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I.   INTRODUCTION 

Since the seminal work of Kydland and Prescott (1982) and Prescott (1986a) proponents of 
the Real Business Cycle (RBC) paradigm have claimed a central role for exogenous 
variations in technology as a source of economic fluctuations in industrial economies. Those 
fluctuations have been interpreted by RBC economists as the equilibrium response to 
exogenous variations in technology, in an environment with perfect competition and 
intertemporally optimizing agents, and in which the role of nominal frictions and monetary 
policy is, at most, secondary. 
 
Behind the claims of RBC theory lies what must have been one of the most revolutionary 
findings in postwar macroeconomics: a calibrated version of the neoclassical growth model 
augmented with a consumption-leisure choice, and with stochastic changes in total factor 
productivity as the only driving force, seems to account for the bulk of economic fluctuations 
in the postwar U.S. economy. In practice, “accounting for observed fluctuations” has meant 
that calibrated RBC models match pretty well the patterns of unconditional second moments 
of a number of macroeconomic time series, including their relative standard deviations and 
correlations. Such findings led Prescott to claim “...that technology shocks account for more 
than half the fluctuations in the postwar period, with a best point estimate near 75 percent.”2 
Similarly, in two recent assessments of the road traveled and the lessons learned by RBC 
theory after more than a decade, Cooley and Prescott (1995) could confidently claim that “it 
makes sense to think of fluctuations as caused by shocks to productivity,” while King and 
Rebelo (1999) concluded that “...[the] main criticisms levied against first-generation real 
business cycle models have been largely overcome.” 
 
While most macroeconomists have recognized the methodological impact of the RBC 
research program and have adopted its modeling tools, other important, more substantive 
elements of that program have been challenged in recent years. First, and in accordance with 
the widely acknowledged importance of monetary policy in industrial economies, the bulk of 
the profession has gradually moved away from real models (or their near-equivalent 
frictionless monetary models) when trying to understand short-run macroeconomic 
phenomena. Second, and most important for the purposes of this paper, the view of 
technological change as a central force behind cyclical fluctuations has been called into 
question. In the present paper we focus on the latter development, by providing an overview 
of the literature that has challenged the central role of technology in business cycles. 
 
A defining feature of the literature reviewed here lies in its search for evidence on the role of 
technology that is “more direct” than just checking whether any given model driven by 
technology shocks, and more or less plausibly calibrated, can generate the key features of the 
business cycle. In particular, we discuss efforts to identify and estimate the empirical effects 
of exogenous changes in technology on different macroeconomic variables, and to evaluate 
quantitatively the contribution of those changes to business cycle fluctuations. 
 
                                                 
2 Prescott (1986b). 
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Much of that literature (and, hence, much of the present paper) focuses on one central, 
uncontroversial feature of the business cycle in industrial economies—namely, the strong 
positive comovement between output and labor input measures. That comovement is 
illustrated graphically in Figure 1, which displays the quarterly time series for hours and 
output in the U.S. nonfarm business sector over the period 1948:1-2002:4. In both cases the 
original series have been transformed using the band-pass filter developed in Baxter and 
King (1999), calibrated to remove fluctuations of periodicity outside an interval between 6 
and 32 quarters. As in Stock and Watson (1999), we interpret the resulting series as reflecting 
fluctuations associated with business cycles. 
 
As is well known, the basic RBC model can generate fluctuations in labor input and output of 
magnitude, persistence, and degree of comovement roughly similar to the series displayed in 
Figure 1. Furthermore, and as shown in King and Rebelo (1999), when the actual sequence of 
technology shocks (proxied by the estimated disturbances of an AR process for the Solow 
residual) is fed as an input into the model, the resulting equilibrium paths of output and labor 
input track surprisingly well the observed historical patterns of those variables; the latter 
exercise can be viewed as a more stringent test of the RBC model than the usual moment-
matching. 
 
The literature reviewed in the present paper asks, however, very different questions: What 
have been the effects of technology shocks in the postwar U.S. economy? How do they differ 
from the predictions of standard RBC models? What is their contribution to business cycle 
fluctuations? What features must be incorporated in business cycle models to account for the 
observed effects? The remainder of this paper describes the tentative (and sometimes 
contradictory) answers that the efforts of a growing number of researchers have yielded. 
Some of that research has exploited the natural role of technological change as a source of 
permanent changes in labor productivity to identify technology shocks using structural vector 
autorregressions (VARs); other authors have instead relied on more direct measures of 
technological change and examined their comovements with a variety of macro variables. It 
is not easy to summarize in a few words the wealth of existing evidence nor to agree on some 
definite conclusions of a literature that is still very much ongoing. Nevertheless, it is safe to 
state that the bulk of the evidence reviewed in the present paper provides little support for the 
initial claims of the RBC literature on the central role of technological change as a source of 
business cycles. 
 
The remainder of the paper is organized as follows. Section II reviews some of the early 
papers that questioned the importance of technology shocks, and presents some of the basic 
evidence regarding the effects of those shocks. Section III discusses a number of criticisms 
and possible pitfalls of that literature. Section IV presents the case for the existence of 
nominal frictions as an explanation of the estimated effects of technology shocks, and 
summarizes some of the real explanations for the same effects found in the literature. 
Section V lays out and analyzes an estimated dynamic stochastic general equilibrium 
(DSGE) model that incorporates both nominal and real frictions, and evaluates their 
respective role. Section VI concludes. 
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II.   ESTIMATING THE EFFECTS OF TECHNOLOGY SHOCKS 

In Galí (1999) the effects of technology shocks were identified and estimated using a 
structural VAR approach. In its simplest specification, to which we restrict our analysis here, 
the empirical model makes use of information on two variables: output and labor input, 
which we denote respectively by ty  and tn , both expressed in logs. Those variables are used 
to construct a series for (the log of) labor productivity, ttt nyx −≡ . In what follows the latter 
is assumed to be integrated of order one (in a way consistent with the evidence reported 
below). Fluctuations in labor productivity growth (∆xt ) and in some stationary 
transformation of labor input ( tn̂ ) are assumed to be a consequence of two types of shocks 
hitting the economy and propagating their effects over time. Formally, the following moving 
average (MA) representation is assumed: 
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where z

tε  and d
tε  are serially uncorrelated, mutually orthogonal structural disturbances, 

whose variance is normalized to unity. The polynomial |C(z)| is assumed to have all its roots 
outside the unit circle. Estimates of the distributed lag polynomials Cij(L) are obtained by a 
suitable transformation of the estimated reduced-form VAR for [ ]tt nx ˆ,∆  after imposing the 
long-run identifying restriction 01 =)C¹²( .3 That restriction effectively defines { }z

tε  and 
{ }d

tε  as shocks with and without a permanent effect on labor productivity, respectively. On 
the basis of some of the steady-state restrictions shared by a broad range of macro models 
(and further discussed below), Galí (1999) proposes to interpret permanent shocks to 
productivity { }z

tε  as technology shocks. On the other hand, transitory shocks { }d
tε  can 

potentially capture a variety of driving forces behind output and labor input fluctuations that 
would not be expected to have permanent effects on labor productivity. The latter include 
shocks that could have a permanent effect on output (but not on labor productivity), but that 
are “non-technological” in nature, as would be the case for some permanent shocks to 
preferences or government purchases, among others.4 As discussed below, they could in 
principle capture transitory technology shocks as well. 
 

                                                 
3 See Blanchard and Quah (1989) and Galí (1999) for details. 

4 It is precisely that feature what differentiates the approach to identification in Galí (1999) 
from that in Blanchard and Quah (1989). The latter authors used restrictions on long-run 
effects on output, as opposed to labor productivity. In the presence of a unit root in labor 
input, that could lead to the mislabeling as "technology" shocks of any disturbances that were 
behind the unit root in labor input. 
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A.   Revisiting the Basic Evidence on the Effects of Technology Shocks 

Next, we revisit and update the basic evidence on the effects of technology shocks reported 
in Galí (1999). Our baseline empirical analysis uses quarterly U.S. data for the period 
1948:1-2002:4. Our source is the Haver USECON database, for which we list the associated 
mnemonics. Our series for output corresponds to nonfarm business sector output (LXNFO). 
Our baseline labor input series is hours of all persons in the nonfarm business sector 
(LXNFH). Below we often express the output and hours series in per capita terms, using a 
measure of civilian noninstitutional population aged 16 and over (LNN). 
 
Our baseline estimates are based on a specification of hours in first-differences -i.e., we set 

tt nn ∆=ˆ . That choice seems consistent with the outcome of Augmented Dickey-Fuller 
(ADF) tests applied to the hours series, which do not reject the null of a unit root in the level 
of hours at a 10 percent significance level, against the alternative of stationarity around a 
linear deterministic trend. On the other hand, the null of a unit root in the first-differenced 
series is rejected at a level of less than 1 percent.5 In a way consistent with the previous 
result, a Kwiatkowski et al. (1992) (KPSS) test applied to tn  rejects the stationarity null with 
a significance level below 1 percent, while failing to reject the same null when applied to 

tn∆ . In addition, the same battery of ADF and KPSS tests applied to our tx  and tx∆  series 
support the existence of a unit root in labor productivity, a necessary condition for the 
identification strategy based on long-run restrictions employed here. Both observations 
suggest the specification and estimation of a VAR for [ ]tt nx ∆∆ , . Henceforth, we refer to the 
latter as the difference specification. 
 
Figure 2 displays the estimated effects of a positive technology shock, of size normalized to 
one standard deviation. The graphs on the left show the dynamic responses of labor 
productivity, output, and hours, together with (±) two standard error bands.6 The 
corresponding graphs on the right show the simulated distribution of each variable’s response 
on impact. As in Galí (1999), the estimates point to a significant and persistent decline in 
hours after a technology shock that raises labor productivity permanently.7 The point 
estimates suggest that hours do eventually return to their original level (or close to it), but not 
until more than a year later. Along with that pattern of hours, we observe a positive but 
muted initial response of output in the face of a positive technology shock. 

                                                 
5 With four lags, the corresponding t-statistics are -2.5 and -7.08 for the level and the first-
difference, respectively. 

6 That distribution is obtained by means of a Montecarlo simulation based on 500 drawings 
from the distribution of the reduced-form VAR distribution. 

7 Notice that the distribution of the impact effect on hours assigns a zero probability to an 
increase in that variable. 
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The estimated responses to a technology shock displayed in Figure 2 contrast starkly with the 
predictions of a standard calibrated RBC model, which would predict a positive comovement 
among the three variables plotted in the figure in response to that shock.8 
 
Not surprisingly, the previous estimates have dramatic implications regarding the sources of 
the business cycle fluctuations in output and hours displayed in Figure 1. This is illustrated in 
Figure 3, which displays the estimated business cycle components of the historical series for 
output and hours associated with technology and non-technology shocks. In both cases the 
estimated components of the (log) levels of productivity and hours have been detrended 
using the same band-pass filter underlying the series plotted in Figure 1. As in Galí (1999), 
the picture that emerges is very clear: fluctuations in hours and output driven by technology 
shocks account for a small fraction of the variance of those variables at business cycle 
frequencies: 5 and 7 percent, respectively. Furthermore, the comovement at business cycle 
frequencies between output and hours resulting from technology shocks is shown to be 
essentially zero (the correlation is -0.08), in contrast with the high positive comovement 
observed in the data (0.88). Clearly, the pattern of technology-driven fluctuations, as 
identified in our structural VAR, shows little resemblance with the conventional business 
cycle fluctuations displayed in Figure 1. 
 
The picture changes dramatically if we turn our attention to the estimated fluctuations of 
output and hours driven by shocks with no permanent effects on productivity (displayed in 
the bottom graph). Those shocks account for 95 and 93 percent of the variance of the 
business cycle component of hours and output, respectively. In addition, they generate a 
nearly perfect correlation (0.96) between the same variables. In contrast with its technology-
driven counterpart, this component of output and hours fluctuations displays a far more 
recognizable business cycle pattern. 
 
A possible criticism to the above empirical framework is the assumption of only two driving 
forces underlying the fluctuations in hours and labor productivity. As discussed in Blanchard 
and Quah (1989), ignoring some relevant shocks may lead to a significant distortion in the 
estimated impulse responses. Galí (1999) addresses that issue by estimating a five-variable 
VAR (including time series on real balances, interest rates, and inflation). That framework 
allows for as many as four shocks with no permanent effects on productivity, and for which 
no separate identification is attempted. The estimates generated by that higher-dimensional 
model regarding the effects of technology shocks are very similar to the ones reported above, 
suggesting that the focus on two shocks only may not be restrictive for the issue at hand.9 
 

                                                 
8 See, e.g., King, Plosser, and Rebelo (1988a) and Campbell (1994). 

9 See also Francis and Ramey (2003a), among others, for estimates using higher dimensional 
VARs. 
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B.   Related Empirical Work 

The empirical connection between technological change and business cycle fluctuations has 
been the focus of a rapidly expanding literature. Next we briefly discuss some recent papers 
providing evidence on the effects of technology shocks, and that reach conclusions similar to 
those in Galí (1999), while using a different data set or empirical approach. We leave for 
later a discussion of the papers whose findings relate more specifically to the content of other 
sections, including those that question the evidence reported above. 
 
An early contribution is given by the relatively unknown paper by Blanchard, Solow and 
Wilson (1995). That paper already spells out some of the key arguments found in the 
subsequent literature. In particular, it stresses the need to sort out the component of 
productivity associated with exogenous technological change from the component that varies 
in response to other shocks that may affect the capital-labor ratio. They adopt a simple 
instrumental variables approach, with a number of demand-side variables assumed to be 
orthogonal to exogenous technological change used as instruments for employment growth 
or the change in unemployment in a regression that features productivity growth as a 
dependent variable. The fitted residual in that regression is interpreted as a proxy for 
technology-driven changes in productivity. When they regress the change in unemployment 
on the filtered productivity growth variable they obtain a positive coefficient—i.e. an 
(exogenous) increase in productivity drives the unemployment rate up. A dynamic 
specification of that regression implies that such an effect lasts for about three quarters, after 
which unemployment starts to fall and returns rapidly to its original value. 
 
As mentioned in Galí (1999, footnote 19) and stressed by Valerie Ramey in her discussion, 
the finding of a decline in hours (or an increase in unemployment) in response to a positive 
technology shock could also have been detected by an attentive reader in a number of earlier 
VAR papers, though that finding generally goes unnoticed or is described as puzzling. 
Blanchard and Quah (1989) and Blanchard (1989) are exceptions in that they provide some 
explicit discussion of the finding, which they interpret as consistent with a traditional 
Keynesian model “in which increases in productivity...may well increase unemployment in 
the short run if aggregate demand does not increase enough to maintain employment”.10 
 
The work of Basu, Fernald, and Kimball (1999; henceforth, BFK) deserves special attention 
here, given its focus and the similarity of its findings to those in Galí (1999) despite the use 
of an unrelated methodology. BFK use a sophisticated growth accounting methodology 
allowing for increasing returns, imperfect competition, variable factor utilization and sectoral 
compositional effects in order to uncover a time series for aggregate technological change in 
the postwar U.S. economy. Their approach, combining elements of earlier work by Hall 
(1988) and Basu and Kimball (1997) among others, can be viewed as an attempt to cleanse 
the Solow residual (Solow, 1957) of its widely acknowledged measurement error resulting 
from the strong assumptions underlying its derivation. Estimates of the response of the 
economy to innovations in their measure of technological change point to a sharp short-run 
                                                 
10 Blanchard (1989, p. 1158). 
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decline in the use of inputs (including labor) when technology improves, with output 
showing no significant change (with point estimates suggesting a small decline). After that 
short-run impact both variables gradually adjust upward, with labor input returning to its 
original level and with output reaching a permanently higher plateau several years after the 
shock. 
 
Kiley (1997) applies the structural VAR framework in Galí (1999) to data from two-digit 
manufacturing industries. While he does not report impulse responses, he finds that 
technology shocks induce a negative correlation between employment and output growth in 
12 of the 17 industries considered. When he estimates an analogous conditional correlation 
for employment and productivity growth, he obtains a negative value for 15 out of 17 
industries. Francis (2001) conducts a similar analysis, though he attempts to identify 
industry-specific technology shocks by including a measure of aggregate technology, which 
is assumed to be exogenous to each of the industries considered. He finds that, for the vast 
majority of industries, a sectoral labor input measure declines in response to a positive 
industry-specific technology shock. Using data from a large panel of 458 manufacturing 
industries and 35 sectors, Franco and Philippon (2004) estimate a structural VAR with three 
shocks: technology shocks (with permanent effects on industry productivity), composition 
shocks (with permanent effects on the industry share in total output), and transitory shocks. 
They find that technology shocks (i) generate a negative comovement between output and 
hours within each industry, and (ii) are almost uncorrelated across industries. Accordingly, 
they conclude that technology shocks can only account for a small fraction of the variance of 
aggregate hours and output (with two-thirds of the latter accounted for by transitory shocks). 
 
Shea (1998) uses a structural VAR approach to model the connection between changes in 
measures of technological innovation (research and development (R&D) and number of 
patent applications) and subsequent changes in total factor productivity (TFP) and hired 
inputs, using industry-level data. For most specifications and industries he finds that an 
innovation in the technology indicator does not cause any significant change in TFP, but 
tends to increase labor inputs in the short run. While not much stressed by Shea, however, 
one of the findings in his paper is particularly relevant for our purposes: in the few VAR 
specifications for which a significant increase in TFP is detected in response to a positive 
innovation in the technology indicator, inputs—including labor—are shown to respond in the 
direction opposite to the movement in TFP, a finding in line with the evidence above.11 
 
Francis and Ramey (2003a) extend the analysis in Galí (1999) in several dimensions. The 
first modification they consider consists in augmenting the baseline VAR (specified in first 
differences) with a capital tax rate measure in order to sort out the effects of technology 
shocks from those of permanent changes in tax rates (more below). Second, they identify 
technology shocks as those with permanent effects on real wages (as opposed to labor 
productivity) and/or no long-run effects on hours, both equally robust predictions of a broad 
class of models that satisfy a balance growth property. Those alternative identifying 
                                                 
11 See the comment on Shea's paper by Galí (1998) for a more detailed discussion of that 
point. 
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restrictions are not rejected when combined into a unified (overidentified) model. Francis and 
Ramey show that both the model augmented with capital tax rates and the model with 
alternative identifying restrictions (considered separately or jointly) imply impulse responses 
to a technology shock similar to those in Galí (1999) and, in particular, a drop in hours in 
response to a positive technology shock. 
 
Francis, Owyang, and Theodorou (2003) use a variant of the sign restriction algorithm of 
Uhlig (1999) and show that the finding of a negative response of hours to a positive 
technology shock is robust to replacing the restriction on the asymptotic effect of that shock 
with one imposing a positive response of productivity at a horizon of ten years after the 
shock. 
 
A number of recent papers have provided related evidence based on non-U.S. aggregate data. 
In Galí (1999) the structural VAR framework discussed above is also applied to the 
remaining G-7 countries (Canada, the United Kingdom, France, Germany, Italy, and Japan). 
He uncovers a negative response of employment to a positive technology shock in all 
countries, with the exception of Japan. Galí (1999) also points out some differences in these 
estimates relative to those obtained for the United States: in particular, the (negative) 
employment response to a positive technology shocks in Germany, the United Kingdom, and 
Italy appears to be larger and more persistent, which could be interpreted as evidence of 
"hysteresis" in European labor markets. Very similar qualitative results for the euro area as a 
whole can also be found in Galí (2004), which applies the same empirical framework to the 
quarterly data set that has recently become available. In particular, technology shocks are 
found to account for only 5 percent and 9 percent of the variance of the business cycle 
component of euro-area employment and output, respectively, with the corresponding 
correlation between their technology-driven components being -0.67. Francis and Ramey 
(2003b) estimate a structural VAR with long-run identifying restrictions using long-term 
U.K. annual time series tracing back to the nineteenth century; they find robust evidence of a 
negative short-run impact of technology shocks on labor in every subsample.12 Finally, 
Carlsson (2000) develops a variant of the empirical framework in BFK (1999) and Burnside, 
Eichenbaum, and Rebelo (1995) to construct a time series for technological change, and 
applies it to a sample of Swedish two-digit manufacturing industries. Most prominently, he 
finds that positive shocks to technology have, on impact, a contractionary effect on hours and 
a non-expansionary effect on output, as in BFK (1999). 
 

C.   Implications 

The implications of the evidence discussed above for business cycle analysis and modeling 
are manifold. Most significantly, those findings reject a key prediction of the standard RBC 
paradigm—namely, the positive comovement of output, labor input, and productivity in 
response to technology shocks. That positive comovement is the single main feature of that 
                                                 
12 The latter evidence contrasts with their analysis of long-term U.S. data, in which the results 
vary significantly across samples and appear to depend on the specification used (more 
below). 
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model that accounts for its ability to generate fluctuations that resemble business cycles. 
Hence, taken at face value, the evidence above rejects in an unambiguous fashion the 
empirical relevance of the standard RBC model. It does so in two dimensions. First, it shows 
that a key feature of the economy's response to aggregate technology shocks predicted by 
calibrated RBC models cannot be found in the data. Second, and to the extent that one takes 
the positive comovement between measures of output and labor input as a defining 
characteristic of the business cycle, it follows as a corollary that technology shocks cannot be 
a quantitatively important (and, even less, a dominant) source of observed aggregate 
fluctuations. While the latter implication is particularly damning for RBC theory, given its 
traditional emphasis on aggregate technology variations as a source of business cycles, its 
relevance is independent of one's preferred macroeconomic paradigm. 
 
III.   POSSIBLE PITFALLS IN THE ESTIMATION OF THE EFFECTS OF TECHNOLOGY SHOCKS 

This section has two main objectives. First, we try to address a question that is often raised 
regarding the empirical approach used in Galí (1999): To what extent can we be confident in 
the economic interpretation given to the identified shocks and, in particular, in the mapping 
between technology shocks and the nonstationary component of labor productivity? Below 
we provide some evidence that makes us feel quite comfortable about that interpretation. 
Second, we describe and address some of the econometric issues that Christiano, 
Eichenbaum, and Vigfusson (2003) have raised in a recent paper, and which focus on the 
appropriate specification of hours (levels or first differences). Finally, we discuss a recent 
paper by Fisher (2003), which distinguishes between two types of technology shocks, neutral 
and investment-specific. 
 

A.   Are Long-Run Restrictions Useful in Identifying Technology Shocks? 

The approach to identification proposed in Galí (1999) relies on the assumption that only 
(permanent) technology shocks can have a permanent effect on (average) labor productivity. 
That assumption can be argued to hold under relatively weak conditions, satisfied by the bulk 
of business cycle models currently used by macroeconomists. To review the basic argument 
consider an economy whose technology can be described by an aggregate production 
function:13 

),,( tttt NAKFY =       (2) 
 
where Y denotes output, K is the capital stock, N is labor input, and A is an index of 
technology. Under the assumption that F is homogeneous of degree 1, we have 
 

),1,( tkt
t

t kFA
N
Y

=       (3) 

 

                                                 
13 An analogous but somewhat more detailed analysis can be found in Francis and Ramey 
(2003a) 
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where 
tt

t
t NA

K
k =  is the ratio of capital to labor (expressed in efficiency units). For a large 

class of models characterized by an underlying balanced growth path, the marginal product 
of capital kF  must satisfy, along that path, a condition of the form 
 

)
σ
γδρ)(µ1()1,()τ1( +++=− tk kF     (4) 

where µ is the price markup, τ is a tax on capital income, ρ is the time discount rate, δ is the 
depreciation rate, σ is the intertemporal elasticity of substitution, and γ is the average growth 
rate of (per capita) consumption and output. Under the assumption of decreasing returns to 
capital, it follows from equation (4) that the capital labor ratio k will be stationary (and will 
thus fluctuate around a constant mean) so long as all the previous parameters are constant (or 
stationary). In that case, equation (3) implies that only shocks that have a permanent effect on 
the technology parameter A can be a source of the unit root in labor productivity, thus 
providing the theoretical underpinning for the identification scheme in Galí (1999). 
 
How plausible are the assumptions underlying that identification scheme? Preference or 
technology parameters like ρ, δ, σ, and γ are generally assumed to be constant in most 
examples and applications found in the business cycle literature. The price markup µ is more 
likely to vary over time, possibly as a result of some embedded price rigidities; in the latter 
case, however, it is likely to remain stationary, fluctuating around its desired or optimal level. 
In the event that desired markups (or the preference and technology parameters listed above) 
displayed some nonstationarity, the latter would more likely take the form of some smooth 
function of time, which should be reflected in the deterministic component of labor 
productivity, but not in its fluctuations at cyclical frequencies.14 Finally, it is important to 
notice that the previous approach to identification of technology shocks requires that (i) kF  
be decreasing, so that k is uniquely pinned down by equation (4), and (ii) that the technology 
process { }tA  is exogenous (at least with respect to the business cycle). The previous 
assumptions have been commonly adopted by business cycle modelers.15 
 
Do capital income tax shocks explain permanent changes in labor productivity? 
 
The previous argument, however, is much less appealing when applied to the capital income 
tax rate. As Uhlig (2004) and others have pointed out, the assumption of a stationary capital 
income tax rate may be unwarranted, given the behavior of measures for that variable over 

                                                 
14 Of course that was also the traditional view regarding technological change, but one that 
was challenged by the RBC school. 

15 Exceptions include stochastic versions of endogenous growth models, as in King, Plosser, 
and Rebelo (1988b). In those models any transitory shock can in principle have a permanent 
effect on the level of capital or disembodied technology and, as a result, on labor 
productivity. 
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the postwar period. This is illustrated graphically in Figure 4, which displays two alternative 
measures of the capital income tax rate in the United States. Figure 4.A displays a quarterly 
series for the average capital income tax rate constructed by Jones (2002) for the period 
1958:1-1997:4. Figure 4.B shows an annual measure of the average marginal capital income 
tax rate constructed by Ellen McGrattan for the period 1958-92 that corresponds to an 
updated version of the one used in McGrattan (1994).16 Henceforth, we denote those series 
by J

tτ  and M
tτ , respectively. Both series display an apparent non-stationary behavior, with 

highly persistent fluctuations. This is confirmed by a battery of ADF tests, which fail to 
reject the null hypothesis of a unit root in both series, at conventional significance levels. 
 
Furthermore, as evidenced in Figures 4.C and 4.D, which display the same series in first 
differences, the presence of sizable short-run variations in those measures of capital taxes 
could hardly be captured by means of some deterministic or smooth function of time (their 
standard deviations being 0.79 percent for the quarterly Jones series, and 2.4 percent for the 
annual McGrattan series). In fact, in both cases the first-differenced series tτ∆  shows no 
significant autocorrelation, suggesting that a random walk process can approximate the 
pattern of capital income tax rates pretty well. 
 
The previous evidence, combined with the theoretical analysis above, points to a potential 
caveat in the identification approach followed in Galí (1999): the shocks with permanent 
effects on productivity estimated therein could be capturing the effects of permanent changes 
in tax rates (as opposed to those of genuine technology shocks). That “mislabeling” could 
potentially account for the empirical findings reported above. 
 
Francis and Ramey (2003a) attempt to overcome that potential shortcoming by augmenting 
the VAR with a capital tax rate variable, in addition to labor productivity and hours. As 
mentioned above, the introduction of the tax variable is shown not to have any significant 
influence on the findings: positive technology shocks still lead to short run declines in labor. 
 
Here we revisit the hypothesis of a “tax rate shock mistaken for a technology shock” by 
looking for evidence of some comovement between (i) the “permanent” shock z

tε  estimated 
using the structural VAR discussed in Section II, and (ii) each of the two capital tax series, in 
first-differences. Given the absence of significant autocorrelation in J

tτ∆  and M
tτ∆ , we 

interpret each of those series as (alternative) proxies for the shocks to the capital income tax 
rate. Also, when using the McGrattan series, we annualize the “permanent” shock series 
obtained from the quarterly VAR by averaging the shocks corresponding to each natural 
year. 
 
The resulting evidence can be summarized as follows. First, innovations to the capital 
income tax rate show a near zero correlation with the permanent shocks from the VAR. More 
precisely, our estimates of the correlation coefficients between )ε,τ( z

t
J
t∆ and )ε,τ( z

t
M
t∆  are, 

                                                 
16 We are grateful to Craig Burnside and Ellen McGrattan for providing the data. 
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respectively, -0.06 and 0.12, neither of which is significant at conventional levels. Thus, it is 
highly unlikely that the permanent VAR shocks may be capturing exogenous shocks to 
capital taxes. 
 
Secondly, an ordinary least squares (OLS) regression of the Jones tax series J

tτ∆  on current 
and lagged values of z

tε  yields jointly insignificant coefficient estimates: the p-value is 0.54 
when four lags are included, 0.21 when we include eight lags. A similar result obtains when 
we regress the McGrattan tax series M

tτ∆  on current and several lags of z
tε , with the p-value 

for the null of zero coefficients being 0.68 when four lags are included (0.34 when we use 8 
lags). Since the sequence of those coefficients corresponds to the estimated impulse response 
of capital taxes to the permanent VAR shock, the previous evidence suggests that the 
estimated effects of the permanent VAR shocks are unlikely to be capturing the impact of a 
possible endogenous response in capital taxes to whatever exogenous shock underlies the 
estimated permanent VAR shock. 
 
We conclude from the previous exercises that there is no support for the hypothesis that the 
permanent shocks to labor productivity, interpreted in Galí (1999) as technology shocks, 
could be instead capturing changes in capital income taxes.17 
 
Do permanent shocks to labor productivity capture variations in technology? 
 
Having all but ruled out variations in capital taxes as a significant factor behind the unit root 
in labor productivity, we next present some evidence that favors the interpretation of the 
VAR permanent shock as a shift to aggregate technology. In addition, we also provide some 
evidence against the hypothesis that transitory variations in technology may be a significant 
force behind the shocks identified as transitory shocks, a hypothesis that cannot be ruled out 
on purely theoretical grounds. 
 
Francis and Ramey (2003a) test a weak form of the hypothesis of permanent shocks as 
technology shocks, by looking for evidence of Granger-causality between a number of 
indicators that are viewed as independent of technology on the one hand, and the VAR-based 
technology shock on the other. The indicators include the Romer and Romer (1989) 
monetary shock dummy, the Hoover and Perez (1994) oil shock dummies, Ramey and 
Shapiro's military buildup dates (1998), and the federal funds rate. Francis and Ramey show 
that none of them have a significant predictive power for the estimated technology shock. 
 
Here we provide a more direct assessment by making use of the measure of aggregate 
technological change obtained by BFK.18 As discussed earlier, those authors constructed that 

                                                 
17 A similar conclusion is obtained by Fisher (2003), using a related approach in the context 
of the multiple technology shock model described below. 

18 In particular, we use their "fully corrected" series from their 1999 paper. When revising the 
present paper BFK made us aware of an updated version of their technology series, extending 

(continued…) 



 - 16 - 

series using an approach unrelated to ours. The BFK variable measures the annual rate of 
technological change in the U.S. nonfarm private business sector. The series has an annual 
frequency and covers the period 1950–89. Our objective here is to assess the plausibility of 
the technology-related interpretation of the VAR shocks obtained above by examining their 
correlation with the BFK measure. Given the differences in frequencies, we annualize both 
the “permanent” and “transitory” shock series obtained from the quarterly VAR by averaging 
the shocks corresponding to each natural year. 
 
The main results can be summarized as follows. First, the correlation between the VAR-
based permanent shock and the BFK measure of technological change is positive and 
significant at the 5 percent level, with a point estimate of 0.45. The existence of a positive 
contemporaneous comovement is apparent in Figure 5, which displays the estimated VAR 
permanent shock together with the BFK measure (both series have been normalized to have 
zero mean and unit variance, for ease of comparison). 
 
Second, the correlation between our estimated VAR transitory shock and the BFK series is 
slightly negative, though insignificantly different from zero (the point estimate is -0.04). The 
bottom graph of Figure 5, which displays both series, illustrates the absence of any obvious 
comovement between the two. 
 
Finally, given that the BFK series is mildly serially correlated, we have also run a simple 
OLS regression of the (normalized) BFK variable on its own lag, and the contemporaneous 
estimates of the permanent and transitory shocks from the VAR. The estimated equation, 
with t-statistics in brackets, is given by: 
 

,ε32.0ε67.029.0
)11.1()16.2(1)85.1(

d
t

z
ttt BFKBFK

−− −+=  

 
which reinforces the findings obtained from the simple contemporaneous correlations. 
 
In summary, the results from the empirical analysis above suggest that the VAR-based 
permanent shocks may indeed be capturing exogenous variations in technology, in a way 
consistent with the interpretation made in Galí (1999). In addition, we cannot find evidence 
supporting the view that the VAR transitory shocks—which were shown in Section II to be 
the main source of business cycle fluctuations in hours and output—may be related to 
changes in technology. 
 

B.   Robustness to Alternative VAR Specifications 

 
In a recent paper, Christiano, Eichenbaum, and Vigfusson (2003; henceforth, CEV) have 
questioned some of the VAR-based evidence regarding the effects of technology shocks 

                                                                                                                                                       
the sample period through to 1996, and incorporating some methodological changes. The 
results obtained with the updated series were almost identical to the ones reported below. 
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found in Galí (1999) and Francis and Ramey (2003a), on the basis of the lack of robustness 
to the transformation of labor input used. In particular, CEV argue that first-differencing the 
(log) of per capita hours may distort the sign of the estimated response of that variable to a 
technology shock, if that variable is truly stationary. Specifically, their findings based on a 
bivariate VAR model in which (per capita) hours are specified in levels ( tt nn =ˆ ) imply that 
output, hours, and productivity all rise in response to a positive technology shock. On the 
other hand, when they use a difference specification they obtain results similar to the ones 
reported above—i.e. a negative comovement between output (or productivity) and hours in 
response to technology shocks. Perhaps most interesting, CEV discuss the extent to which 
the findings obtained under the level specification can be accounted for under the assumption 
that the difference specification is the correct one, and vice versa. Given identical priors over 
the two specifications, that "encompassing" analysis leads them to conclude that the odds in 
favor of the level specification relative to the difference specification are about 2 to 1.19 CEV 
obtain similar results when incorporating additional variables in the VAR. 
 
Our own estimates of the dynamic responses to a technology shock when we specify (per 
capita) hours in levels do indeed point to some qualitative differences. In particular, as shown 
in an appendix available on request, the point estimate of the impact response of hours 
worked to a positive technology is now positive, though very small. Yet, and in contrast with 
the findings in CEV, that impact effect and indeed the entire dynamic response of hours is 
not significantly different from zero. The sign of the point estimates, however, is sufficient to 
generate a positive correlation (0.88) between output and hours conditional on the technology 
shock. Furthermore, as reported in the second row of Table 1, under the level specification, 
technology shocks still account for a (relatively) small fraction of the variance of output and 
hours at business cycle frequencies (37 and 11 percent, respectively), though that fraction is 
larger than the one implied by the difference specification estimates.20 
 
While we find the encompassing approach adopted by CEV enlightening, their strategy of 
pair wise comparisons with uniform priors (which mechanically assigns a ½ prior to the level 
specification) may lead to some bias in the conclusions. In particular, a simple look at a plot 
of the time series for (the log of) per capita hours worked in the United States over the 
postwar period, displayed in Figure 6, is not suggestive of stationarity, at least in the absence 
of any further transformation. In particular, and in agreement with the ADF and KPSS tests 
reported above, the series seems perfectly consistent with a unit root process, though possibly 
not a pure random walk. On the basis of a cursory look at the same plot, and assuming that 
one wishes to maintain the assumption of a stationary process for the stochastic component 

                                                 
19 That odds ratio increases substantially when an F-statistic associated with a covariates 
ADF test is incorporated as part of the encompassing analysis. 

20 With the exception of their bivariate model under a level specification, CEV also find the 
contribution of technology shocks to the variance of output and hours at business cycles to be 
small (below 20 percent). In their bivariate level specification that contribution is as high as 
66 percent for output and 33 percent for hours. 
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of (the log of) per capita hours, a quadratic function of time would appear to be a more 
plausible characterization of the trend than just the constant implicit in CEV's analysis. In 
fact, an OLS regression of that variable on a constant, time and time squared yields a highly 
significant coefficient associated with both time variables. Furthermore, a test of a unit root 
on the residual from that regression fails to reject that hypothesis, while the KPSS does not 
reject the null of stationarity, at a 5 percent significance level in both cases.21 Figure 6 
displays the fitted quadratic trend and the associated residual, illustrating graphically that 
point. When we re-estimate the dynamic responses to a technology shock using the detrended 
(log of) per capita hours we find again a decline in hours in response to positive technology 
shock, and a slightly negative (-0.11) conditional correlation between the business cycle 
components of output and hours. In addition, the estimated contribution of technology shocks 
to the variance of output and hours is very small (7 and 5 percent, essentially the same as 
under difference specification; see Table 1).22 
 
To further assess the robustness of the above results, we have also conducted the same 
analysis using a specification of the VAR using an alternative measure of labor input—
namely, (the log of) total hours, without a normalization by working-age population. As it 
should be clear from the discussion in Section III.A, the identification strategy proposed in 
Galí (1999) and implemented here should be valid independently of whether labor input is 
measured in per capita terms or not, since labor productivity is invariant to that 
normalization.23 The second panel in Table 1 summarizes the results corresponding to three 
alternative transformations considered (first differences, levels, and quadratic detrending). In 
the three cases, a positive technology shock is estimated to have a strong and statistically 
significant negative impact on hours worked, at least in the short run. Interestingly, under the 
level and detrended transformations that negative response of hours is sufficiently strong to 
pull down output in the short run, despite the increase in productivity. Note, however, that 
the estimated decline in output is not significant in either case.24 Furthermore, the estimated 
contribution of technology shocks to the variance of the business cycle component of output 
and hours is small in all cases, with the largest share being 36 percent of the variance of 
hours, obtained under the level and detrended specifications. 
 

                                                 
21 Given the previous observations one wonders how an identical prior for both specifications 
could be assumed, as CEV do when computing the odds ratio. 

22 Unfortunately, CEV do not include any statistic associated with the null of no trend in 
hours in their encompassing analysis. While it is certainly possible that one can get a t-
statistic as high as 8.13 on the time-squared term with a 13 percent frequency when the true 
model contains no trend (as their Monte Carlo analysis suggests), it must surely be the case 
that such a frequency is much higher when the true model contains the quadratic trend as 
estimated in the data! 

23 In fact, total hours was the series used originally in Galí (1999). 

24 The finding of a slight short-run decline in output was obtained in BFK (1999). 
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As an additional check on the robustness of our findings, we have also estimated all the 
model specifications discussed above using employment as the labor input measure (instead 
of hours), and real GDP as an output measure. A summary of our results for the six 
specifications considered using employment and GDP can be seen in Table 2. The results 
under this specification are much more uniform: independently of the transformation of 
employment used, our estimates point to a decline in that variable in the short run in response 
to a positive technology shock, as well as a very limited contribution of technology shocks to 
the variance of GDP and employment. We should stress that those findings obtain even when 
we specify employment rate in levels, even though the short-run decline in employment is 
not statistically significant in that case. In summary, the previous robustness exercise based 
on postwar U.S. data has shown that, for all but one of the transformations of hours used, we 
uncover a decline in labor input in response to a positive technology shock, in a way 
consistent with the literature reviewed in Section II. The exception corresponds to the level 
specification of per capita hours, but even in that case the estimated positive response of 
hours does not appear to be significant. In most cases the contribution of technology shocks 
to the variance of the cyclical component of output and hours is very small, and always 
below 40 percent. Finally, and possibly with the exception mentioned above, the pattern of 
comovement of output and hours at business cycle frequencies resulting from technology 
shocks, fails to resemble the one associated with postwar U.S. business cycles. 
 
As further discussed in Valerie Ramey's discussion to this paper, Fernald (2004) makes an 
important contribution to the debate, by uncovering the most likely source of the discrepancy 
of the estimates when hours are introduced in levels. In particular, he shows the existence of 
a low frequency correlation between labor productivity growth and per capita hours. As 
illustrated through a number of simulations, the presence of such a correlation, while 
unrelated to the higher frequency phenomena of interest, can significantly distort the 
estimated short-run responses. Fernald illustrates that point most forcefully by re-estimating 
the structural VAR in its levels specification (as in CEV), though allowing for two 
(statistically significant) trend breaks in labor productivity (in 1973:1 and 1997:2): the 
implied impulse responses point to a significant decline in hours in response to a technology 
shock, a result that also obtains when the difference specification is used. 
 
Additional evidence on the implications of alternative transformations of hours using annual 
time series spanning more than a century is provided by Francis and Ramey (2003b). Their 
findings based on U.S. data point to considerable sensitivity of the estimates across 
subsample periods and the choice of transformation for hours. To assess the validity of the 
different specifications, they look at the implications for the persistence of the productivity 
response to a non-technology shock, the plausibility of the patterns of estimated technology 
shocks, as well as the predictability of the latter (the Hall-Evans test). On the basis of that 
analysis they concluded that first-differenced and, to a lesser extent, quadratically detrended 
hours yield the most plausible specification. Francis and Ramey show that in their data those 
two preferred specifications generate a short-run negative comovement between hours and 
output in response to a shock that has a permanent effect on technology in the postwar 
period. In the pre-World War II period, however, the difference specification yields an 
increase in hours in response to a shock that raises productivity permanently. On the other 
hand, when they repeat the exercise using U.K. data (and a difference specification) they find 
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a clear negative comovement of employment and output both in the pre-World War II and 
postwar sample periods.25 
 
In light of those results and the findings in the literature discussed above, we conclude that 
there is no clear evidence favoring a conventional RBC interpretation of economic 
fluctuations as being largely driven by technology shocks, at least when the latter take the 
form assumed in the standard one-sector RBC model. Next, we consider how the previous 
assessment is affected once we allow for technology shocks that are investment specific. 
 

C.   Investment-Specific Technology Shocks 

In a series of papers, Greenwood, Hercowitz, and Huffman (1998), and Greenwood, 
Hercowitz, and Krusell (1997, 2000; henceforth, GHK) put forward and analyze a version of 
an RBC model in which the main source of technological change is specific to the investment 
sector. In the proposed framework, and in contrast with the standard RBC model, a 
technology shock does not have any immediate impact on the production function. Instead, it 
affects the rate of transformation between current consumption and productive capital in the 
future. Thus, any effects on current output must be the result of the ability of that shock in 
eliciting a change in the quantity of input services hired by firms. GHK (1997, 2000) 
motivate the interest in studying the potential role of investment-specific technology shocks 
by pointing to the large variations in measures of the relative price of new equipment 
constructed by Gordon (1990), both over the long run as well as at business cycle 
frequencies. In particular, GHK (2000) analyze a calibrated model in which investment-
specific technology shocks are the only driving force. They conclude that the latter can 
account for about 30 percent of U.S. output fluctuations, a relatively modest figure compared 
with the claim of the earlier RBC literature regarding the contribution of aggregate, sector-
neutral technology shocks in calibrated versions of one-sector RBC models. 
 
In a recent paper, Fisher (2003) revisits the evidence on the effects of technology shocks and 
their role in the U.S. business cycle, using an empirical framework that allows for separately 
identified sector-neutral and investment-specific technology shocks (which, following Fisher, 
we refer to respectively as N-shocks and I-shocks, for short). In a way consistent with the 
identification scheme proposed in Galí (1999), both types of technology shocks are allowed 
to have a permanent effect on labor productivity (in contrast with non-technology shocks). 
Yet, and in a way consistent with the GHK framework, only investment-specific technology 
shocks are allowed to affect permanently the relative price of new investment goods. Using 
times series for labor productivity, per capita hours, and the price of equipment (as a ratio to 
the consumption goods deflator) constructed by Cummins and Violante (2002), Fisher 
estimates impulse responses to the two types of shocks, and their relative contribution to 
business cycle fluctuations. We have conducted a similar exercise on our own, and 

                                                 
25 Pesavento and Rossi (2003) propose an agnostic procedure to estimate the effects of a 
technology shock that does not require taking a stance on the order of integration of hours. 
They find that a positive technology shock has a negative effect on hours on impact. 
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summarized some of the findings in Table 3.26 For each type of technology shock and 
specification, the table reports its contribution to the variance of the business cycle 
component of output and hours, as well as the implied conditional correlation between those 
two variables. 
 
The top panel in Table 3 corresponds to three specifications using per capita hours worked, 
the labor input variable to which Fisher (2003) restricts his analysis. Not surprisingly, our 
results essentially replicate some of his findings. In particular, we see that under the three 
transformations of labor input measures considered, N-shocks are estimated to have a 
negligible contribution to the variance of output and hours at business cycle frequencies, and 
to generate a very low correlation between those two variables. 
 
The results for I-shocks are different in at least two respects. First, and as stressed in Fisher 
(2003), I-shocks generate a high positive correlation between output and hours. The last 
column of Table 3 tells us that such a result holds for all labor input measures and 
transformations considered. As argued in the introduction, that property must be satisfied by 
any shock that plays a central role as a source of business cycles. Of course, this is a 
necessary, not a sufficient condition. Whether the contribution of I-shocks to business cycle 
fluctuations is large or not depends once again on the transformation of labor input used. 
Table 3 shows that when that variable is specified in levels, it accounts for more than half of 
the variance of output and hours at business cycle frequencies, a result that appears to be 
independent of the specific labor input measure used. On the other hand, when hours or 
employment are specified in first differences or are quadratically detrended, the contribution 
becomes much smaller, and always remains below one-fourth. 
 
What do we conclude from this exercise? First of all, the evidence does not speak with a 
single voice: whether technology shocks are given a prominent role or not as source of 
business cycles depends on the transformation of the labor input measure used in the 
analysis. Perhaps more interesting, the analysis of the previous empirical model makes it 
clear that if some form of technological change plays a significant role as a source of 
economic fluctuations, it is not likely to be of the aggregate, sector-neutral kind that the early 
RBC literature emphasized, but of the investment-specific kind stressed in GHK (2000). 
Finally, and leaving aside the controversial question of the importance of technology shocks, 
the previous findings, as well as those in Fisher (2003), raise a most interesting issue: Why 
do I-shocks appear to generate the sort of strong positive comovement between output and 
labor input measures that characterizes business cycles, while that property is conspicuously 
absent when we consider N-shocks? Below we attempt to provide a partial explanation for 
this seeming paradox. 
 

IV.   EXPLAINING THE EFFECTS OF TECHNOLOGY SHOCKS 

In this section we briefly discuss some of the economic explanations for the "anomalous" 
response of labor input measures to technology shocks. As a matter of simple accounting, 
                                                 
26 We thank Jonas Fisher for kindly providing the data on real investment price. 
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firms' use of inputs (and labor, in particular) will decline in response to a positive technology 
shock only if they choose (at least on average) to adjust their level of output less than 
proportionally to the increase in TFP. Roughly speaking, we can think of two broad classes 
of factors that are absent in the standard RBC model and that could potentially generate this 
result. The first class involves the presence of nominal frictions, combined with certain 
monetary policies. The second set of explanations is unrelated to the existence of nominal 
frictions, so we refer to it as "real" explanations. We discuss them in turn next. 
 

A.   The Role of Nominal Frictions 

A possible explanation for the negative response of labor to a technology shock, put forward 
both in Galí (1999) and BFK (1999), relies on the presence of nominal rigidities. As a matter 
of principle, nominal rigidities should not, in themselves, necessarily be a source of the 
observed employment response. Nevertheless, when prices are not fully flexible, the 
equilibrium response of employment (or, for that matter, of any other endogenous variable) 
to any real shock (including a technology shock) is not invariant to the monetary policy rule 
in place; in particular, it will be shaped by how the monetary authority reacts to the shock 
under consideration.27 Different monetary policy rules will thus imply different equilibrium 
responses of output and employment to a technology shock, ceteris paribus. 
 
Galí (1999) provided some intuition behind that result by focusing on a stylized model 
economy in which the relationship ttt pmy −= holds in equilibrium,28 firms set prices in 
advance (implying a predetermined price level), and the central bank follows a simple 
money-supply rule. It is easy to see that, in that context, employment will experience a short-
run decline in response to a positive technology shocks, unless the central bank endogenously 
expands the money supply (at least) in proportion to the increase in productivity. Galí (2003) 
shows that the previous finding generalizes (for a broad range of parameter values) to an 
economy with staggered-price setting, and a more realistic interest elasticity of money 
demand, but still an exogenous money supply. In that case, even though all firms will 
experience a decline in their marginal cost, only a fraction of them will adjust their prices 
downward in the short run. Accordingly, the aggregate price level will decline, and real 
balances and aggregate demand will rise. Yet, when the fraction of firms adjusting prices is 
sufficiently small, the implied increase in aggregate demand will be less than proportional to 
the increase in productivity. That, in turn, induces a decline in aggregate employment. 
 
Many economists have criticized the previous argument on the grounds that it relied on a 
specific and unrealistic assumption regarding how monetary policy is conducted—namely, 
that of a money-based rule (e.g., Dotsey (2002)). 
 
                                                 
27 See the discussion in McGrattan (1999), Dotsey (2002), and Galí, López-Salido, and 
Vallés (2003), among others. 

28 This would be consistent with any model in which velocity is constant in equilibrium; see 
Galí (1999) for an example of such an economy. 
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In the next subsection we address that criticism by analyzing the effects of technology shocks 
in the context of a simple illustrative model with a more plausible staggered price-setting 
structure, and a monetary policy characterized by an interest rate rule similar to the one 
proposed by Taylor (1993). The model is simple enough to generate closed-form expressions 
for the responses of output and employment to variations in technology, thus allowing us to 
illustrate the main factors shaping that response and thus generating a negative comovement 
between the two variables. 
 

B.   A Simple Illustrative Model 

 
The model we use to illustrate the role of nominal rigidities and monetary policy in shaping 
the effects of technology shocks is a standard New Keynesian framework with staggered 
price setting à la Calvo (1983). Its equilibrium dynamics can be summarized as follows. On 
the demand side output is determined by a forward-looking IS-type equation: 
 

})π{(σ}{ 11 ++ −−= tttttt EryEy ,     (5) 
 
where ty  denotes (the log of) output, tr  is the nominal interest rate, and 1π −−= ttt pp  
denotes the rate of inflation between t-1 and t. The parameter σ can be broadly interpreted a 
measure of the sensitivity of aggregate demand to changes in interest rates and, thus, of the 
“effectiveness” of monetary policy. 
 
Inflation evolves according to a forward-looking New Keynesian Phillips curve 
 

),(κ}π{βπ 1 ttttt yyE −+= +       (6) 
 
where ty  is the natural level of output (or potential output, for short), defined as the one that 
would prevail in the absence of nominal frictions. Equivalently, ty  can be interpreted as the 
equilibrium output generated by some background real business cycle model driven by 
technology. The previous equation can be derived from the aggregation of optimal price-
setting decisions by firms subject to price adjustment constraints à la Calvo. In that context, 
coefficient κ is inversely related to the degree of price stickiness: stronger nominal rigidities 
imply a smaller response of inflation to any given sequence of output gaps. 
 
For simplicity we assume that exogenous random variations in productivity are the only 
source of fluctuations in the economy and, hence, the determinants of potential output. 
Accordingly, we postulate the following reduced-form expression for potential output:29 
 

,tyt ay ψ=       (7) 

                                                 
29 Such a reduced-form relationship would naturally arise as an equilibrium condition of a 
simple RBC model with productivity as the only state variable. 
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where ta  represents an exogenous technology parameter. The latter is assumed to follow an 
AR(1) process ttat aa ερ 1 += − , where ]1,0[ρ ∈a . Notice that under the assumption of an 
aggregate production function of the form ttt nay )α1( −+= , we can derive the following 
expression for the natural level of employment tn : 
 

,tnt an ψ=        
 
where )α1/()1( −−≡ yn ψψ . Since we want to think of the previous conditions as a reduced-
form representation of the equilibrium of a standard calibrated RBC model (without having 
to specify its details), it is natural to assume 1≥yψ  (and, hence, 0≥nψ ). In that case, a 
positive technology shock generates an increase in both output and employment, as generally 
implied by the RBC models under conventional calibrations. Notice that it is precisely that 
property that makes it possible for any technology-driven RBC model to generate 
equilibrium fluctuations that replicate some key features of observed business cycles, 
including a positive comovement of output and employment.30 
 
In this context, a natural question that arises is the extent to which the comovement of output 
and employment in response to technology shocks found in the evidence described above 
may have been the result of the way monetary policy has been conducted in the United States 
and other industrial economies. In order to illustrate that point, we embed in the context of 
the simple model above, by deriving the implications for the effects of technology shocks of 
having the central bank follow an interest rate rule of the form 
 

tytt yr φπφπ +=      (8) 
 
A rule similar to equation (8) has been proposed by Taylor (1993) and others as a good 
characterization of monetary policy in the United States and other industrial economies in 
recent decades. Notice that, as in Taylor, we assume that the monetary authority responds to 
output (or its deviations from trend), and not to the output gap. We view this as a more 
realistic description of actual policies (which emphasize output stabilization), and consistent 
with the fact that the concept of potential output used here, while necessary to construct any 
measure of the output gap, cannot be observed by the policymaker.31 

                                                 
30 The absence of another state variable (say, capital stock or other disturbances) implies a 
perfect correlation between the natural levels of output and employment, in contrast with 
existing RBC models in the literature where that correlation is positive and very high, but not 
one. 

31 Throughout we assume that the condition 0φ)β1()1φ(κ yπ >−+−  is satisfied. As shown 
by Bullard and Mitra (2002), that condition is necessary to guarantee a unique equilibrium. 
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Combining equation (8) with equilibrium conditions (5) and (6), we can derive the following 
closed-form expression for equilibrium output: 
 

tytyt aay ψψ ≡Θ=  
where 
 

)ρκ(φ]φ)ρ(1)[σβρ(1
)ρκ(φ

aπya
1

a

aπ

−++−−
−

≡Θ −  

 
Notice that under the (weak) assumption that aρφπ > , we have 0<Θ≤1. The fact that Θ>0 
guarantees that a positive (negative) technology shock raises (lowers) output, as in the 
standard RBC model. On the other hand, Θ≤1 implies that 
 

;yy ψψ ≤  
 
i.e. in the presence of nominal frictions the size of response of output to a technology shock, 

yψ , is bounded above by that implied by the corresponding RBC model ( yψ ) when the 
central bank follows rule (8). Hence, the combination of sticky prices and a Taylor rule will 
tend to overstabilize the output fluctuation resulting from technology shocks. We can 
interpret parameter Θ as an index of effective policy accommodation—i.e. one that measures 
the extent to which Taylor rule (8) accommodates the changes in potential output resulting 
from variations in technology shocks, given the persistence of the latter and the rest of 
parameters describing the economy. Notice that the index of effective policy accommodation 
Θ is increasing in the size of the inflation coefficient in the Taylor rule ( πφ ), and in the 
effectiveness of interest changes (as reflected by σ). It is also positively related to κ (and, 
hence, inversely related to the degree of price stickiness). On the other hand, it is inversely 
related to the size of the output coefficient in the Taylor rule ( yφ ). 
 
Let us now turn to the equilibrium response of employment to a technology shock, which is 
given by: 

.
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Notice that, in a way analogous to the output case, we have nn ψψ ≤ . In other words, the size 
of the employment response to a (positive) technology shock in the presence of nominal 
frictions is bounded above by the size of the response generated by the underlying 
frictionless RBC model. Furthermore, it is clear that the impact of a technology shock on 
employment may be positive or negative, depending on the configuration of parameter 
values. 
 
We can get a sense for the likely sign and plausible magnitude for nψ  by using conventional 
values used in calibration exercises in the literature involving similar models. Thus, 
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Rotemberg and Woodford's (1999) estimates based on the response to monetary policy 
shocks, imply a value of 0.024 for κ. A unit value is often used as an upper bound for σ. 
Taylor's widely used values for πφ  and yφ  are 1.5 and 0.5, respectively. In standard RBC 
calibrations, the assumption 95.0=aρ  is often made. Finally we can set 99.0β =  and 

3/1α = , two values that are not much controversial. Under those assumptions, we obtain a 
value for Θ of 0.28. The latter figure points to a relatively low degree of effective policy 
accommodation. 
 
Using a standard calibrated RBC model, Campbell (1994) obtains a range of values for yψ  
between 1 and 2.7, depending on the persistence of the shock and the elasticity of labor 
supply. In particular, given a unit labor supply elasticity and a 0.95 autocorrelation in the 
technology process, he obtains an elasticity yψ  of 1.45 , which we adopt as our benchmark 
value.32 When we combine the latter with our calibrated value for Θ computed, we obtain an 
implied benchmark elasticity of employment nψ  equal to -0.87. 
 
The previous calibration exercise, while admittedly quick and loose, illustrates that condition 

0<nψ  is likely to hold under a broad range of reasonable parameter values. Under those 
circumstances, and subject to the caveat implied by the simplicity of the model and the 
characterization of monetary policy, it is hard to interpret the negative comovement between 
output and employment observed in the data as a puzzle, as it has often been done.33 
 
In his seminal paper, Prescott (1986a) concluded his description of the predictions of the 
RBC paradigm by stating: “In other words [RBC] theory predicts what is observed. Indeed, if 
the economy did not display the business cycle phenomena, there would be a puzzle.” In 
light of the analysis above, perhaps we should think of turning Prescott's dictum on its head, 
and argue instead that if as a result of technology variations the economy did indeed display 
the typical positive comovement between output and employment that characterizes the 
business cycle, then there would be a puzzle! 
 
Nominal rigidities and the effects of investment-specific technology shocks 
 
Interestingly, the logic behind the impact of nominal rigidities on the effects of conventional 
aggregate, sector-neutral technology shocks on which the previous discussion focuses, would 
also seem consistent with the estimated effects of investment-specific technology shocks, as 
                                                 
32 This corresponds to the impact elasticity with respect to productivity, and ignores 
subsequent adjustment of capital (which is very small). The source is Table 3 in Campbell 
(1994), with an appropriate adjustment to correct for his (labor-augmenting) specification of 
techology in the production function (we need to divide Campbell's number by 2/3). 

33 Interestingly, a similar result can be uncovered in an unpublished paper by McGrattan 
(1999). Unfortunately the author did not seem to notice that finding (or, at least, she did not 
discuss it explicitly). 
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reported in Fisher (2003) and further discussed in Section III above. The argument can be 
made most clearly in the context of a sticky price version of a model like that in GHK 
(2000). Once again, let us for simplicity assume that the relationship ttt pmy −=  holds in 
equilibrium, and that both tm  and tp  are pre-determined relative to the shock. In that case 
firms will want to produce the same quantity of the good but, in contrast with the case of 
neutral technology shocks, in order to do so they will need to employ the same level of 
inputs, since the efficiency of the latter has not been affected (only newly purchased capital 
goods will enhance that productivity in the future). That property of I-shocks is illustrated in 
Smets and Wouters (2003a) in the context of a much richer DSGE model. In particular, those 
authors show that even in the presence of the substantial price and wage rigidities estimated 
for the U.S. economy, a positive I-shock causes output and labor input to increase 
simultaneously, in a way consistent with the Fisher (2003) VAR evidence. In fact, as shown 
in Smets and Wouters (2003a), the qualitative pattern of the joint response of output and 
hours to an I-shock is not affected much when they simulate the model with all nominal 
rigidities turned off. 
 
Evidence on the role of nominal rigidities 
 
A number of recent papers have provided evidence, often indirect, on the possible role of 
nominal rigidities as a source of the gap between the estimated responses of output and labor 
input measures to a technology shock and the corresponding predictions of an RBC model. 
We briefly describe a sample of those papers next. 
 
Models with nominal rigidities imply that the response of the economy to a technology shock 
(or to any other shock, for that matter) will generally depend on the endogenous response of 
the monetary authority, and should thus not be invariant to the monetary policy regime in 
place. Galí, López-Salido, and Vallés (2003; henceforth, GLV) exploit that implication, and 
try to uncover any differences in the estimated response to an identified technology shock 
across subsample periods. Building on the literature that points to significant differences in 
the conduct of monetary policy between the pre-Volcker and the Volcker-Greenspan periods, 
they estimate a four-variable structural VAR with a long-run restriction as in Galí (1999) for 
each of those subsample periods. Their evidence points to significant differences in the 
estimated responses to a technology shock. In particular, they show that the decline in hours 
in response to a positive technology shock is much more pronounced in the pre-Volcker 
period, being hardly significant in the Volcker-Greenspan. That evidence is consistent with 
the idea that monetary policy in the latter period has focused more on the stabilization of 
inflation, and not so much on the stabilization of economic activity.34 
 

                                                 
34 The analysis in GLV (2003) has been extended by Francis, Owyang, and Theodorou 
(2004) to other G-7 countries. They uncover substantial differences across countries in the 
joint response of employment, prices and interest rates to technology shocks, and argue that 
some of those differences can be grounded in differences in the underlying interest rate rules. 
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Some evidence at the micro-level is provided by Marchetti and Nucci (2004), who exploit a 
detailed data set containing information on output, inputs, and price-setting practices for a 
large panel of Italian manufacturing firms. Using a modified Solow residual approach they 
construct a time series for TFP at the firm level, and estimate the responses of a number of 
firm-specific variables to an innovation in the corresponding technology measure. Among 
other findings, they provide evidence of a negative impact effect of a technology shock on 
labor input. Most interesting, Marchetti and Nucci (2004) also exploit firm-specific 
information regarding the frequency of price adjustments. They split the sample of firms 
according to the frequency of their price revisions: “flexible” price firms (adjust prices every 
three months or more often) and "sticky" price firms (adjusting every six months or less 
often). They find that the negative response of employment to a positive technology shock is 
larger (and significant) in the case of “sticky” price firms, and much weaker (and statistically 
insignificant) for “flexible” price firms. That evidence suggests that nominal rigidities may 
be one of the factors underlying the estimated effects of technology shocks.35 
 
Real explanations 
 
Several authors have proposed explanations for the evidence described in Section II that do 
not rely on the presence of nominal rigidities. Such "real" explanations generally involve 
some modification of the standard RBC model. Next we briefly describe some of those 
explanations. 
 
Francis and Ramey (2003a) propose two modifications of an otherwise standard RBC model 
that can potentially account for the negative comovement of output and hours in response to 
a technology shock. The first model incorporates habit formation in consumption and capital 
adjustment costs. As shown in Francis and Ramey (2003a), a calibrated version of that model 
can account for many of the estimated effects of technology shocks. In particular, the 
response to a permanent improvement in technology of consumption, investment and output 
is more sluggish than in the standard model with no habits or capital adjustment costs. If that 
dampening effect is sufficiently strong, the increase in output may be smaller than the 
increase in productivity itself, thus causing a reduction in hours. The latter decline is 
consistent with the optimal decision of households to consume more leisure (despite the 
higher wage) as a consequence of a dominant income effect.36 A similar mechanism 
underlies the modification of the basic RBC model proposed by Wen (2001), who assumes a 
utility function with a subsistence level of consumption (equivalent to a constant habit). 

                                                 
35 A less favorable assessment is found in Chang and Hong (2003), who conduct a similar 
exercise using four-digit U.S. manufacturing industries. Relying on evidence of sectoral 
nominal rigidities based on the work of Bils and Klenow (2002), they find weak evidence of 
contractionary effects and correlation with measures of price stickiness. 

36 See Lettau and Uhlig (2000) for a detailed analysis of the properties of an RBC model with 
habit formation. As pointed out by Francis and Ramey, Lettau and Uhlig seem to dismiss the 
assumption of habits on the grounds that it yields “counterfactual cyclical behavior.” 
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The second modification of the RBC model proposed by Francis and Ramey (2003a) hinges 
on the assumption of no substitutability between labor and capital in production. In that 
context the only way to increase output in the short run is by increasing the workweek of 
capital. Furthermore, hours beyond the standard workweek generate additional disutility. In 
such a model a permanent increase in labor-augmenting technology is shown to generate a 
short-run decline in hours. The intuition is simple, and in the final analysis not much 
different from other modifications proposed. While output increases in the short run (due to 
increased investment opportunities), that increase is not sufficient to compensate for the fact 
that any quantity of output can now be produced with less employment (per shift) and a 
shorter workweek. 
 
Rotemberg (2003) develops a version of the RBC model in which technological change 
diffuses much more slowly than implied by conventional specifications found in the RBC 
literature. The rate at which technology is adopted is calibrated on the basis of the micro 
studies on speed of diffusion. Rotemberg shows that when the smooth technology process is 
embedded in the RBC model it generates small short-run fluctuations in output and 
employment, which are largely unrelated to the cyclical variations associated with detrended 
measured of employment and output. In particular, a positive innovation to technology that 
diffuses very slowly generates a very large wealth effect (relative to the size of the 
innovation), which in turn leads households to increase their consumption of leisure. As a 
result, both hours and output experience a short run decline in response to a technology shock 
of a typical size, before they gradually increase above their initial levels. Because those 
responses are so smooth, they imply very small movements at cyclical frequencies. It follows 
that technology shocks with such characteristics will only account for a small fraction of 
observed cyclical fluctuations in output and hours. 
 
Collard and Dellas (2002) emphasize an additional mechanism, specific to an open economy, 
through which technology shocks may induce short-run negative comovements between 
output and labor input even in the absence of nominal rigidities. They analyze a two-country 
RBC model with imperfect substitutability between domestic and foreign consumption 
goods. If that substitutability is sufficiently low, a positive technology shock in the home 
country triggers a large deterioration in its terms of trade (i.e., a large decline in the price of 
domestic goods relative to foreign goods). That change in relative prices may induce 
households to increase their consumption of leisure at any given product wage, thus 
contracting labor supply and lowering hours. The quantitative analysis of a calibrated version 
of their model suggests that while technology shocks may be a non-negligible source of 
output fluctuations, their role is likely to be very small as a driving force behind hours 
fluctuations. 
 
The papers discussed in this section provide examples of model economies that can account 
for the evidence regarding the effects of technology shocks without relying on any nominal 
frictions. On the basis of that evidence it is not possible to sort out the relative role played by 
"nominal" and "real" frictions in accounting for the evidence. The reason is simple: there is 
no clear mapping between the estimated coefficients in a structural VAR and the underlying 
structural parameters that determine the degree of those frictions. As a result, estimated 
VARs cannot serve as the basis of the sort of counterfactual simulations that would allow us 
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to uncover the implied effects of technology shocks if either “nominal” or “real” frictions 
were not present. Such counterfactual exercises require the use of an estimated structural 
model. In the next section we turn our attention to one such model. 
 

V.   TECHNOLOGY SHOCKS AND THE BUSINESS CYCLE IN AN ESTIMATED DSGE MODEL 

In this section we try to sort out the merits of the two types of explanations discussed above 
by estimating and analyzing a framework that incorporates both types of frictions, and that is 
sufficiently rich to be taken to the data. The features that we incorporate include habit 
formation in consumption, staggered price and wage-setting à la Calvo, flexible indexation of 
wages and prices to lagged inflation, and a monetary policy rule of the Taylor type with 
interest rate smoothing. 
 
Several examples of estimated general equilibrium models can be found in the literature. Our 
framework is most closely related to the one used in Rabanal (2003), with two main 
differences. First, we allow for a unit root in the technology process in a way consistent with 
the assumptions underlying the identification strategy pursued in Section II. Second, we 
ignore the cost channel mechanism allowed for in Rabanal (2003), in light of the evidence in 
that paper suggesting an insignificant role for that mechanism. 
 
We estimate the parameters of the model using Bayesian methods, and focus our analysis on 
the implications of the estimated model regarding the effects of technology shocks and the 
contribution of the latter to the business cycle. The use of a structural estimated model allows 
us to determine, by means of counterfactual simulations, the role played by different factors 
in accounting for the estimated effects of technology shocks. Last but not least, the estimated 
model gives us an indication of the nature of the shocks that have played a dominant role as a 
source of postwar business cycles. 
 
The use of Bayesian methods to estimate DSGE models has increased over recent years, in a 
variety of contexts.37 Fernández-Villaverde and Rubio-Ramírez (2004) show that parameter 
estimation is consistent in the Bayesian framework even under model misspecification. 
Smets and Wouters (2003a, 2003b) estimate a model with capital accumulation, and both 
nominal and real rigidities for the euro area and the United States. Lubik and Schorfheide 
(2004) use the Bayesian framework to estimate a small-scale model allowing for 
indeterminacy. Rabanal (2003) estimates a general equilibrium model for the United States 
and the euro area in search for cost channel effects of monetary policy.38 
                                                 
37 However, the existing literature on estimating general equiilibrium models using Bayesian 
methods assumes that all shocks are stationary, even when highly correlated. A novelty of 
this paper is that we introduce a permanent technology shock. Ireland (2004) estimates a 
general equilibrium model with permanent technology shocks, using maximum likelihood. 

38 A somewhat different estimation strategy is the one followed by Christiano, Eichenbaum, 
and Evans (2003), Altig and others (2003), and Boivin and Giannoni (2003), who estimate 
general equilibrium models by matching model's implied impulse-response functions to the 
estimated ones. 
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Next we summarize the set of equilibrium conditions of the model.39 The demand side of the 
model is represented by the Euler-like equation 
 

,)1)(ρ1(})π{)(1( 11 tgtttttt gbErbyEyb −−+−−−∆=∆ ++    (9) 
 
which modifies equation (5) above by allowing for some external habit formation (indexed 
by parameter b), and introducing a preference shock }{ tg  that follows an AR(1) process with 
coefficient gρ . Underlying equation (9) is the assumption that preferences are separable 
between consumption and hours, and logarithmic in the quasidifference of consumption in 
order to preserve the balanced growth path property.40 Aggregate output and hours are related 
by the simple log-linear production function 
 

.ttt nay +=  
 
Equivalently, and using a tilde to denote variables normalized by current productivity (in 
order to induce stationarity), we have 
 

.~
tt ny =  

 
Log-linearization of the optimal price-setting condition around the zero-inflation steady state 
yields an equation describing the dynamics of inflation as a function of the deviations of the 
average (log) markup from its steady-state-level, which we denote by p

tµ :41 
 

),µκπγπγπ 11 t
p
tpttftbt u(}{E −−+= +−    (11) 

 
where )/( ppb βη1ηγ += , )βηβ/(1γ pf += , )]()/[)(( ppppp βη1θθ1βθ1κ +−−= , pθ  is the 
probability of not adjusting prices in any given period, and ]1,0[η ∈p  is the degree of price 

indexation to lagged inflation. Notice that tttt
p
t APW ω~)]/(log[µ −≡−=  is the price markup, 

where ttt a−= ωω~  is the real wage per efficiency unit. Variable tu  denotes exogenous 
variations in the desired price markup. 
 
                                                 
39 Details can be found in an appendix available from the authors upon request. 

40 Specifically, every household maximizes the following utility function: 

∑∞

=

+

− +
−−

0

1

1 ]
1

)(
)log([

t

j
tj

t
j

tt
t

o
N

bCCGE
ϕ

β
ϕ

, 

subject to a usual budget constraint. The preference shock evolves, expressed in logarithms, 
as g
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41 See Smets and Wouters (2003a) for a derivation of the price- and wage-setting equations. 
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Log-linearization of the optimal wage-setting condition yields the following equation for the 
dynamics of the (normalized) real wage: 
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where wθ  denotes the fraction of workers that do not re-optimize their wage, ]1,0[η ∈w  is the 
degree of wage indexation to lagged inflation, and )]ε1(θ/[)θ1)(βθ1(κ wwwww ϕ+−−= , 
where wε  is the wage elasticity of labor demand in the steady state. Also notice that 
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exogenous variations in the desired wage markup. 
 
Finally, we close the model by assuming that the monetary authority adjusts interest rates in 
response to changes in inflation and output growth according to the rule: 
 

,))1()1( t1 ttyrrtrt zyrr +∆−+−+= − φφπφφφ π    (13) 
 
where zt is an exogenous monetary shock.42 
 
The exogenous driving variables are assumed to evolve as follows: 
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Notice that while we do not observe tω

~  and ty~ , the two variables are related as follows: 
 

,~~
tttt yy −=− ωω  

                                                 
42 Following Erceg and Levin (2003), we assume that the Federal Reserve reacts to output 
growth rather than to the output gap. An advantage of following such a rule, as Orphanides 
and Williams (2002) stress, is that mismeasurement of the level of potential output does not 
affect the conduct of monetary policy (as opposed to using some measure of detrended output 
to estimate the output gap). 
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and tt y−ω  is an observable variable, which should be stationary in equilibrium. In the next 
section, we explain how to write the likelihood function in terms of the five observable 
variables: output growth, inflation, the nominal interest rate, hours, and the real wage-output 
ratio. 

A.   Parameter Estimation 

Data 
 
We estimate the model laid out in the previous section using U.S. quarterly time series for 
five variables: real output, inflation, real wages, hours, and interest rates. The sample period 
is 1948:1 to 2002:4. For consistence with the analysis in Section II, we use the same series 
for output and hours. Our measure of nominal wages is the compensation per hour in the 
nonfarm business sector (LXNFC), and the measure for the price level is the nonfarm 
business sector deflator (LXNFI). Finally, we use the quarterly average daily readings of the 
three-month Treasury bill (FTB3) as the relevant nominal interest rate. To render the series 
stationary, we detrend hours and the real wage-output ratio using a quadratic trend. We treat 
inflation, output growth and the nominal interest rate as stationary, and express them in 
deviations from their sample mean. 
 
As is well known from Bayes' rule, the posterior distribution of the parameters is 
proportional to the product of the prior distribution of the parameters and the likelihood 
function of the data. Until recently, only well-known and standard distributions could be 
used. The advent of fast computer processors and Markov Chain Monte Carlo (MCMC) 
methods has removed this restriction, and a more general class of models and distributions 
can be used.43 To implement the Bayesian estimation method, we need to be able to evaluate 
numerically the prior and the likelihood function. Then, we use the Metropolis-Hastings 
algorithm to obtain random draws from the posterior distribution, from which we obtain the 
relevant moments of the posterior distribution of the parameters. 
 
The likelihood function 
 
Let ψ denote the vector of parameters that describe preferences, technology, the monetary 
policy rule, and the shocks of the model, dt be the vector of endogenous variables (observable 
or not), zt be the vector of shocks, and εt be the vector of innovations. 
 
The system of equilibrium conditions and the process for the exogenous shocks can be 
written as a second-order difference equation 
 

).ψ()εε(              ,ε)ψ(

,)ψ()ψ()ψ()ψ(
'

1

11

Σ=+=

++=

−

−+

ttttt

ttttt

EzNz

zDdCdBdEA
 

 
                                                 
43 See Fernández-Villaverde and Rubio-Ramírez (2004). 
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We use standard solution methods for linear models with rational expectations (as in Uhlig, 
1999) to write the law of motion in state-space form and the Kalman filter (as in Hamilton, 
1994) to evaluate the likelihood of the five observable variables { }',,ω,π, ttttttt ynyrx ∆−= . 
We denote by )ψ|}({ 1

T
ttxL =  the likelihood function of T

ttx 1}{ = . 
 
Priors 
 
In this section, we denote by Π(ψ) the prior distribution of the parameters. We present the list 
of the structural parameters and its associated prior distributions in the first three columns of 
Table 4. Most of the priors involve uniform distributions for the parameters, which simply 
restrict the support. We use uniform distributions for the parameter that explains habit 
formation, for the probabilities of the Calvo lotteries, and for the indexation parameters. The 
prior for all these parameters has support between 0 and 1, except the probabilities of the 
Calvo lottery, which are allowed to take values up to 0.9—i.e., we are ruling out average 
price and wage durations of more than 10 quarters. 
 
We try to supplement as much prior information as possible for the model's exogenous 
shocks. The AR(1) coefficients have uniform prior distributions between 0 and 0.97. Gamma 
distributions for the standard deviations of the shocks are assumed, to guarantee non-
negativity. We select their hyper parameters to match available information for the prior 
mean standard deviation of the innovations, while allowing reasonable uncertainty in these 
parameters. For instance, for the monetary policy rule we choose the means of the inflation 
and output growth coefficients to match the ones proposed by Taylor.44 For the monetary 
policy shock, we use the standard deviation that comes from running an OLS regression for 
the Taylor rule equation. 
 
In addition, we fix some parameters. The discount factor, we set at β=0.99. The elasticities of 
product and labor demand are set to 6 (which implying steady state markups of 20 percent). 
These values are fairly conventional in the literature. 
 
Drawing from the posterior 
 
From Bayes rule, we obtain the posterior distribution of the parameters as follows: 
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The posterior density function is proportional to the product of the likelihood function and 
the prior joint density function of ψ. Given our priors and the likelihood functions implied by 
the state-space solution to the model, we are not able to obtain a closed-form solution for the 
                                                 
44 If a random draw of the parameters is such that the model does not deliver a unique and 
stable solution, we assign a zero likelihood value, which implies that the posterior density 
will be zero as well. See Lubik and Schorfheide (2003) for an estimated DSGE model 
allowing for indeterminacy. 
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posterior distributions. However, we are able to evaluate both expressions numerically. We 
follow Fernández-Villaverde and Rubio-Ramírez (2004) and Lubik and Schorfheide (2004) 
and use the random walk Metropolis-Hastings algorithm, to obtain a random draw of size 
500,000 from ).}{|ψ( 1

T
ttxp =  We use the draw to estimate the moments of the posterior 

distribution, and to obtain impulse responses and second moments of the endogenous 
variables. 
 

B.   Main Findings 

Parameter estimates and second moments 
 
The last two columns of Table 4 report the mean and standard deviation of the posterior 
distributions for all the parameters. Notice that the habit formation parameter is estimated to 
be 0.42, a value somewhat smaller than that suggested by Christiano, Eichenbaum, and 
Evans (2003) or Smets and Wouters (2003b). The parameter that measures the elasticity of 
the marginal disutility of hours, φ, is estimated to be 0.80, which is close to values usually 
obtained or calibrated in the literature. 
 
The average duration of price contracts implied by the point estimate of the price stickiness 
parameter lies slightly above two quarters. We view this estimate as a “moderate” amount of 
price stickiness in the economy. Perhaps most surprising is the low degree of wage stickiness 
uncovered by our estimation method. Such an implausible low estimate may suggest that the 
Calvo model is not the best formalism to characterize wage dynamics.45 
 
The price indexation coefficient is estimated at a low value, 0.04, suggesting that the pure 
forward-looking model is a good approximation to inflation dynamics, once we allow for 
autoregressive price markup shocks. On the other hand, indexation in wage setting is more 
important, with a posterior mean of 0.42. The coefficients of the interest rate rule suggest a 
high degree of interest rate smoothing, 0.69, a small response of the interest rate to output 
growth fluctuations, and a coefficient of the response of the interest rate to inflation of 1.33, 
which corresponds to a "lean against the wind" monetary policy. The estimated processes for 
the shocks of the model suggest that all of them are highly auto correlated, with parameters 
between 0.95 for the price markup shock to 0.91 for the wage markup shock.46 
 

                                                 
45 Rabanal (2003) finds a similar result for an estimated DSGE model that is only slightly 
different from the one used here. 

46 We have also conducted some subsample stability analysis, splitting the sample into pre-
Volcker years and the Volcker-Greenspan era. While there were some small differences in 
estimated parameters across samples, none of the main conclusions of this section were 
affected. 
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Table 5 displays some selected posterior second moments implied by the model estimates 
and compares them to the data.47 The first two columns present the standard deviation of the 
observed variables, and their counterparts implied by the estimated model. We can see that 
the model does a very good job in replicating the standard deviations of output, inflation, and 
the nominal interest rate. The model also does well in mimicking the unconditional 
correlation between the growth rates of hours and output: in the data it is 0.75, and in the 
model it is 0.72. However, it overestimates the standard deviation of hours (3.11 percent in 
the data and 4.6 percent in the model) and to a lesser extent the real wage-to-output ratio 
(3.69 percent in the data, 4.44 percent in the model) 
 
The effects of technology shocks 
 
Next we turn our attention to the estimated model's predictions regarding the effects of 
technology shocks.48 Figure 7 displays the posterior impulse responses to a permanent 
technology shock of size normalized to one standard deviation.49 We can observe that the 
model replicates the VAR-based evidence fairly well, in spite of the differences in the 
approach. In particular the estimated model implies a persistent decline in hours in response 
to a positive technology shock, and a gradual adjustment of output to a permanently higher 
plateau. It takes about four quarters for output to reach its new steady-state level. Hours drop 
on impact by about 0.4 percentage points and converge monotonically to their initial level 
afterward.50 
 
The third column of Table 5 reports the second moments of the observed variables 
conditional on technology shocks being the only driving force. The fourth column shows the 
fraction of the variance of each variable accounted for by the technology shock.51 We can see 
that technology shocks do not play a major role in explaining the variability of the five 
observed variables. They explain 22 percent of the variability of output growth, and 6 percent 

                                                 
47 These second moments were obtained using a sample of 10,000 draws from the 500,000 
that were previously obtained with the Metropolis-Hastings algorithm. 

48 A related analysis has been carried out independently by Smets and Wouters (2003b), 
albeit in the context of a slightly different DSGE model. 

49 The posterior mean and standard deviations are based on the same sample that was used to 
obtain the second moments. 

50 A similar pattern of responses of output and hours to a technology shock can be found in 
Smets and Wouters (2003b). 

51 We use the method of Ingram, Kocherlakota, and Savin (1994) to recover the structural 
shocks. This method is a particular case of using the Kalman filter to recover the structural 
shocks. We assume that the economy is at its steady-state value in the first observation, 
rather than assuming a diffuse prior. By construction, the full set of shocks replicate perfectly 
the features of the model. 
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of the variability of inflation. For the rest of variables, including hours, they explain an 
insignificant amount of overall volatility. A key result emerges when we simulate the model 
with technology shocks only: we obtain a correlation between ),( tt ny ∆∆  of -0.49, which 
contrasts with the high positive correlation between the same variables observed in the data. 
 
The last three rows of Table 5 report statistics based on band-pass filtered data. In this case, 
the series of output growth and hours generated by the estimated model (when all shocks 
other than technology are turned off) are used to obtain the (log of) levels of hours and 
output, on which the band-pass filter is applied. Once again we find that technology shocks 
can only account for a small fraction of the variance of the business cycle component of 
output and hours. The conditional correlation between those two variables falls to -0.14, from 
a value of 0.88 for the actual filtered series. 
 
The previous findings are illustrated graphically in Figure 7, which displays the business 
cycle components of log output and log hours associated with technology shocks, according 
to our estimated model. It is apparent that technology shocks explain only a minor fraction of 
output fluctuations. This is even more dramatic when we look at fluctuations in hours, in a 
way consistent with most of the VAR findings. Similar qualitative findings are found in Altig 
and others (2003), Ireland (2003), and Smets and Wouters (2003b), using slightly different 
models and/or estimation methods. 
 
What are the main sources of economic fluctuations? 
 
Which shocks play a more important role in explaining fluctuations in our observed 
variables? In Table 6 we report the contribution of each shock to the total variance of each 
variable implied by our model estimates. The shock that explains most of the variance of all 
variables in our framework is the preference shock, which we can interpret more broadly as a 
(real) demand shock. It explains above 70 percent of the variance of hours, the real wage-
output ratio, and the nominal interest rate. The preference shock also explains 57 percent of 
the variance of output, and 36 percent of the variance of inflation. On the other hand, the 
monetary shock only explains approximately 5 percent of output growth and the nominal 
interest rate, and is an important determinant of inflation variability, contributing to 
27 percent of total volatility. Price and wage markup shocks both have some importance in 
explaining the volatility of all variables, with contributions to the variance that range from 
7 percent to 17 percent. Overall, the picture that emerges from Table 6 is that preference 
shocks are key to explain the volatility of all variables. The monetary and technology shocks 
have some importance in the sense that they explain about 20 percent of the variance in one 
of the variables (output growth in the case of technology, inflation in the case of monetary 
shocks), but their contribution to the remaining variables is very small. The price and wage 
markup shocks explain a small fraction of variability in all variables. 
 
Structural explanations for the estimated effects of technology shocks 
 
Finally, we examine which features of the model are driving the negative comovement 
between hours and output in response to technology shocks. In Table 7 we present the 
correlation between the business cycle components of output and hours that arises under 
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several counterfactual scenarios. For each scenario we shut down some of the rigidities of the 
model and simulate it again while keeping the same value for the remaining parameter 
estimates. 
 
Three features of the model stand out as natural candidates to explain the negative correlation 
between output and hours: sticky prices, sticky wages, and habit formation. When we shut 
down each of those we find that the remaining rigidities still induce a large and negative 
conditional correlation. For instance, in the second row we can see that assuming flexible 
wages (θw=ηw=0) delivers basically the same correlations. This result is not surprising since 
nominal wage rigidities do not appear to be important given the parameter estimates. When 
we assume flexible prices but keep sticky wages and habit formation, things do not change 
much either. 
 
A particular scenario would seem to be of special interest: one with flexible prices and 
wages, and habit formation. In that case, once again, a similar pattern of correlations 
emerges. A similar result is obtained by Smets and Wouters (2003b), who interpret it as 
evidence favorable to some of the real explanations found in the literature. Yet, when we turn 
off habit formation in our estimated model but keep nominal rigidities operative, we find a 
qualitatively similar result: the conditional and unconditional correlations between hours and 
output have the same pattern of signs as that observed in the data. It is only when we shut 
down all rigidities (nominal and real) that we obtain a positive correlation between hours and 
output, both conditionally and unconditionally, and in a way consistent with the predictions 
of the basic RBC model. 
 
Finally, we consider a calibration in which the central bank responds exclusively to inflation 
changes, but not to output. Some authors have argued that the negative comovement of 
output and hours may be a consequence of an attempt by the monetary authority to 
overstabilize output. Our results suggest that this cannot be an overriding factor: when we set 
the coefficient on output growth equal to zero (but keeping both habit formation and nominal 
rigidities operative) we still obtain a negative conditional correlation between hours and 
output. 
 
In light of the previous findings we conclude that both real rigidities (habit formation, in our 
model) and nominal rigidities (mostly sticky prices) appear to be relevant factors in 
accounting for the evidence on the effects of technology shocks. Interestingly, and by way of 
contrast, both nominal and real rigidities seem to be required in order to account for the 
empirical effects of monetary policy shocks (see, e.g., Christiano, Eichenbaum, and Evans, 
2003) or the dynamics of inflation (e.g., Galí and Gertler, 1999). 
 

VI.   CONCLUSIONS 

In this paper we have reviewed recent research efforts that seek to identify and estimate the 
role of technology as a source of economic fluctuations in ways that go beyond the simple 
unconditional second-moment matching exercises found in the early RBC literature. The 
number of qualifications and caveats of any empirical exercise that seeks to provide an 
answer to the above questions is never small. Furthermore, and as is often the case in 
empirical research in economics, the evidence does not speak with a single voice, even when 
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similar methods and data sets are used. Those caveats notwithstanding, the bulk of the 
evidence reported in the paper raises serious doubts about the importance of changes in 
aggregate technology as a significant (or, even more, a dominant) force behind business 
cycles, in contrast with the original claims of the RBC literature. Instead it points to demand 
factors as the main force behind the strong positive comovement between output and labor 
input measures that is the hallmark of the business cycle. 
 

VII.   ADDENDUM: A RESPONSE TO ELLEN MCGRATTAN 

In her comments to the present paper, Ellen McGrattan (2004) dismisses the evidence on the 
effects of technology shocks based on structural vector autoregressions (SVARs) that rely on 
long-run identifying restrictions. The purpose of this addendum is to explain why we think 
McGrattan's analysis and conclusions are misleading. Since some of her argument and the 
evidence she provides is based on her recent working paper with Chari and Kehoe, our 
discussion often refers directly to that paper (Chari, Kehoe, and McGrattan (2004; 
henceforth, CKM). 
 
Our main point is easy to summarize. McGrattan and CKM study a number of model 
economies, all of which predict that hours should rise in response to a positive technology 
shock. Yet, when they estimate a SVAR on data generated by those models, the resulting 
impulse responses show a decline in hours in response to such a shock (with one exception, 
to be discussed below). 
 
McGrattan presents her findings and those in CKM as an illustration of a general flaw with 
SVARs. But we find that conclusion unwarranted. What McGrattan and CKM really show is 
that a misidentified and/or misspecified SVAR often leads to incorrect inference. As 
McGrattan herself acknowledges, in her example of a "standard" RBC model (as well as in 
all but one of the examples in CKM) the assumptions underlying the data generating model 
are inconsistent with the identifying assumption in the VAR: technology is stationary, or 
non-technology shocks have a permanent effect on productivity, or the order of integration of 
hours is wrong.52 In those cases the finding of incorrect inference is neither surprising nor 
novel, since it restates points that have already been made in the literature.53 Furthermore, 
that conclusion should be contrasted with that of Erceg, Guerrieri, and Gust (2004; EGG, 
henceforth), who show that when the SVAR is correctly specified and the identifying 
restrictions are satisfied by the underlying data-generating models, the estimated responses to 
technology shocks match (at least qualitatively) the theoretical ones. 
 
                                                 
52 In the one case where the VAR is identified correctly, it yields the correct qualitative 
responses, though with some quantitative bias resulting from the inability to capture the true 
dynamics with a low-order VAR. This result has been shown in Erceg, Guerrieri, and Gust 
(2004). 

53 See Cooley and Dwyer (1998) and Christiano, Eichenbaum and Vigfusson (2003), among 
others. 
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We think that, when properly used, SVARs provide an extremely useful guide for developing 
business cycle theories. Evidence on the effects of particular shocks that is shown to be 
robust to a variety of plausible identification schemes should not be ignored when developing 
and refining DSGE models that will be used for policy analysis. On the one hand, that 
requirement imposes a stronger discipline on model builders than just matching the patterns 
of unconditional second moments of some time series of interest, the approach traditionally 
favored by RBC economists. On the other hand, it allows one to assess the relevance of 
alternative specifications without knowledge of all the driving forces impinging on the 
economy.54 
 
Another finding in CKM that may seem striking to many readers is that their business 
accounting framework produces a rise in hours in response to a positive technology shock, in 
contrast with the evidence summarized in Section II of our paper. Below, we conjecture that 
such a result hinges critically on treating the conventional Solow residual as an appropriate 
measure of technology, in contrast to the wealth of evidence suggesting the presence of 
significant procyclical error in that measure of technology. By way of contrast, most of the 
SVAR-based findings on the effects of technology shocks overviewed in the present paper 
rely on identifying assumptions that are much weaker than those required for the Solow 
residual to be a suitable measure of technology. 
 
Next, we elaborate on the previous points, as well as on other issues raised by McGrattan's 
comment. First, we try to shed some light on why the estimated SVARs do not recover the 
model-generated impulse responses. Second, we provide a conjecture about why CKM's 
estimated model would predict an increase in hours in response to a positive technology 
shock, even if the opposite were to be true. Finally, we comment on CKM's proposed 
alternative to SVARs. 
 

A.   Why Does the SVAR Evidence Fail to Match the McGrattan and CKM Models' 
Predictions? 

The reason why the SVAR estimates reported by McGrattan fail to recover the joint response 
of output and hours implied by her RBC model should not be viewed as reflecting an 
inherent flaw in the SVAR approach. Instead it is most likely a consequence of 
misspecification and misidentification of the SVAR used. 
 
First, and most flagrantly, the “geometric growth” specification of technology assumed in the 
McGrattan exercise implies that technology shocks will only have temporary effects on labor 
productivity. A maintained assumption in Galí (1999) and in Section II.A above, is the 
existence of a unit root in the technology process, underlying the observed unit root in 
productivity. It is clear that if a researcher holds an inherent belief in the stationarity of 
technology she will not want to use that empirical approach to estimate the effects of 
technology shocks. We find the notion that technology shocks don't have permanent effects 
                                                 
54 See Christiano, Eichenbaum, and Vigfusson (2003) for an illustration of the usefulness of 
that approach. 
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hard to believe, but we cannot offer any proof (though we have provided suggestive evidence 
along those lines in Section III.A). In any event, we find it useful to point out that the 
literature contains several examples, reviewed in Section II, that do not rely on the unit root 
assumption, and that yield results similar to those in Galí (1999).55 
 
In principle, CKM appear to overcome the previous misidentification problem by using as a 
data-generating mechanism an RBC model that assumes a “unit root” in technology. They 
consider two versions of that model (“preferred” and “baseline”), which we discuss in turn. 
Their "preferred" specification fails to satisfy the identifying restriction of the VAR in 
another important dimension: because of the endogeneity of technology in their model 
(reflected in the non-zero off-diagonal terms in the process describing the driving forces), 
shocks that are non-technological in nature are going to have an effect on the level of 
technology and, hence, on productivity. As a result, the identification underlying the SVAR 
will be incorrect and inference will be distorted. 
 
The two misidentification problems just discussed should not affect the CKM “baseline” 
specification, for technology in the latter is assumed to follow an exogenous random walk 
process. Yet, when we look at the properties of that model we uncover a misspecification 
problem in the VAR used. In a nutshell, and as it is the case for most RBC models found in 
the literature, CKM's baseline model implies that hours worked follow a stationary process, 
though they estimate the SVAR using first-differenced hours. The potential problems 
associated with that misspecification were originally pointed out by CEV (2003) and have 
been discussed extensively in Section III of the present paper.56 
 
Interestingly, CKM provide one example (the “exception” we referred to above) in which the 
estimated SVAR satisfies both the key long-run identifying restriction (technology is 
exogenous and contains a unit root) and is correctly specified (hours are introduced in 
levels). In that case, and not surprisingly, the SVAR makes a correct inference: hours are 
estimated to rise in response to a technology shock, as the model predicts. While CKM 
acknowledge that fact, they instead focus on the finding that the estimated impulse response 
shows a non-negligible bias. This is an interesting point, but it is not central to the 
controversy regarding the effects of technology shocks: the latter has focused all along on the 
estimated sign of the comovement of output and hours, not on the size of the responses. Nor 
is it novel: it is one of the two main findings in EGG, who already point out and analyze the 
role played by the slow adjustment of capital in generating that downward bias. 
 
Unfortunately, neither McGrattan nor CKM emphasize EGG's second main finding, which is 
highly relevant for their purposes: using both a standard RBC model and a New Keynesian 
                                                 
55 See BFK (1999), Francis, Owyang, and Thedorou (2003), and Pesavento and Rossi (2004). 

56 CKM's discussion of that problem is somewhat obscured by their reference to “the 
insufficient number of lags in the VAR,” as opposed to just stating that hours are over-
differenced. See also Marcet (2004) for a more general discussion of the consequences (or 
lack thereof) of overdifferencing. 
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model with staggered wage and price setting as data-generating mechanisms, they conclude 
that the estimated responses to a technology shock, using the same SVAR approach as in 
Galí (1999), look like the true responses to that shock in both models, at least from a 
qualitative viewpoint (leading to a rise in hours in the former case, and to a drop in the latter, 
in a way consistent with the models' predictions). 
 

B.   Why Does the CKM Accounting Framework Predict a Rise in Hours? 

The framework used by McGrattan in Section II.2 of her comment is unlikely to be 
recognized by most macroeconomists as a “standard RBC model,” the title of the subsection 
notwithstanding. Instead, it consists of a version of the business cycle accounting framework 
originally developed in CKM. That framework consists of a standard RBC model with four 
driving forces (or “wedges,” in their terminology). One of those driving forces, which enters 
the production function as a conventional productivity parameter, is interpreted as a 
technology shock. Two other driving forces are broadly interpreted as a labor market and an 
investment wedge. The fourth is government spending. After assuming functional forms for 
preferences and technology as well as a conventional calibration of the associated parameters 
conventional in the RBC literature, CKM estimates a VAR model for the four driving forces 
using time series for output, hours, investment, and government consumption. 
 
Let us put aside some of the issues regarding the suitability of SVARs discussed in the 
previous section to turn to a different question: Why does the estimated CKM accounting 
framework predict an increase in hours in response to a positive technology shock? The 
interest of the question may be puzzling to some readers: after all, the CKM model looks like 
a standard RBC model augmented with many shocks. But that description is not accurate in a 
subtle, but important dimension: the disturbances/wedges in the CKM accounting framework 
are not orthogonal to each other, having instead a rich dynamic structure. Thus, nothing 
prevents, at least in principle, some of the nontechnology wedges from responding to a 
technology shock in such a way as to generate a negative comovement between output and 
hours in response to that shock. After all, the increase in markups following a positive 
technology shock is precisely the mechanism through which a model with nominal rigidities 
can generate a decline in hours. 
 
Here, we can only speculate on the sources of the sign of the response of hours predicted by 
the CKM model. But a cursory look at the structure of the model, and the approach to 
uncovering its shocks, points to a very likely candidate for that finding: the CKM measure of 
the technology parameter corresponds to the gap between (the log of) GDP and a weighted 
average of (the log of) capital and (the log of) hours, with the weights based on average 
income shares. In other words, the CKM measure of technology corresponds for all practical 
purposes to the conventional Solow (1957) residual. In adopting that approach to 
identification of technology, CKM are brushing aside two decades of research pointing to the 
multiple shortcomings of the Solow residual as a measure of short-run variations to 
technology, from Hall (1988) to BFK (1999). In the absence of any adjustments for market 
power, variable utilization of inputs, and other considerations, the Solow residual, as an 
index of technological change, is known to be ridden with a large (and highly procyclical) 
measurement error. 
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To illustrate this, consider an economy with a constant technology (and no capital) in which 
output and (measured) hours are linked according to the following reduced-form equilibrium 
relationship: 
 

.α tt ny =  
 
CKM's index of technology zt would have been computed using the Solow formula as: 
 

,ttt snyz −=  
 
where s is the average labor income share. Under Solow's original assumptions, s=α. But the 
existing literature provides a number of compelling reasons why, in practice, we will almost 
surely have α>s. It follows that CKM's technology index can be written as: 
 

,)α( tt nsz −=  
 
thus implying a mechanical positive correlation between measured technology and hours. 
 
The previous example is admittedly overstylized, but we think illustrates the point clearly. 
Thus, it should come to no surprise if the estimated responses of the different wedges to 
innovations in that error-ridden measure of technology were to be highly biased, and may 
indeed resemble the responses to a demand disturbance. In fact, the use of VARs based on 
either long-run restrictions (as in Galí, 1999) or purified Solow residuals (as in BFK, 1999), 
as well as the approach to model calibration in Burnside and Eichenbaum (1996) was largely 
motivated by that observation. 
 

C.   Some Agreement 

We cannot conclude this addendum without expressing our agreement with CKM's proposed 
“alternative approach” to identification and estimation of technology (and other shocks), 
based on the specification of a “state representation and a set of identifying assumptions that 
nests the class of models of interest...” and which can be “conveniently estimated with 
Kalman filtering” techniques. But this is precisely the approach that we have pursued in 
Section V of the present paper, following the footsteps of a number of authors referred to in 
that section (including the second author of the present paper). 
 
In her comment, McGrattan criticizes the particular model that we chose to implement that 
approach (which she refers to as the “triple-sticky” model) on the grounds that it abstracts 
from capital accumulation. But our goal was not to develop a full-fledged model, 
encompassing all relevant aspects of the economy, but just to provide an illustration of a 
potentially fruitful approach to analyzing the role of different frictions in shaping the 
estimated effects of technology shocks. Fortunately, other authors have provided a similar 
analysis using a richer structure that includes endogenous capital accumulation, among many 
other features. The models used in that literature allow (but do not impose) all sorts of 
frictions in a highly flexible way, and nest the standard RBC model as a particular case. Most 
important for our purposes here, some of those papers (see, e.g., Smets and Wouters, 2003b) 
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have analyzed explicitly the effects of technology shocks implied by their estimated models. 
In a way consistent with our findings above, those effects have been shown to imply a 
negative response of hours to a positive technology shock. Unfortunately, McGrattan reports 
no comparable evidence for her “triple-sticky model with investment,” though we conjecture 
that the latter would imply a similar response. 
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Table 1. The Effects of Technology Shocks on Output and Hours 
in the Nonfarm Business Sector 

 
 
 

 
Source: Authors’ calculations. 

 Contribution to: Conditional Impact on n and y: 
 Var(y) Var(n) Corr(y,n) Sign Significance 

      
Per Capita Hours      
      
Difference 0.07 0.05 -0.08 -  / + yes / yes 
      
Level 0.37 0.11 0.80 + / + no / yes 
      
Detrended 0.07 0.05 -0.11 - / + yes / yes 
      
      
Total Hours      
      
Difference 0.06 0.06 -0.03 - / + yes / yes 
      
Level 0.10 0.36 0.80 - / - yes / no 
      
Detrended 0.15 0.36 0.80 - / 0 yes / no 
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Table 2. The Effects of Technology Shocks on GDP and Employment 

 
Source: Authors’ calculations. 

 Contribution to: Conditional Impact on n and y: 
 Var(y) Var(n) Corr(y,n) Sign Significance 

      
Employment Rate      
      
Difference 0.31 0.04 0.40 -  / + yes / yes 
      
Level 0.03 0.19 -0.30 - / + yes / no 
      
Detrended 0.15 0.04 -0.43 - / + yes / yes 
      
      
Total 
Employment 

     

      
Difference 0.21 0.03 -0.40 - / + yes / yes 
      
Level 0.09 0.08 -0.72 - / + yes / yes 
      
Detrended 0.09 0.09 -0.68 - / + yes / no 
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Table 3. Investment-Specific Technology Shocks: The Fisher Model 

 
Source: Authors’ calculations. 

 N-Shocks I-Shocks 
 Contribution to:  Contribution to:  
 Var(y) Var(n) Corr(y,n) Var(y) Var(n) Corr(y,n) 

       
Per Capita Hours       
       
Difference 0.06 0.06 -0.09 0.22 0.19 0.94 
Level 0.12 0.02 0.16 0.62 0.60 0.96 
Detrended 0.08 0.07 -0.03 0.10 0.09 0.94 
       
Total Hours       
       
Difference 0.07 0.06 0.05 0.16 0.14 0.94 
Level 0.05 0.15 0.33 0.82 0.78 0.97 
Detrended 0.10 0.28 0.62 0.09 0.08 0.93 
       
Employment Rate       
       
Difference 0.21 0.05 0.08 0.19 0.13 0.93 
Level 0.08 0.08 -0.32 0.86 0.89 0.95 
Detrended 0.06 0.17 -0.11 0.12 0.10 0.92 
       
Total Employment       
       
Difference 0.19 0.06 -0.05 0.10 0.06 0.90 
Level 0.04 0.16 -0.25 0.64 0.52 0.96 
Detrended 0.04 0.20 0.05 0.12 0.09 0.90 

       



 - 48 - 

Table 4. Prior and Posterior Distributions 
 

 Prior Distribution Posterior Distribution 
Parameter   Mean s.d. Mean s.d. 
b Uniform(0,1) 0.50 0.289 0.42 0.04 
ϕ       Normal(1,0.25) 1.00 0.25 0.80 0.11 

pθ  Uniform(0,0.9) 0.45 0.259 0.53 0.03 
wθ     Uniform(0,0.9) 0.45 0.259 0.05 0.02 
pη   Uniform(0,1) 0.50 0.289 0.02 0.02 
wη  Uniform(0,1) 0.50 0.289 0.42 0.28 
rρ       Uniform(0,0.97) 0.485 0.284 0.69 0.04 
yφ  Normal(0.5,.125) 0.50 0.13 0.26 0.06 
πφ  Normal(1.5,0.25) 1.50 0.25 1.35 0.13 
gρ       Uniform(0,0.97) 0.485 0.284 0.93 0.02 
uρ       Uniform(0,0.97) 0.485 0.284 0.95 0.02 
vρ       Uniform(0,0.97) 0.485 0.284 0.91 0.01 
zσ  Gamma(25,0.0001) 0.0025 0.0005 0.003 0.000 
aσ     Gamma(25,0.0004) 0.01 0.002 0.009 0.001 
gσ    Gamma(16,0.00125) 0.02 0.005 0.025 0.0024 
uσ    Gamma(4,0.0025) 0.01 0.005 0.011 0.001 
vσ     Gamma(4,0.0025) 0.01 0.005 0.012 0.001 

 
Source: Authors’ calculations. 
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Table 5. Second Moments of Estimated DSGE Model 

 
Source: Authors’ calculations. 

 

Original Data  
  

Standard Deviations (%) 
  

 Data Model 
Technology 
Component 

Contribution to 
Variance of Each 

Variable by 
Technology Shocks 

Output growth 1.36 1.27 0.60  22.3  
     
Inflation 0.72 0.73 0.18 6.0  
     
Interest rate 0.72 0.67 0.04 0.3 
     
Hours 3.11 4.60 0.42 0.8  
     
Real wage-output 3.69 4.44 0.13 0.1 
     
Correlation between (dy,dn) 0.75 0.72 -0.49  

     

Band-Pass Filtered Data 
     
Output 2.04 2.04 0.87 18.2  
     
Hours 1.69 1.69 0.26 2.3  
     
Correlation between (y,n) 0.88 0.88 -0.14  
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Table 6. Variance Decomposition from Estimated DSGE Model 
(In percent) 

 

 
Source: Authors’ calculations. 
 

 Shocks 

  

 
Monetary 
 

Technology 
 

Preference 
 

Price markup Wage 
markup 

      
Output growth 4.8  22.3  57.1  8.0  7.1  
      
Inflation 27.1  6.1  36.3  13.7 14.7  
      
Nominal rate 5.0  0.4  72.3  9.8  11.8  
      
Hours 0.4  0.8  70.0  17.6  9.6  
      
Real wage-output 0.1  0.1  73.6  12.0  12.8  
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Table 7. Technology-Driven Fluctuations in Output and Hours: 
Correlations Implied by Alternative Model Specifications (BP-Filtered Data) 

 
     
Original    -0.14 
    
Flexible wages   -0.16 
    
Flexible prices   -0.18 
   
No habit formation  -0.29 
   
Flexible prices and wages  -0.21 
  
No frictions (RBC) 0.22 
   
Inflation targeting   -0.15 

 
Source: Authors’ calculations. 



 - 52 - 

Figure 1. Business Cycle Fluctuations in Output and Hours 
 

 
 
Note: Solid line, output; dashed line, hours. 
Sources: Bureau of Labor Statistics; and authors’ calculations. 



 - 53 - 

Figure 2. The Estimated Effects of Technology Shocks 
(Difference specification, sample period 1948:01–2002:04) 

 

 
Sources: Bureau of Labor Statistics; and authors’ calculations. 
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Figure 3. Sources of Business Cycle Fluctuations 
(Difference specification, sample period 1948:01–2002:04) 

 

 
 

Note: Solid line, output; dashed line, hours. 
Sources: Bureau of Labor Statistics; and authors’ calculations. 
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Figure 4. Capital Income Tax Rates 
 

 
Sources: McGrattan (1994) and Jones (2002). 
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Figure 5. Technology Shocks: VAR versus BFK 
 

 
 

Note: Solid line, VAR technology measure; dashed line, BFK technology measure. 
Sources: Authors’ calculations; and Basu, Fernald, and Kimball (BFK,1999). 
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Figure 6: Hours Worked 
(In natural logarithms, 1948–2002) 

 

 
Sources: Authors calculations; and Basu, Fernald, and Kimball (BFK, 1999). 
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Figure 7. Posterior Impulse Responses to a Technology Shock, Estimated DSGE Model 
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Source: Authors’ calculations. 
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Figure 8. The Role of Technology Shocks in U.S. Postwar Fluctuations: Model-Based Estimates 
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Note: solid line, technology component (BP-filtered); dashed line, U.S. data (BP-filtered). 
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