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underlying fundamentals. Markets expected oil prices to remain volatile and jumpy, and with higher 
probabilities, to rise, rather than fall, above the expected mean. 
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I.   INTRODUCTION 

Under the combination of an expanding world demand for crude oil and a tight world crude 
supply, crude oil prices have been on a run-up spree in recent years. By breaking a record 
level of US$78.30 per barrel (bl) on August 7, 20062 and remaining comfortably in the 
neighborhood of US$75/bl during part of 2006, crude oil prices had risen to unexpected 
territory and seemed boundless. While developments in crude oil prices were being followed 
closely by economic agents, including traders, investors, speculators, and policy makers, not 
much was known about the stochastic processes driving these prices. Contrary to stock 
market indices, for which an abundant and advanced modeling literature now exists, crude oil 
prices, in spite of their importance, have not been subject to extensive modeling research. 
Knowledge of their underlying stochastic process is highly relevant not only for pricing 
derivatives and hedging, but also for policy making and short-term forecasting.  
 
This paper addressed the dynamics of daily oil prices during January 2, 2002–July 7, 2006.3 
Many striking facts regarding oil markets can be stated at the outset. Foremost, world oil 
demand pressure kept increasing during this period, causing oil prices to rise by more than 
threefold, from US$21.13/bl on January, 2002 to US$73.76/bl on July, 7, 2006.4 Second, the 
noted ascent in oil prices was not monotonic or smooth; oil prices rose, often to a new record, 
retreated temporarily, then resumed their move to higher record; their movements were 
dominated by high intensity jumps, indicating that oil markets were constantly out-of-
equilibrium. Third, oil price volatilities were excessively high. Measured by the implied 
volatility, volatility was in the range of 30 percent, implying that oil markets were facing big 
uncertainties regarding future price developments and were sensitive to small shocks and to 
news. Finally, market expectations, extracted from crude oil call and put option prices, were 
right-skewed. More specifically, markets held higher probabilities for further price increases 
than price decreases. Moreover, markets seemed to expect large upward jumps in oil prices, 
as reflected by the price and volume of options at strikes in the range of US$75–US$85/bl. 
 
When modeled as a jump-diffusion (J-D) process, oil price dynamics were dominated by the 
discontinuous Poisson jump component compared to the continuous Gaussian diffusion 
component, showing that oil markets were constantly out-of-equilibrium during the sample 
period and were sensitive to demand and supply shocks and to news. While the variance of 
the diffusion component was high and significant, it was surpassed by a still higher and 
significant variance of the jump component. Both variances, together, illustrated the high 

                                                 
2 When BP shut down the Prudhoe Bay field in Alaska for pipeline maintenance. 
3 Futures' contracts on Brent, three-month delivery; the sample contains 1130 observations. The source is 
Reuters.  
4 The recessionary effect of high oil prices has been studied by Hamilton (1983). A considerable literature 
thereafter has dealt with the relationship between oil shocks and real GDP. By causing a general increase in the 
price level, an oil shock, ceterus paribus, reduces real cash balances and therefore aggregate demand. 
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volatility of the oil markets. The drift of the diffusion component was, however, very high 
and significant, indicating that oil prices were strongly influenced by an upward trend. The 
mean of the jump component was negative; more specifically, sharp upward jumps in oil 
prices had a temporary restraining effect on oil demand and were followed by a short-lived 
sequence of price retreats. The mean of the jump component was, however, outweighed by 
the drift of the diffusion component which kept prices on a rising trajectory. 
 
Oil prices were also modeled as a Levy process (LP) with a variance-gamma (VG) 
distribution. The findings were similar to the J-D model. The drift component was positive 
and highly significant, establishing that oil prices were constantly pulled by an upward trend. 
The variance of the VG distribution was significant and high. The parameter controlling for 
the jump process was high and significant, indicating that oil prices were largely dominated 
by the jump component and oil markets were constantly out-of-equilibrium. The skewness of 
the VG distribution was negative, indicating that large upward moves in oil prices triggered a 
temporary depressing effect on world oil demand, translated into a temporary sequence of 
small negative jumps in oil prices. However, the upward momentum outweighed the small 
negative jumps. Turning to market expectations, the implied risk-neutral distribution from 
call and put option prices, assuming a VG process, showed that market participants held 
higher probabilities for oil prices to rise, rather than fall, above the futures price, and 
expected oil prices to remain volatile and dominated by a jump process.      
 
The paper is structured as follows. Section I is an introduction. Section II describes the time 
series properties of oil prices and the empirical distribution of oil price returns. Section III 
models oil prices as a Merton (1976) J-D process. In Section IV, oil price returns are 
modeled as a Levy process of the variance-gamma type (Madan and Milne, 1991; and Madan 
et al., 1998). Section V discusses option pricing in the Fourier space (Carr and Madan, 1999). 
Section VI presents oil price density forecast based on option prices. Section VII concludes. 
 

II.   EMPIRICAL ASPECTS OF FUTURES OIL PRICES DURING 2002–06 

A.   Recent Trends and Descriptive Statistics 

With a view to concentrating on recent oil prices dynamics, the sample period was chosen to 
be January 2, 2002–July 7, 2006, containing 1130 daily observations. Figure 1a illustrates the 
daily behavior of oil prices. It clearly shows that oil prices were moving upward, and have 
become forecastable. After each peak, oil prices seemed to retreat temporarily then re-
trended toward a higher peak. Let tS  be the oil futures price in US$/bl. An augmented 
Dickey-Fuller test (Table 1) indicated that tS  possessed a unit root; it was pulled by an 
upward trend, showing no sign for mean reversion. Changes in tS , defined as 1t t tS S S −∆ = − , 
were, however, stationary. Based on the unit-root test, the dynamics of the oil process were 
represented by a simple auto-regression of order two (AR2) which yielded good fit and 
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highly significant coefficients. The graph of this auto-regression (Figure 1b) shows that the 
AR2 process closely tracks daily oil prices during the sample period.  

Figure 1. Daily Oil Futures Prices, January 2, 2002-July 7, 2006.

Source: Reuters.

Figure 1a: Observed Daily Oil Futures Prices, Jan. 2, 2002-July 7, 2006
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Figure 1b: Actual and Fitted Oil Price, Jan 2, 02-July 7,06
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Table 1. Time-Series Properties of the Oil Price 

 
Augmented Dickey-Fuller Unit-Root Test on Oil Price. 

Null Hypothesis: tS has a unit root. 
Augmented Dickey-Fuller test statistic=-0.52; probability value=0.88. 

Test critical values: 1% level (-3.44); 5% level (-2.86); 10% level (-2.57). 
Null Hypothesis: 1t t tS S S −∆ = −  has a unit root. 

Augmented Dickey-Fuller test statistic=-35.98; probability value=0.00. 
Test critical values: 1% level (-3.44); 5% level (-2.86); 10% level (-2.57). 

Oil Price as a Second-Order Auto-Regressive (AR2) Process 

1 231.3 2.3 0.98
0.93 0.07 0.09t t tt t t

S S S− −= = =
= + + , 2R =0.99, DW=2.05. 

 
These price dynamics translated the underlying fundamentals of the oil markets.5 In spite of 
rising prices, world crude oil supply was rigid at about 84 million barrels per day (mbd) for 
most of the sample period.6 World crude oil demand was, however, strongly stimulated by a 
world economy growing at 4–5 percent per year during 2002–06, excessively low nominal 
interest rates, and sharply depreciated U.S. dollar.7 8 In addition, world crude oil demand is 
known to be highly price inelastic in the short term. Demand price elasticity ranges between -
0.01 and -0.04 (See IMF WP/06/62). More specifically, significant increase in oil price 
would have only a small negative impact on oil demand. World crude oil demand is also 
known to have high income elasticity. If the technical coefficient between crude oil and real 
GDP is fixed in the short tem, then income elasticity could be close to one. Econometric 
estimates, however, show that short-run income elasticity ranges between 0.2 and 0.4. The 
rigidity of crude supply, combined with an expanding world demand for crude oil, has 
resulted in growing demand-supply imbalances. Given the price inelasticities of both oil 
demand and supply, any small excess demand (supply) for oil would require large changes in 
oil prices to clear oil markets.  
 

                                                 
5 Investors and speculators, through opening and closing positions on the futures markets, affect price dynamics 
and increase price volatility. However, their role is limited to the short run. Given the sample period under 
study, underlying fundamentals were key determinants of the oil price process. Incidentally, the IMF World 
Economic Outlook, September 2006, could not establish evidence for a long-term effect of speculation on oil 
prices.  

6 See, for instance, The International Energy Agency, Oil Market Report, September, 2006. This figure includes 
natural gas liquids. 

7 World economy was reported to have grown at about 4-5 percent in real terms during 2002-2006. See 
International Monetary Fund, World Economic Outlook, September, 2006. 

8 The relationship between oil prices and economic fundamentals was studied in an IMF working paper 
(WP/06/62). Besides estimating demand and supply functions for crude oil, the paper analyzed the influence of 
monetary policy on crude oil prices. 
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More about oil price dynamics is uncovered by analyzing the log-price return defined as 
1log log logt t t tx S S S −= ∆ = − . The graph for these changes (Figure 2) shows that large 

jumps in crude oil prices were frequent and had a relatively high probability. Although the 
mode was around 1–2 percent, daily changes in the range of 5–7 percent were not 
uncommon.9 The empirical distribution had a large dispersion, with standard deviation 
estimated at 2.29 (annualized to 36.3 percent). The distribution was left-skewed, implying 
that downward jumps of smaller size were more frequent than upward jumps of larger size; 
as the mean was positive and high, smaller jumps were outweighed by larger jumps. The 
distribution had also fat tails, meaning that large jumps tended to occur more frequently than 
in the normal case. These empirical findings about daily oil futures prices were typical of 
financial time series as noted in Clark (1973), Fama (1965), and Mandelbrot (1963). These 
facts suggested modeling the oil price process as a jump-diffusion or, in a more general way, 
as a Levy process (Cont and Tankov, 2004).  
 

Figure 2. Daily Crude Oil Price Returns Distribution, Jan 2, 02-July 7, 06. 
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Descriptive statistics: mean = 0.116; standard deviation=2.29; skewness=-0.39; kurtosis=4.79; Jarque-
Bera normality statistics=179.3, probability-value=0.0. 

 
B.   Oil Price Time-Varying Volatility  

Price volatility is an important parameter in financial markets to which market participants 
pay a great deal of attention. Volatility measures uncertainty and also sensitivity of prices to 
news and shocks, and is a key parameter in option pricing. Two types of volatilities are 
studied here: the implied volatility from crude oil call options,10 and volatility computed by a 
GARCH (1, 1) model. Both measures point to high volatility in futures prices.  
 
Data on implied volatility for Brent futures options for August 2005–June 2006 indicated that 
oil price volatility was high (Figure 3a). While averaging 30 percent, volatility often surged 

                                                 
9 The frequency of jumps exceeding 3± percent was estimated from the sample at 23 percent. 

10 Implied volatility is the volatility which equates the Black-Scholes (1973) call option pricing formula with the 
call option’s market value. 
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Figure 3. Implied and GARCH (1,1) Volatility.

Source: Bloomberg for Implied Volatility.

Figure 3a. Crude Oil Futures Implied Volatility, August 05, June 06.
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Figure 3a. Estimated GARCH (1,1) Volatility, Jan 02-July 06.
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to 34–35 percent, indicating that oil markets were experiencing big uncertainty regarding 
expected price developments, and were highly sensitive to small shocks and news. Volatility 
pattern shows volatility clustering during rising pressure on oil prices and volatility decline 
during reduced pressure on oil prices. High volatility increases speculative demand for 
futures contracts, which in turn leads to higher volatility and volatility clustering. 
 
Volatility was also computed using a GARCH model for data on daily oil futures prices 
covering January 2, 2002–July 7, 2006 (Figure 3b). The oil price return was defined as: 

1log log logt t t tx S S S −= ∆ = − .11 The fitting of the GARCH model showed high price 
volatility, periods of volatility clustering, followed by some reversion to a mean volatility 
estimated at 43 percent. GARCH volatility was rising during periods of large price shocks, 
increasing speculation and leading to volatility clustering; it was, however, receding during 
periods of price retreat. It corroborated the observed implied volatility, namely oil markets 
were constantly experiencing large uncertainties and were impacted by frequent shocks. 
 

III.   CRUDE OIL PRICE AS A MERTON JUMP-DIFFUSION PROCESS  

A.   The Stochastic Differential Equation for the Jump-Diffusion Model 

Based on the empirical findings of the previous section, namely the presence of skewness 
and kurtosis in the empirical distribution of oil price returns, an adequate model for oil prices 
would be a jump-diffusion model. In fact, Merton (1976), recognizing the presence of jumps 
in asset prices and for more accurate option pricing, proposed modeling these prices as a 
jump-diffusion process instead of a pure diffusion model. Moreover, it is well-known that 
short-term options have market implied volatilities that exhibit a significant skew across 
strikes. In this connection, Bakshi et al. (1997) argued that pure diffusion based models have 
difficulties explaining the smile effect in short-dated option prices and emphasized the 
importance of adding a jump component in modeling asset price dynamics. In the same vein, 
Bates (1996) noted that diffusion based stochastic volatility models cannot explain skewness 
in implied volatilities, except under implausible values for the model’s parameters. Models 
with jumps generically lead to significant skews for short-term maturities. More generally, 
adding jumps to returns in diffusion based stochastic volatility model, the so-obtained model 
can generate sufficient variability and asymmetry in the short-term returns to match implied 
volatility skews for short-term maturities. 
 

                                                 
11 GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity. A GARCH (1,1) model is 
defined as follows: The mean equation: logt t tx S c ε= ∆ = + , 2~ (0, )t tNε σ  

The conditional variance equation: 2 2 2
1 1t t tσ ω αε βσ− −= + + , where 2 2( )t tEσ ε=  
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Accordingly, the continuous-time stochastic process driving crude oil prices can be stated as 
a J-D process given by a stochastic differential equation 

( )( )exp 1t
t t t

t

dS dt dB J dN
S

α σ= + + −  

tS  denotes the crude oil price, α  is the instantaneous return, and 2σ  is the instantaneous 
variance. The continuous component is given by a standard Brownian motion, tB , distributed 
as ~ (0, )tdB N dt . The discontinuities of the price process are described by a Poisson 
counter tN , characterized by its intensity,λ , and jump size, tJ . The Brownian motion and 
the Poisson process are independent. The intensity of the Poisson process describes the mean 
number of arrivals of abnormal information per unit of time and is expressed as 

[ ]Pr 1tob N dtλ∆ = = , and [ ]Pr 0 1tob N dtλ∆ = = − . When abnormal information arrives, 

crude oil price jumps from tS −  to ( )expt t tS J S −= . The percentage change is measured by 

( )( )exp 1tJ − . The jump size, tJ , is independent of tB  and tN , and is assumed to be normally 

distributed: 2~ ( , )tJ N β δ . Letting ( )logt tX S= and using Ito’s lemma, the log price return 
process becomes 

21
2t t t t t t tdX dt dB J dN dt dB J dNα σ σ µ σ⎛ ⎞= − + + = + +⎜ ⎟

⎝ ⎠
 

where 21
2

µ α σ⎛ ⎞= −⎜ ⎟
⎝ ⎠

.12 The parameter vector associated with the price process is therefore 

( )2 2, , , ,θ µ σ λ β δ= . Discretized over ( )∆+tt, , the model takes the form:  

0

tN

t t i
i

X B Jµ σ
∆

=

∆ = ∆ + ∆ +∑  

Where ( )~ 0,t t tB B B N+∆∆ = − ∆ , and t t tN N N+∆∆ = −  is the actual number of jumps 

occurring during the time interval ( )∆+tt, , and iJ are independently and identically 

distributed as 2~ ( , )iJ N β δ . The log-return, t tx X= ∆ , includes therefore the sum of two 
independent components: a diffusion component with drift and a jump component. Its 
probability density is a convolution of two independent random variables and can be 
expressed as13 

                                                 

12 A solution to this SDE can be written as ( ) 2

0

10 exp
2

TN

T T i
i

S S T B Jα σ σ
=

⎡ ⎤⎛ ⎞= − + +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∑  

13 Ball and Torous (1985) modeled the jump component in Merton’s model as a Bernoulli process. In this 
respect, either one or no abnormal event occurs during the time interval ( )∆+tt, , with Prob[one abnormal 

(continued…) 
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( )
( )

( )
( )

2

2 22 20

( ) 1 exp
! 22

n

i

x nef x
n nn

λ µ βλ
σ δπ σ δ

− ∆∞

=

⎡ ⎤⎛ ⎞− ∆ −∆ ⎢ ⎥⎜ ⎟= −
⎢ ⎥⎜ ⎟∆ +∆ + ⎝ ⎠⎣ ⎦

∑  

With 0,1,2,.......n = . Putting 1=∆ , i.e., the time interval is ( )1, +tt , the density function 
becomes 

( )
( )

( )
( )

2

2 22 20

( ) 1 exp
! 22

n

i

x nef x
n nn

λ µ βλ
σ δπ σ δ

−∞

=

⎡ ⎤⎛ ⎞− −⎢ ⎥⎜ ⎟= −
⎢ ⎥⎜ ⎟++ ⎝ ⎠⎣ ⎦

∑  

 
B.   Alternative Methods for Estimating the Jump-Diffusion Model: Maximum 
      Likelihood, Method of Cumulants, and Method of Characteristic Function 

 
1.  The maximum likelihood method: Let { }Txxxx ,.......,, 21= be an observed sample 
of  log returns, the log-likelihood function can be expressed as: 

( ) ( )2

2 22 2
1 0

1; ln(2 ) ln exp
2 ! 2( )

nT
t

t j

x nTL x T
n nn

µ βλθ λ π
σ δσ δ

∞

= =

⎡ ⎤⎛ ⎞− − −
⎢ ⎥= − − + ⎜ ⎟

⎜ ⎟+⎢ ⎥+ ⎝ ⎠⎣ ⎦
∑ ∑  

Application of the maximum likelihood (ML) method for estimating the J-D model has met 
with difficulties arising mainly from the identification of the jump parameter and instability 
of parameter estimates. Nonetheless, Ball and Torous (1983) applied directly the ML method 
by truncating the number of jumps at 15n = . Ball and Torous (1985) and Jorion (1988) 
applied the ML method by assuming a Bernoulli process for the jump component. While the 
ML estimates achieve the lower bound for Cramer-Rao efficiency criterion, difficulties with 
the likelihood function arising from computational tractability, un-boundedness over the 
parameter space, and instability of parameters, have led researchers to explore alternative 
estimation methods, based essentially on the method of moments. 
 
2.  The method of cumulants (See Annex I): Press (1967) used the method of 
cumulants as described in Kendall and Stuart (1977) to estimate the J-D model. Define the 
characteristic function (CF) of tX as ( ) ( ) ( ) ( )exp expX t t t tu E iuX iuX f X dXφ = =⎡ ⎤⎣ ⎦ ∫ , 

where ( )tf X is the probability density function of tX , u is the transform variable, 

                                                                                                                                                       
event]= ∆λ , Prob[no abnormal event]= ∆− λ1 , and Prob[more than one abnormal event]=0. The density 

function for the log-return becomes: ( ) ( )( ) ( )( )2 2 2, , 1f x N n n Nµ β σ δ λ µ σ λ= ∆ + ∆ + ∆ + ∆ ∆ − ∆  
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and 1 i− = .14 The cumulants of tX , denoted by nκ , 0,1,2,....n = , are the coefficients in the 
power series expansion of the logarithm of the CF of tX , expressed as: 

( ) ( ) ( ) ( ) ( )2

1 2
1

ln 1 ...... ........
! 1! 2! !

n n

n n
n

iu iu iu iu
u

n n
φ κ κ κ κ

∞

=

= = + + + + +∑  

Noting that the CF for the jump-diffusion process is given by:15 

( )
1

2 2 2 2

exp exp 1
2 2X
u uu i u i uσ δφ µ λ β

⎡ ⎤⎛ ⎞⎛ ⎞
= − + + − −⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
; 

It follows that the first four cumulants of the J-D process are 1κ µ λβ= + , 
2 2 2

2κ σ λδ λβ= + + , ( )2 2
3 3κ λβ δ β= + , ( )4 2 2 4

4 3 6κ λ δ β δ β= + + . Obviously, the 

cumulants enable to recover the parameters of the J-D process from sample moments. Press 
(1967), in order to avoid using higher order cumulants, imposed the restriction 0µ = and 

derived the following relations:
2

4 23 34
2

1 1 1

3ˆ ˆ ˆ2 0
2 2

κ κκβ β β
κ κ κ

− + − = , 1ˆ
ˆ
κλ
β

= ,
2

2 3 1

1

ˆˆ
3

κ β κδ
κ
−

= , 

2
2 2 3 11

2
1

ˆˆˆ ˆ 3
κ β κκσ κ β

κβ

⎛ ⎞−
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
. Press’ estimates were often wrong-signed and not plausible. 

Beckers (1981) adopted the same method as Press, however, settingβ , instead ofµ , to zero. 
Using sixth order cumulant, his cumulant equations yielded the following system: 1µ̂ κ= , 

3
4

2
6

25ˆ
3
κλ
κ

= , 2 6

4

ˆ
5
κδ
κ

= , and 
2

2 4
2

6

5ˆ
3
κσ κ
κ

= −  

Beckers’ estimates improved those of Press, yet they were not free of anomalies. Ball and 
Torous (1983), using a Bernoulli, instead of a Poisson, jump process and maintaining 
Beckers’ restriction, i.e. 0β = , derived the following cumulant equations: 1κ µ= , 

2 2
2κ σ λδ= + , 3 0κ = , ( )2

4 3 1κ δ λ λ= − , 5 0κ = , and ( )( )6
6 15 1 1 2κ δ λ λ λ= − − . Again by 

equating with population cumulants, they obtained estimators µ̂ , λ̂ , 2σ̂ , and 2δ̂  given by: 

1µ̂ κ= , ( )* *ˆ 1 3 /(3 100) / 2λ κ κ= ± + , where ( )2*
6 4/κ κ κ= , 2 2

2
ˆ ˆσ̂ κ λδ= − , and 

( )( )( )2
6 4

ˆ ˆ/ 5 1 2δ κ κ λ= − .  

                                                 
14 The characteristic function ( )X uφ  is related to the moment generating function ( )XG u  

( ) ( ) ( ) ( )exp expX t t tG u E uX uX dF X= =⎡ ⎤⎣ ⎦ ∫ by a change of the transform variable u iu→− , 

namely ( ) ( )X XG iu uφ= , and ( ) ( )X XG u iuφ= − . 

15 See, for instance, Madan and Seneta (1987), and Cont and Tankov (2004). 
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Das and Sundaram (1999) used the method of moments to estimate the J-D model. Denoting 
the log-price return by tx , and assuming that the jump size tJ  is distributed as 

( )2~ ,J N β δ , they showed that the first moments of the J-D process are given by the 

following equations which they used to estimate the model’s parameters; however, for the 
Poisson parameterλ , they imposed a given value. 
 

[ ] ( )( ) ( )2 2 2Var x E x E x σ λδ⎡ ⎤= − = +
⎣ ⎦

 

( )
( )( )

( )
( )

( )

3
3 2

3/ 2 3/ 22 2 2

3E x E x
skewness x

Var x

λ β βδ

σ λδ λβ

⎡ ⎤− +⎣ ⎦= =
⎡ ⎤ + +⎣ ⎦

 

( )
( )( )

( )
( )
( )

4
4 2 2 4

2 22 2 2

6 3
3

E x E x
kurtosis x

Var x

λ β β δ δ

σ λδ λβ

⎡ ⎤− + +⎣ ⎦= = +
⎡ ⎤ + +⎣ ⎦

 

 
3.  The method of the characteristic function (CF): As there is a one-to-one 
correspondence between the CF, ( ) ( ) ( ) ( )exp expX t t t tu E iuX iuX f X dXφ = =⎡ ⎤⎣ ⎦ ∫ , and the 

corresponding probability density, ( )tf X , the CF conveys the same information as the 
probability distribution. Often, the transition density function of a stochastic process may not 
be available in closed form, while the CF is readily available in closed form. Knowledge of 
the analytic form of the CF allows estimating the parameters of the process by the method of 
moments or the empirical CF procedure (ECF). 16 The method of moments computes non-

central moments of any order n  as ( ) ( ) 0
1 |

n
n

t un n

dE X u
i du

φ =
⎡ ⎤ =⎣ ⎦ . It also enables the 

application of the empirical characteristic function method (ECF). In both cases, a General 
Method of Moments (GMM) procedure is implemented, consisting of minimizing a distance 
norm between the sample and the theoretical population moments, or the sample CF and the 
theoretical CF. The exact method of moments consists of estimating the parameter vector 

which minimizes the distance ( ) 0
1 |

n
n

un nE X
i u

φ
=

∂
−

∂
.17 

                                                 
16 Parzen (1962), Feuerverger and Mureika (1977), Feuerverger and McDunnough (1981a and 1981b)) 
suggested the use of the CF to deal with the estimation of density functions. Madan and Seneta (1987) proposed 
a CF-based approach to estimate the J-D model. In the same vein, Bates (1996), Duffie et al. (2000), Chacko 
and Viceira (2003), and many other authors have proposed the use of CF for estimating affine J-D models.  
17 Note that ( ) ( )log log

nX n XnX e e= = . Therefore, 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
nLog X nLog X nLog Xn

Log XE X E e E e e f X dX nφ
∞

−∞

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠ ∫ . Namely, for the log-

(continued…) 
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The ECF method can be described as follows. Suppose { }Txxxx ,.......,, 21=  is an identically 
independently distributed realization of the same variable X with density ( ; )f x θ  and a 
distribution ( )F xθ . The parameter lRθ ∈ is the parameter of interest with true value 0θ . It is to 

be estimated from { }Txxxx ,.......,, 21= . Define the theoretical CF as: ( ) ( ; )iuxu e f x dxθφ θ= ∫  

and its empirical counterpart (ECF) as 

1 1 1

1 1 1( ) ( ) exp( ) cos( ) sin( )
n n n

iux
n n j j j

j j

u e f x dx iux ux i ux
T T T

φ
= =

= = = +∑ ∑ ∑∫  

The ECF procedure consists of estimating θ  according to the criterion 
'ˆ arg min( ) ( )n nWθ θθ

θ φ φ φ φ= − −  

W is a positive semi-definite matrix. Because the minimization of the distance between the 
ECF ( )nφ  and CF ( )θφ  over a grid of points in the Fourier domain is equivalent to matching 
a finite number of moments, the ECF method is in essence equivalent to the Generalized 
Method of Moments (GMM). Feuerverger (1990) proved that, under some regularity 
conditions, the resulting estimates can be made to have arbitrarily high asymptotic efficiency 
provided that the sample of observations is sufficiently large and the grid of points is 
sufficiently fine and extended. Indeed, ECF estimators have the same consistency and 
asymptotic efficiency as the GMM estimators. Moreover, when the number of orthogonal 
conditions exceeds the number of parameters to be estimated ( )r l> , the model is over-
identified, in that more orthogonal conditions are used than needed to estimate θ . A test of 
over-identifying restrictions may be used. In this respect, Hansen (1982) suggested a test of 
whether all of the sample moments are as close to zero as would be expected if the 
corresponding population moments were truly zero. 
 
4.  Empirical results of the estimation 
 
Based on a sample of daily prices for Brent futures prices described in Section II, alternative 
methods were used for estimating the J-D model (Table 2). First, assuming a Bernoulli jump 
process, the ML was applied unrestrictedly, and with restriction on the probabilityλ of a 
jump occurring on a trading day given byλ =0.23. Second, the method of cumulants was   
applied consecutively with restrictionsλ =0.23, µ =0 (Press, 1967), and β =0 (Beckers, 
1981), respectively. The third method was the ECF applied unrestrictedly and with restriction 
                                                                                                                                                       

return 1log( / )t t tx S S −= , ( ) ( )( ) ( ) ( ) ( )1/ n
t tlog S Sn nx nx

xE x E e E e e f X dX nφ−

∞

−∞

= = = =∫ . It follows that 

the n th− order moment ( )nE x can be computed by replacing the transform variable u by n in the CF of 

( )1log /t t t tx X S S −= ∆ = . 
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λ =0.23. The three methods yielded parameter estimates that were consistent with the 
empirical features of oil prices discussed in Section II. They showed pointedly that the 
dynamics of the oil price process were influenced by both diffusion and jump components; 
however the jump component was the dominant one. Besides having high intensity, the jump 
component had a much higher variance than the diffusion component. The high variance of 
the jump component illustrated the presence of jumps of large magnitude and was in 
conformity with the excess kurtosis in the empirical distribution of oil price returns. The  
mean of the jump size tended to be negative, in conformity with the negative skewness of the 
empirical distribution. This was due to the fact that crude oil prices were not monotonic; they 
leapt forward, than retreated back in smaller movements before taking a new jump. The drift 
of the diffusion component was high, in conformity with the observed upward trend in crude 
oil prices; it illustrated the presence of a force that kept pushing oil prices upward and was 
able to outweigh the negative mean of the jump component.  
 

Table 2. Jump-Diffusion Model: Parameter Estimates 
 

Methods Driftµ  Variance 2σ  Intensity λ  Mean β  Variance 2δ  
Bernoulli process 
Maximum Likelihood     
 
Maximum Likelihood  
1/ 

 
0.23 

(t=3.22) 
0.27 

(t=3.08) 

 
4.46 

(t=20.25) 
3.34 

(t=14.49) 

 
0.59 

(t=1.89) 
0.23 

 
-1.12 

(t=-4.27) 
-0.68 

(t=-1.93) 

 
4.47 

(t=17.12) 
7.98 

(t=6.25) 
Cumulants 1/ 
Press (1967) 2/ 
Beckers (1981) 3/ 

0.32 
0 

0.12 

1.81 
6.54 
3.34 

0.23 
0.10 
0.22 

-0.85 
1.11 

0 

2.78 
-13.88 
8.62 

ECF 4/ 
 
ECF 1/ 4/  
 

0.57 
(t=7.96) 

0.27 
(t=16.1) 

0.54      (t=1.11) 
3.45 

(t=127) 
 

4.37 
(t=3.49) 

0.23 
 

-0.10 
(t=-6.25) 

-0.52 
(t=-3.75) 

0.96      (t=5.57) 
6.97 

(t=31.35) 
 

1/ Restriction on 0.23λ = , computed from the data sample as the frequency of a jump in the crude oil price 
exceeding ± 3 percent. 2/ Restriction on µ =0. 3/ Restriction on β =0. 4/ The grid for u consists of twenty 
points: 0.1,0.2,0.3,........,1.9,2.0.  
 
Assuming a Bernoulli jump process, the ML estimates were highly significant and stable. 
The drift of the diffusion component, estimated at µ̂ =0.23, was very high and significant, 
showing that oil prices were constantly under pressure to move upward. The variances of  
the diffusion and jump components were high and significant, 2σ̂ =4.46 and 2δ̂ =4.47, 
respectively. The variance of the jump component became more important than that of the 
diffusion component when the jump intensity was restricted to λ =0.23. The probability of a 
jump in the unrestricted case, computed at λ̂ =0.59, was high and borderline significant. The 
mean of the jump component, estimated at β̂ =-1.12, was negative and consistent with the 
negative skewness observed in the data. Oil prices tended to make large moves upward, then 
started to retreat through a sequence of smaller and frequent negative jumps, until they were 
shocked again, making new jumps forward. Yet, the significance of the drift of the diffusion 



 16 

 

process was such that the smaller negative jumps could not outweigh the strong momentum 
that kept pushing oil prices upward. 
 
The method of cumulants was applied under alternative restrictions. The restrictionλ =0.23 
yielded results that were similar to the ML under the same restriction. The drift of the 
diffusion component, estimated at µ̂ =0.32, was very high, showing that oil prices were 
constantly under pressure to move upward. The variances of the diffusion and jump 
components, were estimated at 2σ̂ =1.81 and 2δ̂ =2.78, respectively, indicating that the jump 
component tended to dominate the dynamics of the oil price process. The mean of the jump 
component, estimated at β̂ =-0.85, was negative and consistent with the negative skewness in 
oil price returns. Application of the Press (1967) method, with the restrictionµ =0, yielded 

implausible results for the variance of the jump component, namely 2δ̂ =-13.88. Such an 
anomaly was not unexpected in the case of Press’ method, indicating that the restriction 
µ =0, could not be borne by the data, and was in sharp contrast with the strong upward trend 
in oil prices. In contrast, Beckers’ method, with the restrictionβ =0, yielded results which 
were highly plausible. The drift component of the diffusion, estimated at µ̂ =0.12, was 
smaller than, say, in the ML case, sinceβ =0 implied less influence for the drift of the 
diffusion, compared to the case whenβ  was negative, to maintain an upward trend in oil 
prices; it was, however, close to the drift of the AR2 (Table 1) and the actual mean of oil 
price returns (Figure 2). The variances of the diffusion and jump components were high, 

2σ̂ =3.34 and 2δ̂ =8.62, respectively. The variance of the jump component, however, 
dominated that of the diffusion component. Noticeably, the jump intensity, estimated 
at λ̂ =0.22, was quite close to the frequency of jumps in oil prices exceeding ± 3 percent, 
computed from the data set. 
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The ECF was applied unrestrictedly and with restrictionλ =0.23. The drift of the diffusion 
component, estimated at µ̂ =0.57, was very high and significant. The variance of the 
diffusion component, 2σ̂ =0.54, was not significant, and was dominated by the variance of 
the jump component, 2δ̂ =0.96, which was significant. The intensity of the jump process, 
estimated at λ̂ = 4.37, was high and significant, indicating that the oil price process was 
characterized by frequent jumps. The mean of the jump component, β̂ =-0.1, was negative, 
significant, and consistent with skewness in oil price returns. The ECF, applied with the 
restrictionλ =0.23, yielded results which were similar to those of the ML using the same 
restriction. The drift µ̂ =0.27 was positive and significant; the variance of the diffusion, 

2σ̂ =3.34, was significant; however, it was dominated by the variance of the jump 
component, 2δ̂ =6.97, indicating that the jump process played a more important role in oil 
price dynamics in relation to the diffusion process. The mean of the jump component,  
β̂ =-52, was negative, significant and consistent with skewness observed in the data. 
 
In sum, parameter estimates from the three methods were fully concordant with the data. 
They established that the oil price process was dominated by the jump process, with large 
discontinuities occurring at high intensity, meaning that oil markets were permanently out-of-
equilibrium during the sample period. The negative mean of the jump component could be 
seen as smaller downward adjustment in world crude oil demand following a large upward 
jump in oil price. However, the downward adjustment in demand was short-lived; the drift 
component of the diffusion process was very high for daily data, indicating that oil demand 
was pushed up by a strong income effect; consequently, oil prices were under a constant 
pressure to move upward. These results can be easily explained in terms of the elasticities of 
world demand and supply for crude oil. World demand was highly elastic with respect to 
world income, and highly inelastic with regard to oil prices. Crude supply has been rigid, 
showing little sensitivity to prices. As world real GDP expanded at 4–5 percent per year 
during the period under study, it caused world oil demand to expand at similar rate, creating 
an excess demand for oil. Given the short-term inelasticity of demand and supply with 
respect to prices, any small excess demand for oil would cause large variation in prices. In 
turn, large price increases would have small negative effect on oil demand. The negative 
price effect, however, would be quickly dominated by a positive income effect. 
 

IV.   CRUDE OIL PRICE AS A VARIANCE-GAMMA LEVY PROCESS 

The J-D model has essentially two limitations. First, it does not capture the notion of time-
varying or stochastic volatility. In particular, stochastic volatility is found to have a key role 
in explaining skewness and leptokurtosis in financial time-series, and in explaining the skew 
in market implied volatilities. In this respect, skewed distribution can arise either because of 
correlations between asset prices and volatility shocks, or because of nonzero average jumps. 
Similarly, excess kurtosis can arise either from volatile volatility or from a substantial jump 
component. Second, the J-D model is fit to model finite large jumps, and cannot capture 
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infinite small jumps which are similar to small jumps in the diffusion process. With a view to 
capture the notion of stochastic volatility and modeling small and frequent jumps, while 
simplifying computational costs, many researchers (e.g., Carr et. al (2002, 2003), Carr and 
Wu (2004), Cont and Tankov (2004)) have proposed the use of Levy processes for modeling 
asset prices. Accordingly, oil prices are modeled in this Section as a Levy process.18 More 
specifically, oil price returns are assumed to follow a Levy process with a variance-gamma 
distribution. This type of model has a simple CF and is easier to estimate. 
 
1.  Definition of the Variance-Gamma process: a variance-gamma ( )VG process is 
defined as a Brownian motion with drift α and volatilityσ , i.e. tt Bα σ+ , where tB  is an 
ordinary Brownian motion, time-changed by a gamma process. More precisely, let 

{ , 0}tG G t= ≥  be a gamma process with mean 1/ 0a υ= > and variance 1/ 0b υ= > .19 Let 
{ , 0}tB B t= ≥ denote a Brownian motion, and let 0σ >  and Rα ∈ ; then the VG  

process ( ) ( ){ , 0}VG VG
tX X t= ≥ , with parameters 0σ > , 0υ >  andα , can be defined 

as ( )
t

VG
t t GX G Bα σ= + . The CF is given by 

( ) 2 21( ; , , ) [exp( )] (1 )
2

t
VG

VG tu E iuX iu u υφ σ υ α αυ σ υ
−

= = − + . The two additional parameters in 

theVG  distribution, which are the drift of the Brownian motion,α , and the volatility of the 
time change,υ , provide control over skewness and kurtosis, respectively. Namely, 
when 0α < , the distribution is negatively skewed, and vice versa. Moreover, larger values of 
υ  indicate frequent jumps and contribute to fatter tails. The moments of the log-price returns 

under ( , , )VG σ υ α are: the mean =α ; the variance = 2 2σ υα+ ; skewness =
2 2

2 2 3/ 2

(3 2 )
( )

αυ σ υα
σ υα

+
+

; 

                                                 
18 A Levy process (LP) 0( )t tX ≥  has a value 0 0X = at 0t =  and is characterized by independent and 
stationary increments, and stochastic continuity, i.e., discontinuity occurs at random times. The CF of a LP is 
given by the Levy-Khintchine formula: 

1

2
2

1
\{0}

( ) [ ] exp [ 1 1 ( )] ( )
2

iuX iux
x

R

u E e i u u e iux x dxσφ α ν<

⎛ ⎞
= = − + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ , u R∈ , 0t ≥ . Where 

Rα ∈ is the drift parameter, 2 0σ ≥  is the volatility parameter, and ν  is a Levy measure on \{0}R , which 

measures jumps of different sizes. A LP is characterized by its triplet 2( , , )α σ ν . 

19 The probability density of the Gamma process with mean rate t  and variance tυ  is well 

known:
1 1

( ) / ( )
x t tf x x eυ υ υυ

υ
− −

= Γ . Its Laplace transform is [exp( )] (1 )
t

tE uG uυ υυ
−

− = + . 

It results that the VG  process has a simple CF
2

2( ) 1/(1 )
2

t

VG u i u u υσ υφ αυ= − + . 
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and kurtosis = 4 2 2 23(1 2 ( ) )υ υσ σ υα −+ − + . Clearly, skewness is influenced byα , and 
kurtosis byυ . 
 
2.  Estimation of the Variance-Gamma process 
 
Let the crude oil price tS  be modeled as 0 exp[ ]t tS S t Xµ= +  where tX  is a VG process. The 
log price return is 1logt t t tx S X Xµ −= ∆ = + − . The CF of the log price return is 

[ ] [ ]
1

2 2
1 1

1[exp( )] exp( ( ) exp( ) exp( ) exp( )(1 )
2tE iux E iu X iu E iuX iu i u u υµ µ µ αυ σ υ

−
= + = = − +

Using the data described in Section II, the parameters were estimated using the ECF 
approach (Table 3). The estimated parameters of the VG process were stable and statistically 
significant, and corroborated the findings for the J-D process. Namely, when modeled as a 
VG process, crude oil prices exhibited a high drift coefficient, high volatility, frequent and 
large jumps, and skewness. The drift coefficient, estimated at ˆ 0.09µ = , asserted the presence 
of a strong upward pulling force which kept reigniting oil prices. The volatility 
parameter, ˆ 1.66σ = , was high and significant, showing that oil markets were facing high 
uncertainties regarding future movements in prices. The parameterυ , which controls for tail 
fatness, estimated at ˆ 0.80υ = , was high and significant, implying the presence of frequent 
and large jumps in oil prices. The parameterα , which controls for skewness, estimated 
at ˆ 0.36α = − , was negative and significant, showing that the VG distribution was left-skewed. 
More specifically, in response to large positive jumps in oil price, there seemed to be a 
cooling off period during which world crude oil demand might slowdown, causing small and 
frequent negative jumps in prices. However, the income demand elasticity was much higher 
and more significant than the price elasticity; faster world economy growth kept, therefore, 
pushing world oil demand upward.  
 

Table 3. Parameter Estimates of the VG process 1/ 
 

Drift µ  Drift α  Volatility σ  Variance of VG υ  
0.09 

(t=3.52) 
-0.146   

(t= -2.54) 
1.66  

(t= 80.4) 
0.804 

 (t=52.3) 
1/ Using ECF method. 
 

V.   OPTION PRICING USING CHARACTERISTIC FUNCTIONS 

Option Value in the Asset Price Space: Under martingale pricing, the value of an option, 
denoted by ),( tSf , is a convolution of a discounted pay-off function with the state price 
density. For a given final condition (pay-off): )(),( SgTSf = for all S , the option value is: 

( ) ( )

0
( , ) [ ( ) | ] ( ) ( | )Q r T t r T t

t t T t T T t Tf S t E e g S S S e g S p S S dS
∞− − − −= = = ∫  
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WhereQ is the risk-neutral measure. The conditional expectation is computed with respect to 
a risk-neutral transition probability density )|( tT SSp . However, for many stochastic 
processes involving stochastic volatility, jumps, or Levy type processes, transition densities 
are often complicated and may not be readily available in closed form. In contrast, the CF of 
the underlying stochastic process may be readily available in closed form. It is defined as 

0
( , ) ( | )TiuS

T t Tu t e p S S dSφ
∞

= ∫ , u  is the transform variable.  

 
Option Value in the Fourier Space: knowledge of the CF enables to compute option prices 
in the Fourier space according to two alternative methods. The first method, proposed by 
Heston (1993), relies on a numerical inversion of the CF. However, noting the singularity of 
Heston’s formula at 0u = , Carr and Madan (1999) proposed, instead, a numerical inversion 
of the Fourier transform of the option value. More specifically, define the Fourier transform 

of the option value as ( ) ( )ˆ iuSf u e f S dS
∞

−∞

= ∫ . If ( )f̂ u  can be explicitly expressed in terms of 

( )uφ as ( ) ( )( )ˆ ˆf u f uφ φ= a fast Fourier transform (FFT) inversion of ( )( )f̂ uφ φ  would then 

compute the option value from its transform as ( ) ( )1 ˆ,
2

iuSf S t e f u du
π

∞
−

−∞

= ∫ . 

 
Let lnt ts S=  be the log-price; ln( )k K= the log strike price; ( )TC k = value of a T −maturity 
call option with strike K ; and ( ) exp( ) ( )T Tc k ak C k≡  for 0a > , the damped option price. The 

CF of lnt ts S=  under the risk-neutral measure is given by ( , ) ( | )Tius
T t Tu t e p s s dsφ

∞

−∞
= ∫ . Let  

( ) ( )iuk
T Tu e c k dkψ

∞

−∞

= ∫  be the Fourier transform of ( )Tc k . Carr and Madan (1999) showed that 

( )T uψ can be expressed in terms of ( )T uφ as: 2 2

( ( 1) )( )
(2 1)

rT
T

T
e u a iu

a a u i a u
φψ

− − +
=

+ − + +
. Knowledge of 

the CF ( )T uφ , which is the CF of the log of the asset price under the risk neutral-measure, 
implies knowledge of the Fourier transform of the value of the option ( )T uψ . The option 
price can therefore be computed via Fourier inversion as: 

0

exp( ) exp( )( ) ( ) ( )
2

iuk iuk
T

ak akC k e u du e u duψ ψ
π π

∞ ∞
− −

−∞

− −
= =∫ ∫ . 

 
Option pricing requires evidently knowledge of the risk-neutral process and the CF 
associated with this process. Under the risk neutral process, money market account 
discounted asset prices are martingales and it follows that the mean rate of return on the asset 
under this probability measure is the continuous compounded risk-free interest rate r . If the 
asset price tS is modeled as 0 exp[ ]t tS S rt X= +  where tX  is an LP, to obtain a risk-neutral 
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process verifying the martingale property, define:   
exp( ( )) exp( )exp( ( ))( ) (0) (0)

[exp( ( )] [exp( ( )]
rt X t rt X tS t S S

E X t E X t
+

= = , then ( )( ) / exp( ) (0)E S t rt S= . The 

resulting risk-neutral process for the log price is: 
log ( ) (log (0) log [exp( ( )]) ( ))S t S rt E X t X t= + − + . The CF of the log price is: 

[exp( log( ( )))] exp( ((log (0) log [exp( ( )]) [exp( ( ))]E iu S t iu S rt E X t E iuX t= + − . For the VG 
model, the resulting risk-neutral process for the asset price is: 

0 exp[ ( , , ) ]t tS S rt X tσ α υ ω= + + , 0t > , where, by setting 21 1( ) ln(1 )
2

ω αυ σ υ
υ

= − − , Madan 

et al. (1998) showed that the CF for log of tS  is: 

2 2
0

1( ) exp[ln( ) ( ) ](1 )
2

t

t u S r t i u u υφ ω αυ σ υ
−

= + + − + . 

To obtain option prices, one can analytically invert ( )uφ  to get the density function and then 
integrate the density function against the option payoff as in Heston (1993). Alternatively, 
the Fourier transform of the option value can be numerically inverted using FFT as in Carr 
and Madan (1999). The Fourier inversion can be approximated discretely via an N -point sum 
with a grid spacing of ∆  in the Fourier domain. The inversion integral can be approximated 
using an integration rule, such as Simpson’s or the trapezoidal rule, as 

21 ( )

00

( ) j
N i j uixu N

j
j

e u du e
π

ψ ψ
∞ − −−

=

≈ ∆∑∫ % . 

The points ju are equidistant with grid spacing ∆ , ju j= ∆ . The value of ∆  should be 
sufficiently small to approximate the integral well enough, while the value of N∆ should be 
large enough to assume the CF is equal to zero for u u N> = ∆ . In general, the values jψ% are 

set equal to ( )j j ju wψ ψ=% , where jw  are the weights of the integration rule. 
 

VI.   DENSITY FORECAST OF CRUDE OIL PRICES: THE INVERSE PROBLEM 

An application of the above analysis to crude oil options is undertaken in this section with the 
objective of estimating, from observed options’ market values, density forecast for crude oil 
prices at a given maturity date. The estimation of the risk-neutral distribution is known as the 
inverse problem in option pricing models. While the pricing problem is concerned with 
computing option values given model’s parameters, the inverse problem consists of backing 
out the parameters describing risk-neutral dynamics from observed prices. The computation 
of a risk-neutral distribution could be seen as estimating market’s expectations for future 
prices; in contrast, estimation of statistical distribution from realized data could be seen as 
the actual distribution of historical prices. Assuming a VG distribution for the log price, the 
inverse problem can be stated as finding the parameters ( )2, ,θ α σ υ=  by minimizing the 

quadratic pricing error: 
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( )2*

1

1ˆ arg min ( , ) ( , )
N

j j j j
j

C T K C T K
Nθ

θ
=

= −∑ , 1, 2,....,j N=  

under the put-call parity constraint: ( ) ( )*
0 , , rT

j j j j jS P T K C T K K e−+ − =  

where * ( , )j jC T K denotes the call option computed from the VG distribution, ( ),j jC T K and 

( ),j jP T K denote the observed prices of call and put options for maturity T and strikes jK , 

respectively. ( )* ,j jC T K is given by FFT; namely ( )*

0

exp( )
, ( )jiukj

j j T

ak
C T K e u duψ

π

∞
−−

= ∫ . 

The addition of the put-call parity condition brings extra-sample information which helps to 
regularize the estimation problem. 20 Taking into account the put-call parity constraint and 
choosing a penalty parameter 0h > , the minimization problem becomes 

( ) ( ) ( )( )( )22* *
0

1

1ˆ arg min ( , ) ( , ) , ,
N

rT
j j j j j j j j j

j
C T K C T K h S P T K C T K K e

Nθ
θ −

=

= − + + − −∑  

 
The inverse problem was applied for the VG model only for space limitation. The same 
methodology applies identically to the J-D model.21 The observed data set was for July 21, 
2006; it consisted of call and put futures options contracts maturing end-September 2006; the 
risk-free interest rate, taken here to be the three-month U.S. Treasury bill rate, was equal to 
4.965; and the crude futures price, was equal to US$74.43/bl. The constrained minimization 
yielded the following triplet for the risk-neutral distribution: 2σ̂ = 1.72, υ̂ =1.12, α̂ =0.37 
which described market’s expectations on July 21, 2006 regarding futures prices end-
September 2006. Clearly, market participants did not anticipate any short-term change in the 
underlying fundamentals characterizing oil markets. They expected oil prices to remain 
highly volatile ( 2σ̂ =1.72) and dominated by a jump process (υ̂ = 1.12 ). They also expected 
oil prices to remain under pressure, as they assigned higher probabilities for oil prices to rise 

                                                 
20 Cont and Tankov (2004) argued that the inverse problem could be an ill-posed problem and proposed the use 
of relative entropy, which is the Kullback-Leibler distance for measuring the proximity of two equivalent 
probability measures, as a regularization method with the prior distribution estimated from the statistical data 
via the maximum likelihood method. This regularization will enable to find a unique martingale measure.  

21 The risk-neutral CF for any asset price model is given: 
[exp( log( ( )))] exp( ((log (0) log [exp( ( )]) [exp( ( ))]E iu S t iu S rt E X t E iuX t= + − . For the J-D model, 

the resulting risk-neutral process for the asset price is: 
2 2 2 2

0( ) exp[ln( ) ( ) ]exp exp 1
2 2T
u uu S r T T i u i uσ δφ ω µ λ β

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞
= + + − + + − −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠

 

where
2 2

exp 1
2 2
σ δω µ λ β
⎡ ⎤⎛ ⎞⎛ ⎞

= + + + −⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

. 
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above the futures price level than to fall below this level. This was shown by a right-skewed 
risk-neutral distribution (α̂ =0.37). 
 

VII.   CONCLUSIONS 

Oil prices have been on a rising spree during the recent past, reaching unexpected territories, 
and seemed to become unbounded. Despite the importance of these prices, little was known 
about their underlying stochastic process. This paper studied the dynamics of oil prices 
during January 2, 2002–July 7, 2006. Main findings were that these dynamics were 
dominated by frequent jumps, causing oil markets to be constantly out-of-equilibrium. While 
oil prices attempted to retreat following major upward jumps, there was a strong positive 
drift which kept pushing these prices upward. Volatility was high, making oil prices very 
sensitive to small shocks and to news. The findings for both the J-D and VG specification 
were fully consistent with the underlying fundamentals of oil markets and world economy. 
More specifically, faster world economy growth during the sample period and highly 
expansionary monetary policies caused demand for crude oil to expand at similar pace. In 
view of the price inelasticities of oil demand and supply, any small excess demand (supply) 
would require a large price increase (decrease) to clear oil markets; hence, the observed high 
intensity of jumps and the strong drive for oil prices to rise.  
 
Attention was not only limited to historical dynamics of oil prices, but it was also extended to 
gauging market expectations regarding future developments in these prices. Based on call 
and put option prices on July 21, 2006 and for maturity end-September 2006, the implied 
risk-neutral distribution was right-skewed, indicating that market participants maintained 
higher probabilities for prices to rise above the expected mean, given by the futures price, 
rather than fall below this mean. The risk-neutral distribution was also characterized by high 
volatility and high kurtosis, indicating that market participants were expecting prices to 
remain highly volatile and dominated by frequent jumps. 
 
The findings of this paper could be relevant for policy-makers and industry analysts. They 
established the nature of the stochastic process underlying oil prices and the importance of 
components driving this process. An explanation of the process parameter estimates in terms 
of the underlying fundamentals for the oil markets was offered in order to comprehend the 
economics underpinning the observed oil prices dynamics. Namely, a change in the process 
parameters would require a change in the underlying fundamentals. Alternative modeling 
approaches in the paper were highly relevant for forecasting, risk management, derivatives 
pricing, and gauging market’s sentiment; they allowed to ascertain robustness of estimated 
parameters. The findings of the paper could also be relevant for the Fund in monitoring oil 
markets and seeking policies for stabilizing these markets.  
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Annex 1. Method of Cumulants of Probability Distributions 

 
Suppose that X is a real random variable whose real moment generating function is defined 

as ( ) ( ) ( )uX uXM u E e e f X dX
∞

−∞

= = ∫ , where ( )f X is the probability density of X . Just as the 

moment generating function M of X generates its moments, the logarithm of M generates a 
sequence of numbers called cumulants. The cumulants κn of the probability density of X  are 

given by ( ) ( )
1 1

1 exp
! !

n n
uX n n

n n

m u uM u E e
n n

κ∞ ∞

= =

⎛ ⎞
= = + = ⎜ ⎟

⎝ ⎠
∑ ∑  

Where ( )n
nm E X= is the moment of order n of X . The left-hand side of this equation is the 

moment-generating function, so κn/n! is the nth coefficient in the power series representation 
of the logarithm of the moment-generating function. The logarithm of the moment-generating 
function is therefore called the cumulant-generating function, written as:22 

( )( )
0

log
!

n
n

n

uM u
n

κ∞

=

=∑ . The method of cumulants attempts to recover a probability 

distribution from its sequence of cumulants. In some cases no solution exists; in some other 
cases a unique solution, or more than one solution, exists. The relationship between moments 
and cumulants is of paramount importance in the estimation of the unknown parameters of 
the density function. First, consider moments about 0, which can be written as ( )j

jm E X= , 

0,1,2...j =  The cumulant/moment theorem says that if X is a random variable with 
n moments 1m , 2m ,......, nm , then X has n  cumulants 1κ , 2κ ,...., nκ , and the cumulants are 

related to the moments by the following recursion formula:23 
1

1

1
1

n

n n n n j
j

n
m m

j
κ κ

−

−
=

−⎛ ⎞
= − ⎜ ⎟−⎝ ⎠

∑   

Note that 0 1m = . By carrying the recursion formula, the relation between raw moments and 
cumulants can be stated as: 

1 1m κ=  
                                                 
22 The cumulants are also equivalently defined in terms of the characteristic function, which is the Fourier 

transform of the probability density function: ( ) ( ) ( )iuX iuXu E e e f X dXφ
∞

−∞

= = ∫ . The cumulants nκ  are 

then defined as ( ) ( )
1

ln
!

n

n
n

iu
u

n
φ κ

∞

=

=∑  

23 This recursion formula is the Faa di Bruno’s formula, equivalently written as  

1 1
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r j r j
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⎛ ⎞
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⎝ ⎠
∑  for 0......, 1r n= −  
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2 2 1 1m mκ κ= +  

3 3 1 2 2 12m m mκ κ κ= + +  

4 4 1 3 2 2 3 13 3m m m mκ κ κ κ= + + +  

For central moments, defined by ( )( )( )j
jm E X E X= − , the first moment 1m  is zero; the 

relationship between moments and cumulants simplifies to: 
1 1 0m κ= =  

2 2m κ=  

3 3m κ=  

4 4 2 23m mκ κ= +  
The first cumulant is simply the expected value; the second and third cumulants are 
respectively the second and third central moments (the second central moment is the 
variance); but the higher cumulants are neither moments nor central moments, but rather 
more complicated polynomial functions of the moments. The nth moment nm  is an nth-
degree polynomial in the first n cumulants. Of particular interest is the fourth-order 

cumulant, called kurtosis, which can be expressed as ( ) ( ) ( )( )24 23kurt X E X E X= − . 

Kurtosis can be considered as a measure of the non-Gaussianity of X . For a Gaussian 
random variable, kurtosis is zero; it is typically positive for distributions with heavy tails and 
a peak at zero, and negative for flatter densities with lighter tails.  
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