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Following record low interest rates and fast depreciating U.S. dollar, crude oil prices became under rising 
pressure and seemed boundless. Oil price process parameters changed drastically in 2003M5–2007M10 
toward consistently rising prices. Short-term forecasting would imply persistence of observed trends, as 
market fundamentals and underlying monetary policies were supportive of these trends. Market 
expectations derived from option prices anticipated further surge in oil prices and allowed significant 
probability for right tail events. Given explosive trends in other commodities prices, depreciating 
currencies, and weakening financial conditions, recent trends in oil prices might not persist further without 
triggering world economic recession, regressive oil supply, as oil producers became wary about inflation. 
Restoring stable oil markets, through restraining monetary policy, is essential for durable growth and price 
stability. 
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I.   INTRODUCTION 

By maintaining upward persistence since early 2003 and breaking new record of US$120/barrel 
in April 2008, crude oil prices remained under intense pressure and seemed boundless; their 
rapid pace may turn inflationary by causing other prices to rise and may decelerate world 
economic growth. All the more worrisome, recent upsurges in oil prices were taking place in 
midst of rising trends in commodity prices, instability in housing, equity, and credit markets, 
and depreciating exchange rates. The fast rise in commodities prices, including oil, could be 
seen as delayed effect of excessively expansionary monetary policies during 2001–04 when key 
interest rates were forced down to postwar record levels. Such monetary expansion led to high 
world economic growth and consequently higher world demand for oil and non-oil 
commodities. Supply of crude oil and other commodities being rigid or lagging at smaller pace, 
excess demand resulted in highest inflation for postwar commodities markets. With real interest 
rates turning low or negative, pressure on real aggregate demand, and therefore on oil markets, 
might not subside. Relaxation of monetary policy in August 2007─March 2008 immediately set 
off new spiral in commodities price inflation and currency depreciation.2 
 
This paper analyzed oil prices during 2000M1–2007M10. To exhibit effect of monetary policy, 
the paper distinguished two samples 2000M1–2003M4 and 2003M5–2007M10. The paper 
assumed oil prices to be driven by Levy processes (LP) of generalized hyperbolic (GH) type and 
used daily data to estimate parameters of these processes. Combining features of normal and 
stable distributions and offering more flexibility than Poisson-type processes, which were 
known to model finite large jumps, GH distributions gained wide popularity in modeling stock 
market indices. In view of their success in modeling financial time-series, Levy processes of 
hyperbolic type were advocated by many authors. In this respect, the hyperbolic distribution 
was proposed for modeling LP by Barndorff-Nielsen (1977), Barndorff-Nielsen and Blaesild 
(1983), Bibby and Sørensen (1997 and 2003), Eberlein and Keller (1995), and Prause (1999). 
The normal inverse Gaussian (NIG) distribution was proposed by Barndorff-Nielsen (1995), 
and Rydberg (1997); and the variance gamma distribution was applied by Madan et al. (1998). 
GH processes became appealing for their ability to account for salient features of high 
frequency financial time-series, namely asymmetry, frequent small and large jumps, and to 
reduce the smile in option prices (Eberlein et al. 1998).  
 
Inability of Gaussian processes to fit high frequency financial data was underscored by Fama 
(1965) and Mandelbrot (1963); both authors proposed stable distributions for modeling 
skewness and kurtosis; however, stable distributions did not have finite variance and therefore 
were not appealing for modeling financial time-series. Besides ability to account for skewness 
and kurtosis, GH distributions enabled to remedy shortcomings noted in Black-Scholes model 
(1973) with respect to implausibility of the normality assumption and constancy of the variance 
of the distribution. To the extent that GH distributions were constructed as mixtures of variance-
mean normal distribution with time varying stochastic variance, or equivalently, as Brownian 

                                                 
2 In August 2007─March 2008, some key discount rates were cut, large amounts of liquidities were injected, and 
successive cuts in the federal funds rate were undertaken. Multi-billion bail out facilities were put in place to rescue 
banks with nonperforming portfolios  
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motion subordinated to increasing positive stochastic processes, they can account for stochastic 
volatility and allow to attenuate the smile in short-term options (Carr et al. 2003). As a 
precursor to application of subordinated process for fitting financial time-series was Clark’s 
paper (1973) which introduced Bochner’s concept of a subordinate stochastic process as a 
model for speculative price series. Clark showed that the concept of subordination allows to use 
finite variance distribution, and obtain a mixture distribution, where the mixing distribution is 
an increasing positive Levy process that has finite moments. He showed, with both discrete 
Bayes' test and Kolmogorov-Smirnov test, that finite-variance distributions subordinate to the 
normal, namely a lognormal-normal distribution, fit cotton futures price data better than 
members of the stable family. 
 
This paper showed that Normal Inverse Gaussian (NIG) process fits closely oil price returns 
during 2000M1–2003M4 and 2003M5–2007M10; parameters of the process had, however, 
changed; mean return increased due to persistence in upward trend, and kurtosis had declined 
due to higher predictability in oil prices. Estimated parameters of the NIG process were in 
conformity with findings for the empirical distribution of oil price returns. To be applicable for 
pricing derivatives, statistical distributions had to be adjusted for market price of risk and turned 
into martingale processes. This is done through applying Esscher transform to the statistical 
process. Besides estimating oil price returns distribution from time-series data, oil price returns 
distribution was also estimated from cross-section data from call and put option prices on 
November 2, 2007 for end-December 2007. Implied-risk neutral distribution based on NIG 
showed that traders were expecting further rise in oil prices and were assigning significant 
probabilities for right-tail events. 
 
The paper was structured as follows: Section II studied daily oil prices during 2000M1–
2007M10; Section III presented the theoretical framework for Levy processes; Section IV 
presented the normal inverse Gaussian (NIG) distribution; Section V presented the statistical 
estimation of the NIG distribution based on daily oil price data for 2000M1–2003M4 
and 2003M5–2007M10; Section VI derived risk-neutral distributions from statistical LP by 
applying Esscher transform to these processes; Section VII derived density forecast from oil 
options prices; Section VIII concluded. 
 

II.   RECENT EVOLUTION OF OIL PRICES 

Daily data of light crude futures prices from January 4, 2000 to October 29, 2007 was 
considered (Figure 1) 3. The behavior of oil prices showed distinctly two patterns: relative 
stability during 2000M1–2003M4, around a mean of US$27 per barrel, and strong upward 
deterministic trend and persistence during 2003M5–2007M10, with prices rising progressively 
to cross US$96/barrel mark in October 2007, showing no sign for stability around a mean. The 
upward trend became predictable and was the longest upward trend in post-war oil prices. Past 
upward trends lived on average two to three years, while the present one has spanned so far 
more than four years. Denoting oil price by tS  and applying an autoregressive moving average 
(ARMA) representation, the structure of the oil price process has changed considerably as  
                                                 
3 Light crude futures prices from Reuters, 1986 observations. 
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Figure 1. Oil Daily Futures Prices, January 2000–October 2007
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conveyed by the two regressions below, namely in the second sub-period the lag structure was 
shorter and a deterministic trend became significant.  
 
Sample 2000M1–2003M4 
S = 1.325*S(-1) - 1.195*S(-2) + 0.842*S(-3) – 0.191*MA(1)+0.778*MA(2)+0.214*MA(3)+0.769    (1) 
      (t=23.1)         (t=-13.7)          (t=14.8)         (t=-3.0)             (t=13.1)           (t=6.1)              (t=2.7) 

2R =0.97; DW=2.01 
Sample 2003M5–2007M10 
S = 0.990*S(-1)  + 0.000537*TREND+0.098*MA(1)+ 0.307 (2) 
       (t=207.9)        (t=2.26)                   (t=3.31)            (t=2.23)             
  2R =0.99; DW=2.00 
 
The empirical distribution of oil price returns (Figure 2a and 2b), defined as 

1log logt t tx S S −= − , showed considerable change in moments between sub-periods (Table 1).4 
Mean return was -0.005 in the first sub-period, equivalent to a decline in oil price at 1.28 
(=-0.005*255) percent per year; it rose to 0.12 percent in the second sub-period, equivalent to 
an increase in oil price at 30.6(=0.12*255) percent per year. Volatility was high for daily data. 
Although falling from 2.226 (annualized to 35.6(=2.226* 255 ) percent) to 1.686 (annualized 
to 26.9(=1.686* 255 )) percent), volatility was high, indicating that oil markets were sensitive 
to news and small shocks and appealing to speculation. Skewness turned out to be small in both 
sample periods, indicating that returns distributions were symmetric. Kurtosis declined to 3.87 
from 4.95. Normality assumption for price returns was, however, rejected for both sample 
periods, indicating essentially pre-eminence of large jumps in daily oil prices. These empirical  

                                                 

4 Skewness are kurtosis are defined as 
3

1

1
ˆ

N
i

i

y ySkewness
N σ=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ and 
4

1

1
ˆ

N
i

i

y yKurtosis
N σ=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ , 

respectively. 
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Table 1. Descriptive Statistics for Oil Price Returns 

          2000M1–2003M4     2003M5–2007M10 
Mean       -0.005312 
Median    0.000000 
Maximum   11.23630 
Minimum  -9.436276 
Std. Dev.   2.225607 
Skewness    0.056786 
Kurtosis    4.954168 
Jarque-Bera  133.9488 
Probability  0.000000 

Mean        0.118992 
Median    0.128184 
Maximum   7.356257 
Minimum  -6.080348 
Std. Dev.   1.686031 
Skewness   -0.021088 
Kurtosis    3.873152 
Jarque-Bera  36.55292 
Probability  0.000000 
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Figure 2a. Empirical Distribution of Oil Price
                 Returns, 2000M1-2003M4.

0

40

80

120

160

200

-6 -4 -2 0 2 4 6

Figure 2b. Empirical Distribution of Oil Price
                 Returns, 2003M5-2007M10

 
parameters showed that oil markets were out-of-equilibrium in the second sub-sample period 
and were driven by a strong upward trend reflecting rapidly growing demand for oil, rigidities 
in oil supply, and rising tensions in oil prices. 
 
Volatility is a key variable in financial markets which measures uncertainty and risk. High 
volatility would increase volume of trade in derivatives markets, both in speculative and 
hedging activities. Estimated using GARCH(1,1)5 (Figure 3), volatility appeared high for daily 
data and exhibited periods of volatility clustering, followed by periods of mean reversion. When 
annualized, volatility was high for the first sub-period at 35 percent. In line with the findings of  
 the ARMA model, volatility fell sharply to 22 percent for the second period indicating a solid 
deterministic trend in oil prices. 

                                                 
5 GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity. 
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Figure 3. Oil Price Returns GARCH(1.1) Volatility, January 2000-October 
2007
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III.   MODELING OIL PRICES AS LEVY PROCESS 

Levy processes offer flexibility for accounting for basic features of financial series, namely 
skewness, excess kurtosis, and frequent small and large jumps.6 The stochastic differential 
equation (SDE) underlying asset price is stated as:7 

t t t tdS S dt S dZρ σ− −= +  (3) 
 tS denotes oil price, tS − denotes limit from left, tZ is a LP, and ρ  and σ  are drift and volatility 
parameters.8 Solution of this equation is the well-known Doléans-Dade (or stochastic) 
exponential given by 

( ) ( ) ( )0 exp 1 expt t
t

S S t Z Z Zτ τ
τ

ρ σ σ σ
≤

= + + Δ − Δ∏  (4) 

                                                 
6 A process ( ) 0t t

X X
≥

=  with 0 0X =  is a Lévy process if it possesses the following properties: (i) independent 

increments: for every increasing sequence of times 0 ,..., nt t , the random variables 

0 1 0 1
, ,.....,

n nt t t t tX X X X X
−

− − are independent, (ii) stationary increments: the law of t h tX X+ −  does not 

depend on t , and (iii) stochastic continuity: 0ε∀ > , 
0

lim ( ) 0t h th
P X X ε+→

− ≥ = . i.e., discontinuity occurs at 

random times. Levy processes are limits of random walks and are infinitely divisible into independent and 
identically distributed (i.i.d.) random variables. 
7 This is analogous to Black-Scholes (BS) model where asset prices were given t t t tdS S dt S dWρ σ= + , 0t ≥ , 

tS is price at time t , tW is a Wiener process with ( )0,tdW N dt� , ρ and σ  are drift and volatility, 

respectively. By Ito Lemma, the solution is  
21( )

2
0

tt W

tS S e
ρ σ σ− +

= .  
 
8 The SDE can also be written as t t t t t tdS S dt S dZ S dXρ σ− − −= + =  where t tX t Zρ σ= + . 
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Here Z Z Zτ τ τ −Δ = −  denotes jump at time τ . Clearly, the condition ( )1 0Zτσ+ Δ ≥  has to hold 

for tS to be nonnegative, i.e., 0tS ≥ . Thus, jumps are bounded below by 1Zτ σ
Δ ≥ − . Obviously, 

solution (4) does not enable easy manipulation of the price process such as computation of 
compounded returns or simulation of the price path. To obtain an easier form for LP, the SDE is 
reformulated as 9         

( ) ( )1 1t tZ Z
t t t t t t t t t tdS S dt S dZ S e Z S dt S dZ e Zσ σρ σ σ ρ σ σΔ Δ

− − − − −= + + − − Δ = + + − − Δ (5) 
Similar to a Poisson process, jumps now appear explicitly in the dynamics of the oil process. 
This representation of SDE arises from an application of Ito’s formula, and yields a simpler 
solution for the price process:   

( )0 expt tS S t Zρ σ= +   (6) 
 

IV.   OIL PRICE PROCESS AS NORMAL INVERSE GAUSSIAN PROCESS 

In this section, oil price returns, defined as 1 1log logt t t t tx S S X X− −= − = − , are analyzed as a 
normal inverse Gaussian (NIG) distribution, where ( )0 expt tS S X= . NIG distribution is a 

special case of the generalized hyperbolic distribution ( )GH . The GH distribution was 
essentially due to Barndorff-Nielsen (1977). Let X be a normal distribution, i.e. 

( ),X N z zμ β+�  and let Z be a generalized inverse Gaussian (GIG) law, i.e. 

( ), ,Z GIG λ δ γ� . Define X Z V Zμ β= + + , where ( )0,1V N� , then X is said to have a 
GH distribution obtained as a normal variance-mean mixture where the mixing distribution is 

( ), ,Z GIG λ δ γ� ; or equivalently, X is obtained as a normal distribution subordinated to a 
GIG process. It is written as: 

0

( ; , , , , ) ( ; , ) ( ; , , )GH Normal GIGf x f x z z f z dzλ α β δ μ μ β λ δ γ
∞

= +∫    (7) 

Let 2 2γ α β= − , the parameters of the GH distribution areμ , δ , α , β , andλ . They 
measure location ( )μ , scale ( )δ , steepness of tail ( )α , skewness of distribution ( )β , and 

distribution class ( )λ . Parameters must satisfy: Rλ∈ , Rμ ∈ , 0δ ≥ , and 0 β α≤ < . GH 
distribution has more parameters than either stable or normal distribution and provides therefore 
more flexibility for controlling skewness and tail thickness of the distribution. Parameters α and 
β are also called shape parameters; higher value for α indicates steeper tail, and β =0 indicates 
symmetric distribution. Different parameterizations for distribution shape are proposed (see 
Prause, 1999), which are: 

                                                 
9 If the SDE is formulated as t t tdS S dX−= , the reformulated SDE will be 

( )1tX
t t tt

d S S d X e X−

Δ= + − −Δ   . 
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First parameterization:, α , β ,δ ,μ ; 2nd parameterization 2 2ζ δ α β= − ,
βρ
α

= ,δ ,μ ; 

3rd parameterization ( )
1
21ξ ζ −= + , χ ξρ= ,δ ,μ ; and 4th parameterization α αδ= , β βδ= ,δ ,μ . 

 
 

NIG distribution was introduced by Barndorff–Nielsen (1995) as a subclass of GH laws 

obtained for
2
1

−=λ .10 The density function for NIG is: 

( ) ( )( )
( )( )

( )

22
1

2 2

22
; , , , exp

K x
nig x x

x

α δ μδαα β δ μ δ α β β μ
π δ μ

+ −
= − + −

+ −

  (8) 

where , ,0 ,0x Rμ δ β α∈ ≤ ≤ ≤ ,and K1 is modified Bessel function of third kind with index 1.11 Let 
2 2γ α β= − , moments of NIG are: 

[ ]E X βμ δ
γ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
                               (9) 

[ ]
2

3Var X αδ
γ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                             (10) 

[ ] 1 2

13
( )

Skew X β
α δ γ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

                             (11) 

[ ]
2 13 1 4

( )
Kurt X β

α δ γ
⎛ ⎞ ⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

          (12) 

 
The moment generating function (MGF) of NIG is:  

( )2 2
2 2 2 2

2 2

( )

( )
( )

u uu
NIG u

eM u e e
e

δ α β μ δ α β α βμ

δ α β

− + − − − +

− +
= = (13) 

satisfying uβ α+ < . Simulation of NIG for forecast purpose was studied by Rydberg (1997) 
based on algorithms developed by Dagpunar (1989). 
  

                                                 
10 Thus, ( , , , , 1/ 2) ( , , , )GH NIGα β μ δ λ α β μ δ= − = . NIG process can be related to a Brownian motion time-

changed by an Inverse Gaussian process (IG). Let { , 0}tW W t= ≥  be a Brownian motion and let 

{ , 0}tIG IG t= ≥  be an IG  process with parameters 1a = and 2 2b δ α β= − , with 0α > , 

α β α− < < and 0δ > ; then the process: ( )2.t t tX IG W IGβδ δ= +  is an ( , , )NIG α β δ  process with 

parameters , ,α β δ . An equivalent parameterization of NIG  process is a Brownian motion with drift θ and 

volatilityσ , ( ) ( )B t t W tθ σ= + , computed at random time given by a gamma process (1, )G υ : 

( ; , , ) . ( )NIG t tX t G W Gυ υσ υ θ θ σ= + . 

11 Specifically, 
2

2
1

0

( ) exp
4 4
x xK x t t dt

t

∞
−⎡ ⎤

= +⎢ ⎥
⎣ ⎦

∫ , x R∈ . 
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 NIG motion, as well as other subclasses of hyperbolic distributions, is LP that has the property 
of being pure jump and infinite activity models. Its representation as time-changed Brownian 
motion allows modeling time change which itself reflects the intensity of economic activity 
through news arrival and trades. Tractability of the characteristic function (CF) of the NIG and 
other subclasses of the GH allows to recover option prices through fast Fourier transform (FFT). 
Knowledge of CF enables to recover the probability distribution through numerical inversion 
(Davies, 1973) as: 

0

1 1 ( ) ( )( )
2 2

iux iuxe u e uF x du
iu

φ φ
π

∞ −− −
= + ∫              (14) 

Empirical performance of GH distributions in modeling skewness, kurtosis, and implied 
volatility smile in option prices made them more appealing than classical diffusion or jump-
diffusion models. The hyperbolic law was found to provide a very good model for distributions 
of daily stock returns for a number of leading German enterprises (Eberlein and Keller, 1995), 
giving way to its today's use in stock price modeling (Bibby and Sørensen, 1997) and market 
risk measurement (Eberlein et al., 1998). Eberlein et al. (1998) showed that the hyperbolic 
distribution allows an almost perfect fit to financial data, both in spot and derivatives markets. 

 
V.   ESTIMATION OF OIL PRICE PROCESS AS A NORMAL INVERSE GAUSSIAN PROCESS 

Estimation of the NIG distribution used the R program and the statistical packages: 
HyperbolicDist, ghyp, and fBasics package.12, 13  

 
Table 2: Oil Price as Normal Inverse Distribution, Parameterization ( ), , ,α β δ μ  

Parameters Moments  
Alpha Beta Delta Mu Mean Variance Skewness Kurtosis 

2000M1–2003M4 0.54 -0.02 2.69 0.08 -0.005 4.92 -0.08 1.72 
2003M5–2007M10 0.97 -0.06 2.76 0.29 0.12 2.86 -0.11 1.13 

 
 

Table 3: Oil Price as Normal Inverse Distribution, Parameterization ( ), , , ,λ α μ σ β  

  Parameters Moments 
 

Lambda 

Alpha.bar 
Shape 
parameter 

Mu 
Location 
parameter 

Sigma 
Dispersion 
parameter 

Beta 
Skewness 
parameter 

Mean Variance Skewness Kurtosis 

2000M1–
2003M4 -0.5 1.46 0.08 2.22 -0.08 

-
0.005 4.95 -0.08 2.06 

2003M5–
2007M10 -0.5 2.68 0.29 1.69 -0.17 0.12 2.87 -0.04 1.22 
 
                                                 
12 http://www.r-project.org/;The HyperbolicDist Package, David Scott d.scott@auckland.ac.nz; The Ghyp Package, 
Wolfgang Breymann, David Luethi, david.luethi@zhwin.ch; The fBasics Package, Diethelm Wuertz, 
wuertz@itp.phys.ethz.ch. 

13Because characteristic function of NIG is known in closed form, parameter estimation can also be performed 
using the empirical characteristic function method (See Parzen 1962, Feuerverger and McDunnough, 1981).  
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Estimation of the oil price NIG distribution yielded results consistent with findings for empirical 
distributions in Section II; namely, NIG parameters changed significantly in 2003M5–2007M10 
compared with 2000M1–2003M4 under strong impulses from monetary policy. Location 
parameter μ  increased from 0.08 to 0.29. Consequently, mean return increased from -0.005 
(annualized to-0.005*255= -1.28 percent) in 2000M1–2003M4 to 0.12 (annualized to 
30.6 percent) in 2003M5–2007M10. Scale parameterδ  increased slightly from 2.69 to 2.76; 
however, by exceeding unity, it remained high, indicating a stretched out distribution. Shape 
parameter measuring skewness β  remained small in the range -0.02–-0.06 indicating symmetric 
oil price returns distribution. Shape parameter measuring tail steepness α  increased 
significantly from 0.54 in 2000M1–2003M4 to 0.97 in 2003M5–2007M10, indicating steeper 
tails and therefore higher frequency of smaller jumps. Consequently, volatility fell considerably, 
from 2.2 in 2000M1–2003M4 (annualized to 35 percent) to 1.7 in 2003M5–2007M10 
(annualized to 27 percent). In spite this decline, volatility remained high for daily data, implying 
that oil markets were constantly facing significant uncertainty and were sensitive to news and 
small shocks and attractive to speculators. 
 
In sum, parameter estimates for two sub-samples were fully concordant with data. They 
established that oil price process was dominated by a jump process, with distinct features. 
In 2000M1–2003M4, oil prices exhibited high volatility, however, distribution mean was small 
and negative, indicating that the oil process fluctuated widely around a slightly declining trend. 
In 2003M5–2007M10, oil price process showed declining volatility; however, it was driven by a 
sharply upward trend, annualized to 30.6 percent per year, meaning that oil markets were 
permanently out-of-equilibrium during this period. While density was symmetric in both sub-
periods, meaning that probability of upward jumps was matched by probability of downward 
jumps, the drift component of the process became powerful in the second sub-period and drove 
oil prices on a rising trend. 
 
These parameters estimates can be explained by world demand and supply for crude oil and 
underlying fundamentals for crude oil markets.14 As world real GDP expanded at 4–5.5 percent 
per year during 2003–07 and U.S. dollar kept depreciating, world oil demand for oil expanded 
faster than before. Given rigidities in world oil supply, faster growth of oil demand created 
excess demand for oil. Given short-term inelasticity of oil demand and supply with respect to 
prices, any small excess demand for oil would cause large variation in prices. In turn, large price 
increases would have small negative effect on oil demand. Negative price effect, however, 
would be quickly dominated by positive income effect, i.e., world economic growth, which kept 
oil prices under rising pressure. 
 

                                                 
14 Simultaneous demand-supply models for world oil markets were analyzed in Krichene (2002, 2005, 2006, and 
2007). In these models, world real GDP, interest and exchange rates were shown to be key driving variables of oil 
demand, and consequently, main determinants of oil prices. 
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VI.   MARKET INCOMPLETENESS AND ESSCHER TRANSFORM 

This section studies risk-neutral distribution, or equivalently, martingale measure,15 associated 
with statistical NIG. Such martingale measure is used for pricing derivatives based on NIG 
process. Indeed, except for Brownian motion or Poisson process, LP are incomplete models. A 
perfect hedge cannot be obtained and there is always a residual risk which cannot be hedged. In 
a Levy market, there are many different equivalent martingale measures under which discounted 
asset price process is a martingale. Existence of martingale measure is related to absence of 
arbitrage, while uniqueness of martingale measure is related to market completeness, i.e., 
perfect hedging. 
 
One approach for finding an equivalent martingale measure is Esscher transform proposed by 
Gerber and Shiu (1994). Given a statistical distribution P , Esscher transform induces an 
equivalent probability measureQ  and a martingale process. Esscher parameter is determined so 
that discounted asset price is a martingale under the new probability measure Q . Let 

( )( ) (0) X tS t S e= , where 0{ ( )}tX t ≥  is an LP with stationary and independent increments and 
(0) 0X = . For each t , the random variable ( )X t , seen as the continuous compounded rate of 

return over t  periods, has an infinitely divisible distribution with a probability density given 

by ( , )f x t , 0t > . MGF, assumed to exist, is defined as ( )( , ) [ ] ( , )uX t uxM u t E e e f x t dx
∞

−∞

= = ∫ . 

Assuming ( , )M u t continuous at 0t = , it follows from infinite divisibility that 

( , ) [ ( ,1)]tM u t M u= . Let h  be a real number such that ( ) ( )hxM h e f x dx
∞

−∞

= ∫  exists; Esscher 

transform (with parameter h ) of 0{ ( )}tX t ≥  is defined as an LP with stationary and independent 
increments, where the new probability density of ( )X t , 0t > , is: 

( , ) ( , )( , ; )
( , )

( , )

hx hx

hy

e f x t e f x tf x t h
M h t

e f y t dy
∞

−∞

= =

∫
        (15) 

The corresponding MGF is ( , )( , ; ) ( , ; )
( , )

ux M u h tM u t h e f x t h dx
M h t

∞

−∞

+
= =∫  and 

( , ; ) [ ( ,1; )]tM u t h M u h= . An Esscher equivalent measure is given by: 

( )exp log( ( ))
( )

t

t

hX

thX

dQ e hX t M h
dP E e

= = −            (16) 

Accordingly, Esscher transform of  NIG process has a MGF at 1t =  given by:  

                                                 
15 A discrete-time martingale is a discrete-time stochastic process 1 2 3, , ,.....X X X that satisfies for all n : 

( )nE X < ∞  and ( )1 1| ,.....,n n nE X X X X+ = , i.e., conditional expected value of the next observation, given 

all of the past observations, is equal to the last observation. 
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( ) ( ) ( )2 2 2 2 2 2 2 2( ) ( )( ,1)( ,1; )
( ,1)

u h u h h hM u hM u h e
M h

μ δ α β α β μ δ α β α β⎛ ⎞+ + − − − + + − + − − − +⎜ ⎟
⎝ ⎠+

= =  

( )2 2 2 2( ) ( )u h u h
e
μ δ α β α β+ − + − − + +

=             (17) 
 
The parameter h  is determined so that the modified probability measureQ  is an equivalent 
martingale measure to statistical probability measure P . The idea is to find *h h= , so that the 
discounted stock price process 0{ ( )}rt

te S t−
≥ is a martingale with respect to the probability 

measure corresponding to *h . The martingale condition is: (0) [ ( )] [ ( )]Q rt rt QS E e S t e E S t− −= = . 
The parameter *h  is a solution to 

( 1) ( )
( )

( )

[ ] (1 , )(0) [ ( )] [ (0) ] (0) (0)
[ ] ( , )

P h X t
Q rt rt Q X t rt rt

P hX t

E e M h tS E e S t e E S e e S e S
E e M h t

+
− − − − +

= = = =   (18) 

This condition is equivalent to the following equation: ( )1 [ ]rt Q X te E e−= , or *(1, ; )rte M t h= . The 
solution does not depend on t . Therefore setting 1t =  yields *(1,1; )re M h= ; in logarithm form, 
the parameter h  is a solution to: 

* * *log[ (1,1; )] log[ (1 ,1)] log[ ( ,1)]r M h M h M h= = + −  (19) 
Applying Esscher transform to NIG, and using MGF given by ( )NIGM u , the parameter h  
satisfies: 

( ) ( )( ) ( )( )2 2 2 2 2 2 2 21 ( 1 ) ( )r h h h hμ δ α β α β μ δ α β α β= + + − − − + + − + − − − +  

( )2 2 2 2( ) ( 1)r h hμ δ α β α β= + − + − − + +  

For parameters in Table 2, the parameter h was computed as h= -0.4858 for 2000M1–2003M4, 
and h=-0.5152 for 2003M5–2007M10. Esscher transforms would be 

( )exp 0.4858 0.2439t
dQ X t
dP

= − + and ( )exp 0.5152 0.2691t
dQ X t
dP

= − + , respectively. 

 
An alternative approach for computing a risk-neutral measure, similar to Esscher transform, can 
also be proposed (Carr et al., 2003). Let 0( )t tX ≥ be a real-valued process with independent 

increments, then 0( )
[ ]

t

t

iuX

tiuX

e
E e ≥  is a martingale u R∀ ∈ . For example, if asset price tS is modeled 

as ( )0 expt tS S X=  where tX  is an LP,16 the resulting risk-neutral process for log-price is: 
 

log ( ) (log (0) log [exp( ( )]) ( ))S t S rt t E X t X t= + − +   (20) 
 

                                                 
16 In Madan et al. (1998), risk-neutral price process is 0 exp[ ]t tS S rt X tω= + + . Value for ω  is determined by 

evaluating the CF for ( )X t  at 
1u
i

= , so that ( ) 0
rt

te E S S− = ; or equivalently ( )tX tE e e ω−= . For NIG, 

( )2222 )1( +−−−−−= βαβαδμω . 
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For NIG process, the risk-neutral process becomes: 

( )2 2 2 2log ( ) (log (0) ( 1 ) ( ))S t S rt t t X tμ δ α β α β= + − − − − − + +   (21) 

with 1β α+ < . Characteristic function (CF) of  log-price is:  
 

[exp( log( ( )))] exp(log (0) log [exp( ( )]) [exp( ( ))]E iu S t S rt E X t E iuX t= + −   (22) 
 
For NIG, risk-neutral CF is: 

( ) ( )
2 2

2 2

2 2 2 2

( )
exp(log (0) ( 1 ) )

t

iu
t iu

eu S rt t t e
e

δ α β
μ

δ α β
φ μ δ α β α β

−

− +

⎛ ⎞
⎜ ⎟= + − − − − − +
⎜ ⎟
⎝ ⎠

 

 

( )2 2 2 2exp(log (0) ( 1 ) ( ) )S rt t tiu t iuμ μ δ α β α β= + − + + − + − − +   (23) 

As an illustration using parameters in Table 2, and market data on November 2, 2007, namely 
futures oil price for end-December 2007 at US$95.93/barrel, US three-month treasury bill at 
r=4.595 percent, and taking t=57/365=0.16, risk-neutral CF for 0.97α = , 0.06β = − , 2.76δ = , 
and 0.29μ = would be:17  

27.47*exp(0.046 0.442 0.941 ( 0.05 ) )NIGCF iu iu= − − − +  
 

VII.   DENSITY FORECAST OF CRUDE OIL PRICES: THE INVERSE PROBLEM 

Section II was concerned with estimating oil price process based on time-series data for oil price 
returns. Risk-neutral distribution is obtained by operating a transformation of the statistical 
distribution using many alternative techniques that have close resemblance to Girsanov’s 
theorem (Duffie, 2001). In this section, risk-neutral distribution is derived from option prices in 
order to gauge market sentiment regarding future oil prices. This is known as inverse problem in 
option pricing which consists of estimating parameters of risk-neutral density from option 
prices. Inversion of option prices provides a density forecast for oil prices at a given maturity 
date T . In such forecast, besides expected mean, which is directly observed from futures prices, 
traders are also interested in volatility, skewness (direction of trends), and kurtosis (risk for 
large fluctuations). 
 
Assuming a NIG distribution for log-price, the inverse problem can be stated as finding  
parameters ( ), , ,θ α β δ μ= satisfying 0δ ≥ , Rμ ∈ , 0 β α≤ ≤ , by minimizing the quadratic 
pricing error: 

( )2*

1

1ˆ arg min ( , ) ( , )
M

j j j j
j

C T K C T K
Mθ

θ
=

= −∑ , 1, 2,....,j M=  (24) 

Subject to put-call parity constraint: 
                                                 
17 Parameters for 2000M1─2003M4 did not satisfy condition 1β α+ <  and therefore would not yield real 
parameters for NIG distribution.   
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( ) ( )*
0 , , rT

j j j j jS P T K C T K K e−+ − =     (25) 

where *( , )j jC T K denotes call option price computed from NIG distribution, ( ),j jC T K  and 

( ),j jP T K  denote, respectively, market call and put prices for maturity T and strikes jK , 0S is 
asset price at 0t = , r is risk-free interest rate, and M denotes number of traded options (or 
strikes). Put-call parity condition brings extra-sample information which helps to regularize the 
estimation problem.18 Choosing a penalty parameter 0≥l , minimization problem becomes: 

( ) ( ) ( )( )( )22* *
0

1

1ˆ arg min ( , ) ( , ) , ,
M

rT
j j j j j j j j j

j
C T K C T K S P T K C T K K e

Mθ
θ −

=

= − + + − −∑ l  (26) 

 
The above minimization requires knowledge of functional form of ( )* ,j jC T K . If the transition 

density of the process is known in closed form, then ( )* ,j jC T K can be derived as discounted 
expected payoff under a risk neutral density, namely: 

( ) ( )( )* , max ,0Q
j j T jC T K E S K= −      (27) 

However, noting that many LP may not have a density function in closed form, or have a 
density function which is not easily tractable, Heston (1993), Scott (1997), and Carr and Madan 
(1999) suggested the use of methods based on CF of a stochastic process to price options. 
Assuming CF is known analytically, many techniques become available for pricing options in 
the Fourier space. Let lnt ts S=  be log-price, ln( )k K=  log-strike price, and ( | )T tp s s risk-
neutral density, then CF of lnt ts S=  under risk-neutral measure is given by: 

( ) ( | )Tius
T T t Tu e p s s dsφ

∞

−∞
= ∫  (28) 

Carr and Madan (1999) proposed Fast Fourier transform (FFT) method to compute option 
prices; they showed that option price can be written as: 

( )*

0

exp( )
, Re ( )jiukj

j j T

ak
C T K e u duψ

π

∞
−− ⎡ ⎤= ⎣ ⎦∫       (29) 

Where lnj jk K= , and ( )T uψ is Fourier transform of a modified call option price. In fact, 
defining the modified call option as ( ) exp( ) ( )T Tc k ak C k≡  for 0a > , its Fourier transform can 

be written as ( ) ( )iuk
T Tu e c k dkψ

∞

−∞

= ∫ . Carr and Madan (1999) showed that ( )T uψ can be 

expressed in terms of ( )T uφ as: 

2 2

( ( 1) )( )
(2 1)

rT
T

T
e u a iu

a a u i a u
φψ

− − +
=

+ − + +
            (30) 

                                                 
18 Cont and Tankov (2004) argued that inverse problem is an ill-posed problem and proposed relative entropy, 
which is the Kullback-Leibler distance for measuring proximity of two equivalent probability measures, as a 
regularization method with prior distribution estimated from statistical data via maximum likelihood method. This 
regularization will enable to find a unique martingale measure.  
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For 0a > , singularity at 0u = disappears. The option price can therefore be computed by FFT 
provided ( ( 1) )T a iφ − + is finite. In order to be able to use MGF, variable u is replaced by iu− . 

The equivalent expression is 2 2

( ( 1))( )
(2 1)

rT mgf
mgf T

T
e u au

a a u a u
φψ

− + +
=

+ + + +
 

 Where  ( ) ( )2 2 2 2( )u umgf
t u e

μ δ α β α β
φ

+ − − − +
= and , , ,α β δ μ  are here risk-neutral parameters.  

 
Estimation of implied risk-neutral distribution from option prices is a deconvolution problem. 
Madan et al. (1998) applied maximum likelihood method to density function to calibrate a 
Variance Gamma process based on option prices. In this section, deconvolution methods based 
on CF are applied as CF necessarily satisfies the same differential equations or least squares 
problems as corresponding option prices. The estimation relies principally on the empirical 
characteristic function (ECF) method. The least squares are restated in Fourier space as: 

 

( )

2

1

2
1

0
1 1 1

1( ) ( , )
1ˆ arg min

1 1 , ( )

i j j

i j j i j j i j j

M
u k akmgf

T i j jN j

rTM M Mi u k ak u k ak u k akmgf
j j T i j

j j j

u e e C T K
M

N eS e e e e P T K u e e K
M M M

θ

ψ

θ

ψ

=

−=

= = =

⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟⎝ ⎠= ⎜ ⎟

⎛ ⎞⎜ ⎟
+ + − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑
∑

∑ ∑ ∑l

(31) 

1, 2,....,i N= ; where N is the size of grid in Fourier space. Expression for ( )mgf
T uψ  was given 

above.  
 
To assert robustness of estimated parameters, an alternative calibration method was applied. Let  

( )'
1 1,...., , ,.....,M MV C C P P=  be a ( )2 ,1M vector of market call and put option prices, let D be a 

payoff matrix with dimensions ( )2 ,M N where N M≥ is number of states at maturity T ; V is 
related to empirical risk-neutral distribution q  as follows:19 

. .rTV e D q−=     (32) 
Risk-neutral distribution is computed using Tikhonov regularization method described in Engle 
et al. (1996) as:20  

( ) 1 'ˆ . ' . . .rTq e D D I D Vκ −= +      (33) 

                                                 
19 This equation can be restated with a view to using the call-put parity condition. Let CD ( ),M N  be the payoff 

matrices associated with call options; let also , ( )'
1,....,C MV C C=  and ( )'

1,....,P MV P P= be observed call and 

put option prices, KV be a vector of strikes, and 1 (1,......,1) 'V =  be the unit vector, then:  . .rT
C CV e D q−=  

subject to: 0 1. . .rT rT
P C KS V V e D q e V− −+ − =   . 

20 Computation of q̂ was carried out using the Matlab package by C. Hansen (1998): Regularization Tools A 
Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems. 
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Where 0κ >  is a penalty parameter. Knowledge of q̂  enables to estimate parameters using ECF 
method. Define states at time T as j

TS , 1,2,...,j N= ; each state is related to log-price returns 
j

TX  by 0

j
TXj T

TS F e= ,21 where 0
TF is futures price at 0t =  for delivery at T . Define ECF as  

1 1 1

ˆ ˆ ˆ( ) exp( ) cos( ) sin( )
N N N

j j j
n T j T j T j

j j j

u iuX q uX q i uX qφ
= = =

= = +∑ ∑ ∑
    

(34) 

 and theoretical CF ( )nig uφ as: 

( )
2 2

2 2( )

iu
nig iu

eu e
e

δ α β
μ

δ α β
φ

−

− +

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

           (35) 

ECF is accordingly stated as: 

1

1ˆ arg min ( ( ) ( )) ' ( ( ) ( ))
N

n i nig i n i nig i
i

u u W u u
Nθ

θ φ φ φ φ
=

= − −∑ , 1, 2,....,i N=    (36) 

Where W is a positive semi-definite weighting matrix. 
 
Knowledge of q̂  enables also to estimate parameters , , ,α β δ μ  using method of moments or, 
equivalently, method of cumulants. By computing empirical moments for a sample of state log-
returns at maturity T based on empirical density q̂ , parameters , , ,α β δ μ  can be solved for by 
equating sample moments with NIG theoretical moments given above in (9)─(12). 
 
The market data was for November 2, 2007; it consisted of call and put futures options contracts 
maturing end-December 2007; risk-free interest rate, taken here to be the three-month 
US Treasury bill rate, was equal to 4.595 percent; and crude futures price, was equal to 
US$95.93/barrel. Two methods for implying risk-neutral distribution were implemented. The 
first method computed Fourier transforms of call and put prices and applied constrained 
minimization as stated in (31). It yielded the following parameters: ˆ 3.30α = , ˆ 0.35β = , 
ˆ 5.09δ = , and ˆ 1.75μ = . The second method used ECF as stated in (36) and applied General 

Method of Moments to imply risk-neutral distribution: ˆ 3.1α = , ˆ 0.30β = , ˆ 5.41δ = , and 
ˆ 1.74μ = . Applying formulas (9-12) for NIG moments, the first method gave for expected mean 

                                                 
21 Probability density for j

TX is the same as probability density for j
TS . Indeed, if x is a random variable with 

probability density ( )f x , for a monotone change of variable ( )y g x= , the probability density of y , denoted 

( )h y , is given by ( ) ( ) ( )( )1
1

1
'( )

h y f g y
g g y

−
−= where 1g − is inverse function of g  and 'g is derivative. 

For 0
TX

TS F e= , the factor 
( )1

1
'( )g g y− is equal to 1. 
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2.29 percent, variance 1.57 (sigma=1.25),22 skewness 0.08, and kurtosis 0.19. For the second 
method, expected mean was 2.27 percent, variance 1.77 (sigma=1.33), skewness 0.07, and 
kurtosis 0.19. Therefore, market participants anticipated an average price for oil price at 
US$98/barrel= (95.93*exp(0.022)) for end-December 2007; dispersion measured by sigma was 
lower than statistical values in Tables 2 and 3, implying narrower interval of variation around 
expected mean; skewness was positive implying higher probability for oil prices to rise above 
expected mean than to fall below this mean. Kurtosis was below 3, implying flatter NIG 
distribution compared with normal distribution and higher than normal probability for tail 
events.  
 
Based on implied crude oil density forecast, market participants short-term expectations seemed 
to be strongly influenced by underlying fundamentals characterizing oil markets. These 
fundamentals were characterized by expansionary monetary policy since 2001, sharply 
depreciating U.S. dollar, which fell by over 65 percent vis-à-vis Euro since 2001, higher world 
economic growth and consequently higher demand for oil. Given crude oil supply rigidities, 
traders expected excess demand for crude oil to increase, and consequently to cause further 
pressure on oil prices. Moreover, traders were cognizant that oil markets were not separately 
affected by monetary shocks; other commodities markets were experiencing similar shocks. 
World aggregate demand for commodities has expanded, resulting in double digit inflation for 
commodities prices, estimated at about 23 percent per year in 2003M5–2007M10. Such high 
inflation would contribute to erode rapidly real interest rate, and therefore to stimulate further 
real aggregate demand for goods and services. Financial conditions, characterized by sub prime 
markets defaults, large write-offs by leading banks, and piling up of credits, showed that 
restraints in monetary policy were not in the offing soon. This was demonstrated by further 
relaxation of monetary policy in August-December 2007, followed by immediate weakening in 
U.S. dollar and surge in oil prices. All this surrounding information set might have led traders to 
assume persistence in oil prices and to allow more likelihood for right tail events.  
 

VIII.   CONCLUSIONS 

Oil prices have been relentlessly on rising path under strong impetus from faster growing oil 
demand and lagging oil supply. Using NIG distribution, a subclass of GH distribution found to 
fit closely high frequency financial data, oil prices parameters changed drastically 
in 2003M5-2007M10 compared to 2000M1–2003M4. Changes were explicited by high mean 
return which rose to 0.11 from –0.005, and lower dispersion which fell to 1.70 from 2.22. NIG 
for both sub-periods had low kurtosis, implying flatter than normal distribution. Based on NIG 
parameters, oil prices would be expected to rise at about 30 percent per year.  
 
Crude oil density forecast for end-December 2007 was extracted from option prices data on 
November 2, 2007. Traders’ expectations were in full accordance with prevailing market 
fundamentals, characterized by widening oil demand-supply gap, highest postwar commodity 

                                                 
22 It is known that change of measure from statistical to risk-neutral distribution does not change variance; it 
changes only expected returns. Computation not reported here showed that variance of oil returns dropped sharply 
during July-October, 2007.  
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price inflation, falling real interest rates, depreciating U.S. dollar, and meltdown of sub prime 
market debt. Relaxation of monetary policy in August─December 2007 jolted oil prices and 
apparently contributed to firm up market expectations toward racing oil prices. Derived risk-
neutral density had low kurtosis, implying flatter distribution and significant probability for tail 
events.  
 
A legitimate question is how far oil prices could rise without reaching critical zone of triggering 
a world recession, or unexpectedly, a drop in oil supply? Or equivalently, as oil and other 
commodities markets were recently strongly affected by monetary shocks, how far monetary 
stance can remain accommodative without exacerbating inflation and causing recession? The 
answer is most likely not too far, noting oil price rising trends were simultaneously 
accompanied by fast rising trends in other commodities prices, fast depreciating currencies, 
weakening financial conditions, and write-offs on bad debt. Persistence of present trends would 
culminate in explosive commodities prices and could turn out to be un-sustainable. More 
worrisome, oil producers became wary of rapidly falling value of their international reserves, 
which could discourage oil supply. 
 
Although claims could be made that so far high commodities prices had not dented world 
economic growth and had not affected consumer price indices, recessionary and inflationary 
implication of oil price shocks should not be underestimated. Hamilton (1983) and Hamilton 
and Herrera (2004) have analyzed recessionary effects of oil prices and allowed for longer lag 
for these effects to be fully transmitted to output and prices. Relationship between oil prices and 
output and prices has also been studied by Bernanke et al. (1997), Jones et al. (2004), and Lee et 
al. (1995). These authors found significant recessionary and inflationary impact for oil prices on 
real GDP and consumer prices. 
 
 This paper showed that in 2000M1–2003M4 oil prices were evolving around slightly declining 
trend with moderate oil demand growth. Such scenario could be restored provided restrained 
monetary policy is in the works. However, policy dilemma would face policy-makers as lessons 
from past inflationary experiences in many countries had clearly demonstrated: restraining 
monetary policy with attendant temporary recession, or risking high inflation with attendant 
recession, financial disorder, and social unrest. High inflation may discourage supply of goods 
in general, as value of money is falling precipitately. If oil supply turns regressive, economic 
growth would be impeded, and pressure on oil price will accelerate. 
 
Restoring stable oil markets is essential for durable economic growth and price stability. The 
brunt is evidently on monetary policy. The latter cannot be used as a panacea for all. Different 
types of economic issues may be best addressed through well targeted instruments and 
appropriate solutions. For instance, balance of payments deficits could be best and quickly 
achieved via monetary approach to balance of payments which consists of reducing public and 
private deficit financing through credit ceilings. Similarly, external competitiveness could be 
durably achieved via productivity gains, cost reduction, and technical innovations without 
necessarily trying to depress nominal exchange rates. Exchange rate depreciation may not 
restore external competitiveness in context of expansionary monetary policy. To be effective, 
exchange rate has to be supported by restrictive monetary policy. Safe conduct of monetary 
policy is a prerequisite for economic stability and growth. 
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In sum, oil prices are amongst key economic variables. By juxtaposing two sub-periods, the 
paper showed that oil price parameters could be sensitive to macroeconomic policies. 
Accordingly, prudent monetary policy may be necessary for achieving longer-term oil price 
stability. 
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