, chapter 6).

·	 Proportional First Difference (PFD) Function
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where

Xt	 is the quarterly series to be calculated (i.e., the 
QNA series),37 

It	 is the quarterly series available (i.e., the indicator), 
An	 is the annual series to be fulfilled (i.e., the ANA 

benchmarks), 
t y=1 4,...,  is the temporal index for the quarters, and 
n y=1,...,  is the index for the years. 

Quarterly observations are available for each year. 
As shown later, the method can be extended easily to 
cover the case of extrapolation in quarters beyond the 
last available annual benchmark. 

9  Formulas (A1) and (A2) are minimized under the 
same restrictions, which for flow series correspond to 

X A n yt n
t n

n

= =
= −
∑ , , ...,1

4 3

4

� (A3)

that is, the sum of the quarters must be equal to an-
nual benchmarks available for each year. Annual 
benchmarks An are binding (or “hard”) constraints in 
the system, as they cannot vary in the adjustment pro-
cess. The Denton approach does not allow nonbind-
ing (or “soft”) benchmarks, a distinguished feature of 
the Cholette–Dagum regression-based model that is 
illustrated later in the annex. 

10  The PFD variant (equation (A2))—indicated in 
this chapter as proportional Denton method—is gen-
erally preferred over the AFD formula (A1) because it 
preserves seasonal and other short-term fluctuations 
in the series better when these fluctuations are multi-
plicatively distributed around the trend of the series. 
Multiplicatively distributed short-term fluctuations 
seem to be characteristic of most seasonal macro-
economic series. By the same token, it seems most 

37 The present formulation assumes that both the annual and 
quarterly observations are contiguous (no missing values) and 
that each annual benchmark is covered by the corresponding 
quarterly figures of the indicator.

6240-082-FullBook.indb   119 10/18/2017   6:09:19 PM



	 Quarterly National Accounts Manual 2017120

reasonable to assume that the errors are generally 
multiplicatively, and not additively, distributed, un-
less anything to the contrary is explicitly known. The 
additive formula results in a smooth additive distribu-
tion of the errors in the indicator, in contrast to the 
smooth multiplicative distribution produced by the 
proportional formula. Consequently, the additive ad-
justment tends to smooth away some of the quarter-
to-quarter rates of change in the indicator series. As a 
result, the additive formula can seriously disturb that 
aspect of the short-term movements for series that 
show strong short-term variations. This can occur 
particularly if there is a substantial difference between 
the level of the indicator and the target variable. In 
addition, the AFD formula may in a few instances re-
sult in negative benchmarked values for some quar-
ters (even if all original quarterly and annual data are 
positive) if large negative adjustments are required for 
data with strong seasonal variations. 

11  The proportional variant of the Denton method 
does not preserve explicitly the quarterly rates of 
change of the indicator, which are commonly taken 
by users to analyze the short-term dynamics of eco-
nomic series. A more explicit penalty function based 
on quarterly rates of change can be defined as follows:

min
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which is known in the literature as growth rates pres-
ervation (GRP) principle. The PFD function proposed 
by Denton, however, is a very close approximation of 
the GRP,38 in particular when the BI ratio does not 
present sudden jumps from one year to the next and 
the indicator is not too volatile. Furthermore the GRP 
function (A4) is a (quadratic) nonlinear function of 
the objective values (because Xt−1 appears at the de-
nominator of the ratio) and therefore its first-order 
conditions do not give rise to an explicit algebraic 
solution for the linear system. Nonlinear optimiza-
tion procedures are required to find the benchmarked 
values minimizing the GRP function. Modern tech-

38 It can be shown that the term of the PFD function is equal to 
the term of the GRP function multiplied by the ratio ( )X It t−1

2 
(see Di Fonzo and Marini, 2013).

nology may consent an efficient implementation39 
of a GRP-based benchmarking procedure; however, 
performance of nonlinear solvers depends on the 
particular benchmarking problem faced and it is not 
possible to exclude slow convergence rates and inac-
curate results in finding the actual minimum of the 
GRP function. For this reason, the proportional Den-
ton method represents the most convenient solution 
for QNA compilers to preserve the quarter-to-quarter 
growth rates in the indicator. 

12  As shown by formula (A2), the proportional 
Denton solution amounts to minimizing the sum of 
the squared first differences of the quarterly BI ratio: 
that is, the ratio between the (unknown) bench-
marked series Xt and the (known) indicator It. This 
chapter notes that the BI framework allows a useful 
interpretation of the proportional Denton method. 
The proportional technique implicitly constructs 
from the annual observed BI ratios a time series of 
quarterly BI ratios that are as smooth as possible. In 
the case of flow series, quarterly BI ratios for the back 
series (n y=1,..., ) are derived as weighted average of 
the annual BI ratios for each year n: that is,
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4  �the indicator’s weight for each quarter 

of the year, 
for t n n= −4 3 4,..., .

13  The original method proposed by Denton 
(1971) did not consider the problem of extrapolat-
ing quarterly values for the year(s) following the last 
available annual observation. However, this extension 
is straightforward. Formulas (A1) and (A2) still work 

39 Causey and Trager (1981) and Brown (2010) used gradient-
based algorithms to minimize the growth rate preservation 
(GRP). Di Fonzo and Marini (2012a) proposed an interior point-
based procedure, which makes use of second-order derivative 
information to increase robustness and efficiency in achieving the 
minimum value of the GRP function. 
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when the indicator It is observed for t y= +4 1,.... 
No additional constraints is needed for the quarterly 
values of the year y+1, since the annual benchmark 
from the ANA is yet unknown. To minimize the PFD 
function, the extrapolated quarters are derived by as-
suming that the BI ratio is constant and equal to the 
last available quarterly BI ratio: that is, the fourth 
quarter of the year y in the current notation

X
I

X
I

y k

y k

y

y

4

4

4

4

+

+

= , for k≥1.

14  Forwarding the last available quarterly BI ratio 
using the proportional Denton method may lead to 
inaccurate extrapolation. It is possible to improve the 
estimates for the most recent quarters (i.e., the for-
ward series) and reduce the size of later revisions by 
incorporating information on past systematic move-
ments in the annual BI ratio. It is important to im-
prove the estimates for these quarters, because they 
are typically of the keenest interest to users. Carrying 
forward the quarterly BI ratio from the last quarter 
of the last year is an implicit forecast of the annual BI 
ratio, but a better forecast may be derived observing 
the development of the annual BI ratio for the avail-
able years. 

15  To produce extrapolations that are consistent 
with a forecast of the next annual BI ratio, the same 
principles of constrained minimization used in the 
Denton formula can be used. Since the benchmark 
value is unavailable, the annual constraint is formu-
lated in a way such that the weighted average of the 
quarterly BI ratios is equal to the forecast of annual 
BI ratio. 

16  Denote with by+1 the annual BI ratio of the year 
to extrapolate, 
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Suppose the indicator’s quarterly values are available 
for the year y+1: namely, I I I Iy y y y4 1 4 2 4 3 4 1+ + + +, , , ..., ( ).  
In mathematical terms, the enhanced proportional 
Denton method becomes the solution to the follow-
ing constrained minimization problem:
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subject to the annual benchmarks for the years 
n y=1,...,

X At n
t n

n

=
= −
∑

4 3

4

and, for the next year y+1, to the forecast of the an-
nual BI ratio
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 �are the indicator’s quarterly shares 

of a year and 

by
ˆ
+1 �is the annual forecast of the BI ratio for the year 

y+1 .

Matrix Solution of the Proportional  
Denton Method

17  The Denton benchmarking problem can be 
rewritten in matrix notation. This representation 
is convenient to calculate the benchmarked series 
with simple matrix operations. Assume there are 
no extrapolations (q y= 4 ). In matrix form, the 
minimization problem defined by equation (A2) 
under the constraint equation (A3) can be ex-
pressed as 

min
X

X I M X I−( )′ −( ) � (A6)

subject to 

JX A= ,� (A7)

where 

X 	 is the ( )4 1y×  vector containing the values Xt of the 
benchmarked series; 

I	 is the ( )4 1y×  vector with the values It  of the 
indicator; 

A	 is the ( )y×1  vector with the annual benchmarks At; 
J	 is the ( )y y×4  matrix aggregating 4y contiguous 

quarterly data into the corresponding y annual 
data, 
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M = I D D I-1 -1ˆ ˆ′( ) ;

Î � is the ( )4 4y y×  diagonal matrix containing the val-
ues of the indicator in the main diagonal, 
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D � is the ( )4 1 4y y− ×  matrix calculating the first dif-
ference from q-dimensional vectors,
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18  Constrained quadratic minimization problem 
(A6) is solved by calculating the first-order condi-
tions for a minimum, namely by equating to zero the 
partial derivatives of (A2) with respect to Xt and the 
Lagrange multipliers of the system. The two equations 
generate the following linear system:

M J
J 0

X MI
A

′
























 =











y λ

where 0y is the zero matrix of dimension y. 

The solution is achieved by simple inverse and multi-
plication operations of the matrices involved:

X M J
J 0

MI
A

-1ˆ

λ̂












′




















= .� (A9)

The ( )q×1  vector X̂  in the left-hand side of equation 
(A9), which is (part of) the solution to the linear sys-

40 For flow series with regularly spaced years and quarters, ma-
trix J can be derived as I 1y ⊗ , where Iy is the identity matrix of 
dimension y, 1 is a 1 4×  row vector of ones, and ⊗ is the Kronecker 
product.

tem (equation (A6)), contains the benchmarked val-
ues of the proportional Denton method.41

19  To obtain extrapolations (case q y≥ 4 ), the only 
adjustments to the above formulation are to extend 
matrix J  with as many zero columns as the number of 
extrapolations required and include the values of the 
indicator up to the last quarterly observation avail-
able. For example, for the extrapolation of q1 of the 
next year (q y= +4 1),

J=





















1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 0

…

� � � � � � � � � �

…

 and

Î=





















+

I
I

I
I

y

y

1

2

4

4 1

0 0 0
0 0 0

0 0 0
0 0 0

...

...

...

...

� � � � �










.

The Cholette–Dagum Regression-Based 
Method

20  Cholette and Dagum (1994) proposed a bench-
marking method based on the generalized least-
squares regression model. The Cholette–Dagum 
model takes into account (i) the presence of bias in 
the indicator and (ii) the presence of autocorrelation 
and heteroscedasticity errors in the original data. In 
addition, it allows for nonbinding benchmarks. These 
characteristics make the Cholette–Dagum approach a 
very flexible benchmarking framework. The Denton 
method can be seen as a particular (approximated) 
case of the Cholette–Dagum regression model.

21  The benchmarking method proposed by Cho-
lette and Dagum (1994) is based on the following two 
equations42:

I a X et t t t= + +     for t q=1,..., � (A10)

A X wn t
t n

n

n= +
= −
∑

4 3

4

    for n y=1,.., � (A11)

41 The matrix solution of the enhanced Denton proportional solu-
tion can be found in Di Fonzo and Marini (2012b)
42 This presentation of the Cholette–Dagum model assumes that 
both the annual and quarterly observations are contiguous (no 
missing values) and that each annual benchmark is covered by the 
corresponding quarterly figures of the indicator. 
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where 

It	 is the quarterly series available (i.e., the QNA 
indicator), 

at	 is a (combined) deterministic effect, 

Xt	 is the true quarterly series, 

et	 is a quarterly autocorrelated and heteroscedastic43 
error, and 

wn	 is an annual heteroscedastic error in the annual 
series An , uncorrelated with et, 

with 

E e E e et t t h( ) , ( )= ≠−0 0  

E w E wn n n( ) , ( )= =0 2 2δ

E e wt n( )= 0.

22  The proportional Cholette–Dagum method 
with AR error can be used to improve QNA extrapo-
lations. This annex shows the assumptions that define 
this specific option from the general Cholette–Dagum 
regression-based framework defined by equations 
(A10) and (A11), and provides the solution in matrix 
notation for its implementation. 

23  Equation (A10) describes the values of the 
quarterly indicator It as a measure of variable Xt con-
taminated with deterministic effect at and quarterly 
error et. Equation (A11) relates the annual benchmark 
An to the annual sum of the quarterly values Xt with a 
possible measurement error wn. The Cholette–Dagum 
regression-based method varies according to the as-
sumptions for the deterministic effect at, the quarterly 
error et, and the annual error wt. 

24  The annual error wt is needed to account for 
situations whether the benchmark is also subject to 
error. These benchmarks are called nonbinding, be-
cause they are also subject to changes in the bench-
marking process. In the QNA, however, the annual 
benchmarks are usually binding constraints for the 
quarterly values (i.e., E wn( )2 0= ).

25  The deterministic effect at is usually calculated 
from a set of deterministic regressors rt h,  multiplied by 
their corresponding regression coefficients βh: that is, 

43 Autocorrelation refers to the correlation of the error with its 
own past and future. Heteroscedasticity means that the variance 
of the error varies across observations. 

a rt t h h
h

s

=
=
∑ , β

1

,

where s is the number of deterministic effects consid-
ered. A constant is a typical deterministic effect used 
to capture a level bias difference between the annual 
and the quarterly level. As explained in the chapter, a 
constant bias can also be modeled implicitly by rescal-
ing the original indicator with the historical BI ratio. 
This transformation is convenient because it requires 
no parameter estimation of the level bias. A deter-
ministic trend could also be used to catch a diverging 
path between the indicator and the objective variable. 
However, deterministic trend may cause biased ex-
trapolations at both ends of the series and should be 
used with caution. 

26  The error et  is the quarterly discrepancy be-
tween the target variable Xt and the quarterly indi-
cator It . Because a key objective of benchmarking is 
to keep the movements in Xt as close as possible to 
the movements in It, the error et needs to have two 
characteristics:

·	 It has to be proportional to the value of the 
indicator It . This property is necessary to dis-
tribute the errors around the level of the in-
dicator, similar to the proportional Denton 
solution.

·	 It has to present smooth movements from one 
quarter to the next. A smooth distribution of et  
make the movements of Xt and It  very close to 
each other.

27  To obtain a proportional adjustment, the error 
et  is standardized by the value of the indicator It ,

′ =e
e
It

t

t

.� (A12)

By doing so, the standard deviation of et  is assumed 
to be equal to It .44 To obtain a smooth distribu-
tion, the standardized error ′et  is assumed to follow 
a first-order (stationary) autoregressive model, or 
AR(1) model:

′ = ′ +−e e vt t tφ 1 � (A13)

44 This assumption implies constant coefficient of variations: that 
is, σt tI/ = 1 for any quarter t.
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with φ <1 , where the vt ’s are assumed to be indepen-
dent and identically distributed innovations: that is, 

E v E v E v vt t t t h( ) , ( ) , ( , )= = =−0 1 02  for any t and h.

28  The proportional Cholette–Dagum method 
with AR error entails the minimization of an objective 
function that is closely related to the proportional cri-
terion (equation (A2)) minimized by Denton. It can 
be shown that the benchmarked series of the propor-
tional Cholette–Dagum model with AR error model 
(A13) minimizes the objective function45:

min
X a

t

t
a

t

t
a

t

X
I

X
I

X
I

1
1 2

1

1

2
1

1−




















+ − −

−φ
φ





























=

∑
t

q

2

2

.�(A14)

29  Function (A14) clarifies that, besides extrapo-
lation, the AR parameter φ plays a crucial role in 
preserving the short-term dynamics of the indicator 
series. When φ is very close to 1 (e.g., 0.999), func-
tion (A14) converges to function (A2),46 which is 
minimized by the proportional Denton method. 
As φ moves away from 1, the quarterly BI ratios are 
adjusted according to a criterion that offers weaker 
movement preservation than the Denton solution. 
For the reasons explained in the chapter, the value of 
φ should be chosen in a range between 0.71 and 0.93. 

Matrix Solution of the Proportional 
Cholette–Dagum Method with AR Error

30  The solution to the Cholette–Dagum propor-
tional benchmarking with AR error is given by the 
expression

X I VJ JVJ A JI= + ′ ′ −



−a a( ) 1 ,

where 

X, A, and J are defined in equation (A6), 
Ia  � is the ( )q×1  vector with the bias-adjusted indica-

tor It
a calculated in equation (A11), 

V = I Iˆ ˆa a( )-1Ω   is the ( )q q×  variance–covariance ma-
trix of the quarterly error et , 

45 Dagum and Cholette (2006, pp. 87–92).
46 The Denton method provides the same results whether the 
original indicator or the bias-adjusted indicator is used.

Îa is the ( )q q×  diagonal matrix containing the values 
of the bias-adjusted indicator It

a in the main diagonal, 

Ω= W W′  is the autocorrelation matrix of the AR(1) 
model with parameter φ, where

W=

−
−

−





























1 0 0 0
1 0 0

0 1 0

0 0 0 1

2φ
φ

φ

…

…

� � � � �

…

.

The Chow–Lin Regression-Based Method

31  Chow and Lin (1971) proposed a method for 
interpolating, distributing, and extrapolating time 
series based on a regression model using related in-
dicators. The Chow–Lin method is presently used by 
many statistical agencies for compiling QNA. Given 
its widespread use in the QNA, this annex provides a 
brief description of this approach. In particular, this 
section illustrates the main features of the Chow–Lin 
method and relates this approach to the benchmark-
ing methods proposed by Denton (1971) and Cholette 
and Dagum (1994). 

32  The Chow–Lin method assumes a regression 
model between the true (unobserved) quarterly ob-
servations Xt  and a set of p quarterly related series 
I It p t1, ,, ..., :

X I ut j j t t
j

p

= +
=
∑β ,

1

,    for t q=1,..., � (A15)

with 

u u vt t t= +−ρ 1 ,� (A16)

where

Xt	 is the quarterly (unknown) target value (i.e., the 
QNA series); 

β j	 is the regression coefficient for the j-th indicator; 

I j t, 	 is the j-th quarterly indicator; 

ut	 is a random error assumed to follow the AR(1) 
model (A16), with the vt’s independently and 
identically distributed innovations; and

q	 is the number of quarters, possibly including ex-
trapolations (q y≥ 4 ).
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33  Because Xt  is unobserved (and its values are 
the target values of the method), model (A15) cannot 
be estimated. However, Chow and Lin assumes that 
the same relationship between Xt and the quarterly 
indicators holds true at the annual frequency. There-
fore, model (A15) is temporally aggregated: 

A I un j j n n
a

j

p

= +
=
∑β ,

1

,  for n y=1,..., � (A17)

where

A Xn t
t n

n

=
= −
∑

4 3

4

 is the (known) annual variable that 

needs to be distributed and extrapolated into quarters 
(i.e., the ANA benchmarks), 
β j 	 is the regression coefficient for the j-th indicator 

(assumed constant across frequencies), 

I j n, 	is the j-th annually aggregated indicator, and 

un
a 	 is an annual ARMA(1,1) error derived from the 

quarterly AR(1) model. 47

34  Chow and Lin derives the best linear unbiased 
estimator (BLUE) of Xt by estimating the regression 
coefficients β̂ j and the AR coefficient ρ̂ from model 
(A17). The estimated series Xt

ˆ  (which corresponds to 
the benchmarked series) consists of two components: 

one from the regression effects β̂ j j t
j

p

I ,
=
∑

1

 and one from 

the estimated quarterly residual utˆ . Regression effects 
may include deterministic effects (constant, trend, 
etc.) and related indicators. In the QNA, the most 
frequent combination of regressor is a constant term 
plus an indicator. The estimate ρ̂ can be done by maxi-
mum likelihood or by weighted least squares. Simi-
lar to the AR error in the Cholette–Dagum method, 
the estimated value of ρ̂ should be positive in order to 
preserve the original movements from the regression 
component.

35  Dagum and Cholette (2006) shows that the 
Chow–Lin model is a particular case of their regres-
sion-based additive model with one related series. 
The AR(1) assumption for ut

48 is needed to distrib-

47 When temporally aggregated, an AR(1) model results in an 
ARMA (1,1) model. 
48 Other assumptions for the quarterly error are the random walk 
model by Fernández (1981) and the AR(1)-plus-random walk 
model by Litterman (1983). 

ute the quarterly errors smoothly, similar to the Cho-
lette–Dagum method with AR error. However, in the 
Chow–Lin approach, the AR coefficient ρ is estimated 
from the data observed and not chosen by the user 
(as for the AR coefficient φ in the Cholette–Dagum 
model). Although this can be considered a good 
theoretical property of the model, the maximum 
likelihood estimation process may lead to negative 
estimates of ρ, and when this happens, the error com-
ponent may dominate the short-term movements of 
the benchmarked series.
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