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1 Background

Power disruptions inflict non-trivial welfare loss in developing countries (Alam, 2013;

Allcott et al., 2016; Zuberi, 2012). Measuring these losses is often challenging for two

reasons. First, it is unlikely that firms absorb the full cost of disruptions but rather adopt

coping mechanisms to minimize large losses (Steinbuks and Foster, 2010; Fisher-Vanden

et al., 2015). Ignoring these investments can introduce an upward bias to real cost es-

timates. Second, lack of data makes it difficult to account for adaptation costs such as

generator ownership that sharply increase energy costs relative to grid electricity. Pick-

ing up on such missing pieces is crucial to avoid underestimating the cost of disrup-

tions.

Evidence on the productivity impact of power disruptions is scant. Past studies focused

on cyclical revenue losses or cost escalation due to disruptions. Particularly, the short-

term focus can understate the impact of these disruptions, especially if firms tap into in-

ventories to smooth out short-term losses. We look beyond the short-term and focus on

productivity losses since the prospect of continued disruptions can tie up firm resources

in unproductive mitigation measures with consequences for long-term productivity.

Recent studies go beyond short-term loss and look at impacts on job creation (Mensah,

2018) and tax mobilization in Africa (Blimpo et al., 2018); and firm productivity in India

and Pakistan (Allcott et al., 2016; Grainger and Zhang, 2017).

We attempt to fill these gaps by quantifying productivity losses accrued to power dis-

ruptions using manufacturing firm data from Ethiopia over 2000 - 2009. We contribute

to the literature by looking at links between power disruptions, their costs and how the

two influence firm shutdown episodes. To help us examine these links, we focused on

three interrelated questions: [a] how much productivity is lost due to electricity short-

ages? [b] do productivity losses vary with the intensity of electricity use? and [c] are

firms likely to temporarily shutdown to avoid large losses?

Our empirical strategy relies on two complementary proxies for power outage as the

survey does not directly measure power losses. First, we constructed a dummy for power

disruptions when firms identify electricity disruption as a major challenge to their oper-
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ation in a fiscal year. Drawing on this and other firm specific information, we estimated

productivity differences when disruptions are a major constraint and when they are not.

Firms, however, can form opinions about their biggest challenges after observing pro-

ductivity levels. We use deviation of firms’ grid-power consumption from its long-run

trend as an alternative proxy to address potential endogeneity bias from the first mea-

sure. As the data shows, this measure is not strongly correlated with other distortions

that could cause lower grid-power consumption such as raw material and machinery-

part shortages. Labor productivity and TFP are used as alternative productivity mea-

sures. Additionally, we examine how frequently temporary shutdowns are used to min-

imize losses from power disruptions. We tested whether these ’incidents’ are related to

power disruptions while controlling for firm specific heterogeneity.

Our results show that electricity disruption has a significant effect on productivity, ir-

respective of productivity measures. Labor productivity is, on average, 6 - 10 percent

lower due to power disruptions. The result is similar when TFP is used to measure pro-

ductivity. The equivalent loss in TFP averaged between 4 - 9 percent, after controlling

for relevant covariates and firm level heterogeneity. However, losses are non-linear

varying by intensity of power use and productivity quantile. Productivity losses are

high at higher quantiles. Similar patterns are observed along different intensities of

power use. Furthermore, we show that firms could temporarily shut down to lower

losses from power disruptions, on average, by 1.4 - 2 months.

Our results are consistent with a growing empirical evidence on the economic cost of

electricity disruptions (Alam, 2013; Allcott et al., 2016; Fisher-Vanden et al., 2015; Zu-

beri, 2012). Each of these studies estimated the impact of disruptions on either revenues

and costs, or the use of alternative energy sources. Fisher-Vanden et al. (2015) showed

energy intensive firms in China faced 13 percent higher costs due to electricity disrup-

tions. Similarly, Allcott et al. (2016) found a 5-10 percent reduction in the revenues of In-

dian manufacturing firms and much smaller productivity losses because input storage

is possible. However, different industries could face different costs. Alam (2013) shows

how steel mill output in India fell by 11-16 percent in response to a 10 percent increase

in outages. Rice mills avoid output loss by altering production speed and/or technol-

ogy.
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The rest of the paper is organized as follows. Section 2 provides a succinct history of

power outages in Ethiopia. Section 3 summarizes the conceptual framework used to

think through firm response to outages and briefly introduces the data. Section 4 de-

scribes the empirical strategy. The first part of section 4 introduces two approaches used

to estimate the productivity cost of outages. The second part explains why firms could

respond to outages by varying capacity utilization. Sections 5 presents results and dis-

cussions, and section 6 concludes.

2 A brief history of outages

Perhaps one of the most pressing challenges facing the Ethiopian economy is maintain-

ing the structural integrity of power generation networks. The power system came un-

der severe strain over the past decade due to distribution system maintenance backlogs,

delays with bringing in new generating capacity, and unanticipated weather shocks. As

a result, the state owned utility provider, Ethiopian Electric Power Corporation (EEPCo),

relied on variable load shedding schedules to deal with the problem (EEA, 2009).

At the height of the power crisis in 2009, EEPCo estimated peak hour generating capac-

ity shortfall of 19 percent (FDRE, 2012). While the majority of power outages last only a

few hours, some last for days forcing manufacturing firms to close their doors. But, ex-

treme cases of nationwide load shedding involving deep power cuts are not rare. One

case of such extreme rationing occurred in April 2009, where outages were spread-out

over six days and lasted 14 hours each time (EIU, 2009a). These restrictions were further

tightened in May 2009 where the country’s three large cement plants were advised to

close for 30 days. Additionally, nearly 100 other power intensive plants were flagged

and absorbed deep cuts, exemption granted to exporters was revoked and scheduled

cuts for other users were extended to eight days a month (EIU, 2009a).

Such recurring blackouts have inflicted large economic costs. Engida et al. (2011) esti-

mated losses reaching 3.1 percent of GDP during 2002-2004 using a static Computable

General Equilibrium Model. The study suggested that the government’s decision to fa-

vor a handful of export oriented activities may have led to a higher overall cost com-
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pared to a "no-favorites" strategy. An anecdotal study by EIU estimated the cost of the

2009 blackouts at 3.5 percent of GDP (EIU, 2009b). These estimates included the cost of

lost production and imports of 200,000 tonnes of cement to compensate for temporary

cessation of local production. Also reflected in the estimates are independent generation

by large private firms, and costs incurred to foreign-private sector contractors commis-

sioned by EEPCo to supply diesel generators for half of the outage period.

According to World Bank Enterprise Surveys, the number of firms reporting power dis-

ruptions as major constraint is rising (World Bank, 2015). In 2011, 63 percent of firms re-

ported electricity disruptions as an obstacle to their operations with 33 percent of firms

reporting it a major/severe obstacle. In 2015, this number climbed to 87 percent with

42 percent of all firms reporting it as a major obstacle. Broader comparison with SSA

reveals a sharper resemblance. Particularly, the proportion of firms reporting outages

and the duration and frequency of those outages are strikingly similar. Annex Table A.1

elucidates these similarities.

Own generation of electricity is small although a non-trivial number of firms own gen-

erators and intend to supplement grid electricity should disruptions occur. While the

number of firms owning or sharing generators is roughly 42 percent, self generation

accounts for less than 17 percent of total electricity consumption (World Bank, 2015).

Some firms keep generators for periods of severe power disruptions and ride out short-

lived outages. Self generation is used as a last resort since it is often more costly than

grid electricity (Alby et al., 2013). Self-generated electricity could be three to four times

more expensive than grid electricity (Steinbuks and Foster, 2010).

3 Conceptual framework and Data

3.1 Conceptual Framework

Power generation and distribution in Ethiopia is entrusted to the state utility company.

Therefore, customers do not have the option to choose alternative power suppliers. Ab-

sent retail choice, able firms adopt coping mechanisms when faced with power disrup-
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tions, while others absorb the full cost of outages. We use a simple decision tree sum-

marized by Figure 1 to thinking through choices available to firms and what these mean

for productivity losses.

Firms facing power disruptions could respond in two ways. Those that can insure them-

selves against losses do so by acquiring generators (Reinikka and Svensson, 2002). While

this allows them to replace grid electricity and continue to produce throughout the year,

installation of self-generation capacity ties up potentially productive capital K. In such

cases, investment in complementary capital provides a temporary relief, but can reduce

long-run output. The capacity to self-generate does not automatically guarantee com-

plete substitution between grid and self-generated power.

Are electricity disrup-
tions a major constraint

on the firm’s operations?

Business as usualCoping Mechanisms

Shutdown

Idle capacity

Self-generate

Reduced-cap Full-cap

Small productive K

High cost of
self-generation

Yes No

Figure 1: A decision tree of firms’ responses to power disruption.

The economic burden imposed by self-generation might not be wholly offloaded to con-

sumers through mark-ups especially if firms face elastic demand for their goods, or

industry specific tariff rates are low enough to allow cheaper imports. This limits the

potential of self-generation as a permanent substitute for unreliable public grid sup-

ply. Self-generation also affects investment options available to developing country en-

trepreneurs since it adds to capital and operating costs of doing business, raises pro-

duction costs, lowers the competitiveness of local products, and limits the potential for

exploiting economies of scale (Steinbuks and Foster, 2010).
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For these reasons, the self-generation option is often open only to medium and large

firms. The majority of smaller firms either have small-scale operations making it too

costly to own generators, or they are rationed out of credit markets that facilitate such

investments. Small firms in these positions are forced to scale down when faced with

unanticipated disruptions. Such firms could lower intermediate input demand, when

labor markets are fragmented and capital is quasi-fixed. But more generally, small firms

can minimize losses by either lowering flexible input demand and varying capacity uti-

lization (over time), or through temporary shutdown.

We use alternative measures of power disruption to capture its impact on productivity

and temporary shutdowns. The first measure ‘S’ is a dummy equal to one if the firm

faced electricity disruption in a fiscal year. We distinguish between firms ranking the

problem as a major constraint in a particular fiscal year ’shortage-firms’ from those that

do not ’non-shortage firms’. This designation is not fixed over time and time-variation

in the dummy is crucial since a fixed designation could also flag inherent productiv-

ity problems that keep firms from adapting. The productivity losses computed in this

study are a sum total of all conceivable costs.

One caution against the use of self-reported power disruption measures is they can un-

derestimate the proportion of firms reporting disruptions. If generator owning firms are

less likely to report power disruptions, then the self-reported power disruption measure

is more likely to underestimate the reach of power disruptions. Nevertheless, the cost of

owning and operating generators is substantially higher than grid supply that it would

be unrealistic for generator owning firms to ignore such cost discrepancies. The other

concern involves the timing of judgments about major constraints faced during a fiscal

year. If firms decide major constraints to their operations after observing their produc-

tivities, then ‘S’ is endogenous.

We use an alternative proxy to address the drawbacks of the first measure. Sσ is a dummy

that captures all firms facing grid-power consumption drops exceeding ‘1 standard de-

viation’ from long-run grid power consumption in any fiscal year. This includes firms

that either cope with grid-power disruptions or incur its full cost. The data shows that

this measure is not correlated with other distortions that might lower grid-power con-
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sumption such as raw material and machinery-part shortages (see Appendix Table A.3).

The conceptual framework broadly outlines a firm’s responses to power disruptions. It

specifically highlights the long-term implications of power disruptions by either creat-

ing and perpetuating idle capacity or tying up resources in unproductive capital. This

feeds into our empirical analysis in two ways. First, it helps us quantify the productiv-

ity cost of power disruptions for a broad range of firms that vary by power use and pro-

ductivity levels. Second, it helps us examine the link between recurring blackouts and

firms’ decisions to temporarily shut down to avoid losses.

3.2 Data

We use firm level manufacturing census data spanning 2000-2009 and our analysis is re-

stricted to the 10 year period. All manufacturing firms in the country employing at least

10 workers and using electricity in production are surveyed as part of the Large and

Medium Manufacturing Industries Survey (LMMIS). The census contains comprehen-

sive information on number of employees, wages and salaries paid by firms, paid-up

capital, industrial and non-industrial costs, value added, quantity and price of prod-

ucts and raw materials, fixed assets, investment and production capacity. The dataset

has been used to examine firm location choice, behavior in the export sector and links

between firm size and structural change (Bigsten et al., 2011; Söderbom, 2012; Shiferaw

et al., 2015; Siba and Gebreeyesus, 2017).

Table 1 summarizes the distribution of Large and Medium Scale Manufacturing In-

dustries by major Industrial groups. A large number of the firms operate in two sec-

tors. Glass and non-Metallic mineral manufacturers and food and beverage produc-

ers accounted for 40-54 percent of the total, indicating firm concentration in a limited

range of manufacturing activities. The same sectors accounted for the largest share of

employment, employment growth and nearly half of the total value added of firms in

the census. The number of firms in each industry group increased over time despite

some irregular entry and exit patterns. The year 2005 is a notable exception where post-

electoral uncertainties led to firm closures and temporary attrition.
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Table 1: Total Number of Firms by ISIC-2

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Food & Beverage 213 219 266 272 294 213 332 338 432 479
Textile 33 31 34 36 38 38 42 41 25 44
Apparel 25 24 29 32 35 28 31 32 34 37
Leather Tanning & footwear 52 52 52 56 62 60 60 72 75 80
Wood Products 16 14 21 17 20 18 21 33 49 44
Paper & Paper Products 7 5 7 7 7 9 12 12 19 18
Publishing & Printing 56 46 66 66 66 68 74 81 92 87
Chemicals 39 36 41 45 45 51 52 64 70 69
Rubber & Plastics 27 27 37 39 42 47 63 64 80 82
Glass & Non-metallic Minerals 77 81 96 111 119 66 135 265 447 552
Basic Iron, Steel, & Casting 7 10 11 10 13 13 14 13 14 15
Metal Products 50 50 61 73 73 73 95 57 93 104
Machinery & appliances 13 7 7 9 9 6 8 4 3 4
Motor vehicles & accessories 9 6 6 7 7 8 10 42 14 12
Furniture 113 112 147 157 165 63 187 197 264 299

Total 738 721 882 938 996 762 1133 1314 1712 1922

Appendix Table A.2 provides a summary of electricity cost as a share of total industrial

cost. The intensity of electricity use is highest among non-metallic mineral manufactur-

ers and textile and apparel producers. These firms are likely to feel the effect of frequent

electricity disruptions than others. Also highlighted in the census are constraints faced

by firms in the reference period. Firms are routinely asked to list three pressing con-

straints to their operations. Power disruptions are cited as one of three major constraints

in 4 of the 10 years matching periods of nationwide load shedding programs. In 2009,

nearly 36 percent of the firms cited electricity shortage as a major constraint. Far fewer

firms cited demand related problems (8 percent), lack of working capital (3 percent) or

foreign exchange shortages (1 percent).

Before proceeding to the results, it is useful to take an initial look at features of the data.

Table 2 reports summary statistics for an unbalanced panel of 3280 firms. The gross

value of output ’y’ is deflated by the weighted index of product prices, while inputs are

scaled by a weighted index of input prices. Capital is derived from its book value. Table

2 shows wide variance in both input use and output across firms. While firm age varies

between 2 - 50 years, median employment is about 20 workers. Working capital, which

measures firms’ short-term financial health shows a great deal of variance both across

firms and time. Within firm variance is much smaller in all relevant variables.
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Table 2: Summary Statistics

Mean σij P50 Min Max N

Value-added (logs) 13.67 2.22 13.31 10.74 19.61 10621
Capital (logs) 13.94 2.83 13.41 8.15 18.76 10621
Inputs (logs) 13.24 2.16 13.02 6.40 19.94 10621
Labor 61.62 95.75 20.00 10.00 376.00 10621
Electricity (logs) 9.73 2.06 9.42 3.40 16.99 8803
Water (logs) 7.48 1.84 7.47 1.12 15.01 9009
Investment-Capital (%) 8.85 0.15 8.89 0 43.7 10919
Working-capital (logs) 13.75 2.10 13.40 4.49 20.67 10845
Firm Age (years) 16.22 14.36 11 2 50 11094
Shutdown (months) 1.71 2.78 0 0 11 11094
Capacity Utilization (%) 52 0.59 60 11 100 10064

Nearly 40 percent of firms were under 10 years old, while only 20 percent of firms were

over the age of 30 years. Similarly, firm-inactivity (shutdown months) has a right skewed

distribution with a zero median. While most firms operate throughout the year, some

firms report shutting down in the fiscal year. Shutdown periods varied both within and

across firms and capacity utilization has the same right skewed distribution. The me-

dian utilized capacity in the sample is about 60 percent.

Figure 2: Alternative power disruption measures

10
20

30
40

50
%

 F
ir

m
s

2000 2002 2004 2006 2008 2010

Sσ S

S is the share of firms reporting electricity as a major constraint. 
Note: Sσ is the share of firms with electricity consumption loss >1s.d from long-run levels (log).

The share of firms reporting power disruptions as a major constraint gradually grew

from below 15 percent of LMMI during 2000 − 2006 to nearly 25 percent in 2008 and 33

percent in 2009 (see figure 2). This trend is consistent with noteworthy blackout episodes
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discussed in Section 2. Also consistent with this trend is the increasing proportion of

firms with electricity consumption (logs) below their long-run levels. The two power

disruption measures track one another towards the end of the sample, but are generally

weakly correlated. Except for 2003, the share of firms reporting power disruptions as

major constraint is consistently lower than the grid-power consumption losses seen in

the data (Sσ > S). The difference Sσ − S may be a rough approximation of firms that

cope with power disruptions.

4 Empirical Strategy

4.1 Estimating the productivity cost of power disruptions

Labor Productivity Losses

We employ two approaches to measure the effect of power disruptions on firm produc-

tivity. In the first approach, we estimate productivity loss using a modified production

function using a single-factor productivity measure and firm and time specific effects to

control for unobserved productivity shocks. In the second approach, we use quantile re-

gressions to estimate the losses to TFP productivity backed out of a production function

ala Levinshohn and Petrin (2003) type control function regressions.

Consider a simple CRS Cobb-Douglas production function where i and t are firm and

time indexes and Kit, Lit Eit, and Mit are units of capital, labor, electricity, and raw ma-

terials. Suppose ωit summarizes attributes known to the firm (productivity shocks) such

as managerial talent & practice, human capital, or incentive pay. ζit represents unob-

servable productivity shocks.

Yit = exp(β0)L
βl
itK

βk
it M

βm
it Eβeit exp(ωit) (1)

If the firm operates in a perfectly competitive output and input markets and observes

ωit before optimally choosing inputs, then these input choices are also dependent on ω.

Several studies attempt to address this simultaneity problem to productivity measure-
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ment (Olley and Pakes, 1996; Levinshohn and Petrin, 2003; Ghandi et al., 2016; Acker-

berg et al., 2015). Others extend the approach to the estimation of productivity when

one or more inputs are measured with error (Collard-Wexler and De Loecker, 2016; Kim

et al., 2016).

We simplify Eq(1) into a labor productivity equation by assuming output is produced

at constant returns to scale and priced at marginal cost. Defining Ỹit as labor produc-

tivity1, we can write Eq(1) as Ỹit = exp(β0)K̃
βk
it M̃

βm
it Ẽβeit exp(ωit) = Φ(.) exp(ωit) and

simplify further by defining φ(.) as φ(.) = ln[exp(β0)K̃
βk
it M̃

βm
it Ẽβeit ]. We expanded the

log-linearized labor productivity function by including alternative electricity disruption

dummies Sit or Sσit. Sit and Sσit represent, respectively, the number of firms reporting

electricity disruptions as a major constraint, and firms with power loss exceeding 1 s.d

from long-run consumption. The parsimonious specification Eq(2) captures the average

loss attributable to electricity disruption βs, while Eq(3) picks up nonlinear effects due

to differences in the use of electricity in manufacturing firms. The productivity loss due

to electricity shortages is simply 1−exp(βs) percent in Eq(2) and 1−exp(βS+βγ ẽ+βκẽ
2)

in Eq(3), where ẽ = lnE − lnL.

ỹit = φ(.) + βsSit + αjCONTROLjit + ωit + ζit (2)

ỹit = φ(.) + βθẽ
2
it + βsSit + βγSit × ẽit + β%Sit × ẽ2it + αjCONTROLjit + ωit + ζit (3)

The empirical challenges discussed above suggest that an OLS regression of Eq(2) and

Eq(3) will overestimate the β’s. For instance, if the firm gets a productivity boost (which

it observes), such as an experienced manager economizing on input use, it can reduce

raw-material use m̃ but at the same time expand productivity. OLS estimates will at-

tribute all of the increase in productivity ỹ to the change in raw material use m̃, thus

overestimating β̃m. One way to deal with endogeneity bias caused by ω is to make some

assumptions about unobserved heterogeneity. We assume that firm specific productiv-

ity shocks ’ωit’ are constant over time ωit = ωi, all input choices are uncorrelated with

the idiosyncratic error ζit ∼ iid(0, σ2ζ ) and estimate the model using OLS once unob-

served heterogeneity is differenced out. Firm age and working capital are used as addi-

1K̃it, M̃it, and Ẽit are, respectively, the book value of fixed assets, raw-material and grid-power costs
expressed in labor units. Lower-case letters represent log-equivalents of the same variables.
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tional control variables.

Total Factor Productivity Losses

If ωi is "truly" fixed, then fixed effects estimation completely addresses selection and

input endogeneity problems (Ackerberg et al., 2007). However, if unobserved produc-

tivity is not fixed, it is unlikely to capture heterogeneous responses to economic shocks.

Fixed effects estimation could also generate worse estimates than standard OLS when

there are measurement errors in inputs or when inputs are serially correlated over time

(Griliches and Hausman, 1986). To overcome these problems, Olley and Pakes (1996)

proposed a strategy of expressing unobserved productivity as a functions of observable-

proxies by making assumptions about the timing and dynamic nature of inputs −see

Ghandi et al. (2016) for a comprehensive review. In the same tradition, we estimate the log-

linearized production function Eq(1) using control function approaches by Levinshohn

and Petrin (2003) (LP) and Ackerberg et al. (2015) (ACF) (see annex for brief descriptions).

Raw material demand is used as the control function. Additional robustness checks are

performed using electricity demand as a control function (see annex).

The best way to capture nonlinear effects in a simplified framework is to use a panel

quantile regression technique. We use aggregate and industry specific TFP backed-out

of Eq(5) and Eq(6) to estimate panel-quantile regressions with non-additive fixed ef-

fects (QRPD) ala Powell (2016). With quantile regressions, we are able to model any lo-

cation within the productivity distribution, and get a complete picture of how power

disruption affects firms. Traditional panel-quantile data estimators use additive fixed

effects in a similar way as mean regressions, which makes it difficult to interpret esti-

mated coefficients.

Powell (2016) addresses the problem by treating the likelihood of being in a produc-

tivity quantile as an unknown function of both firm fixed effect and an observation-

specific disturbance term. The QRPD estimator has two notable advantages over other

panel quantile methods. First, it provides point estimates that can be interpreted like

cross-sectional regression results while allowing correlation between fixed effects and
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covariates. Second, the number of estimated parameters is smaller since individual

fixed effects are never estimated.

ln (TFPit) = ηit(τ) + αs(τ)Sit + αsj(τ)CONTROLjit (4)

Estimation of parameters and standard errors is carried out using Markov Chain Monte

Carlo Methods. The quantile treatment effect (QTE) αs(τ) represents the causal effect of

a change in the treatment variable from Sit = 0 to Sit = 1 on ln (TFPit), given firm age

and financial health, and holding fixed τ ∈ (0, 1). We estimate Eq 7 using the alternative

power disruption dummy Sσ.

4.2 Firm response to outages

The empirical literature shows varying firm responses to power disruptions. Rarely

do firms assume the full cost of power disruptions. Capable firms, particularly, insure

themselves against losses by self-generating power when grid electricity does not meet

demand. Others cope by implementing systematic plant shutdowns. LMMIS allows us

to examine the latter since each firm provides information about the number of months

in operation in a reference year (rounded to the nearest natural number) and the value of

output that could have been produced at full capacity computed at market price. This

gives us an estimate of underutilized capacity2 Df
it = lnY F

it − lnYit given actual output

Yit and full capacity output Y F
it .

Our interest is to analyze whether shutdown events are related to power disruption.

We estimate this relationship using panel count-date models, as the dispersion of these

incidents varies across firms for unobserved firm-specific reasons. Our response vari-

able is ’number of months of shutdown’ Iit over a firm’s observed age, also known as

the "incident" rate rit. Firm age is used as the exposure variable because younger firms

tend to experience bouts of inactivity in the process of setting up their business unlike

more mature firms and these bouts of inactivity may or may not be caused by market

distortions.
2Capacity utilization could be measured with error if firms underreport revenue or potential revenue,

or one by more than the other.
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We define shutdown/inactivity months Iit as Iit = 12 − Ait for every active months of

operation Ait. Finally, the "incident" rate r is defined as rit = Iit
Age . Inactivity is indepen-

dent and follows a Poisson distribution: Iit ∼ P(rit×Ageit), where E(Iit)=rit×Ageit. The

"incident" rate is specified as an exponential function of past capacity underutilization,

past productivity and current electricity shortage:

rit = exp
(
γsSit + γdD

F
i,t−1 + γt lnTFPi,t−1

)
(5)

E[Iit] = exp
(

ln ageit + γsSit + γdD
F
i,t−1 + γt lnTFPi,t−1

)
(6)

lnE[Iit] = ln(ageit) + γdD
F
i,t−1 + γsSit + γt lnTFPi,t−1 (7)

5 Results and Discussion

We begin by reporting productivity cost estimates across various estimators in Section

5.1. Throughout the paper, we make comparisons of productivity loss estimates ob-

tained by an OLS benchmark, against Fixed Effects, and control function approaches.

Section 5.2 uses panel count data models to examine whether strategic shutdowns are

influenced by power disruptions. Section B of the Appendix presents selected balanced

panel results as additional robustness checks.

5.1 How costly are power disruptions?

Labor productivity losses

Table 3 summarizes pooled OLS benchmark regressions of Eq2 and Eq3. All standard

errors in these regressions are clustered at the firm-level to allow for correlations of pro-

ductivity shocks within firms and across time. Column (1) reports factor elasticities for a

simplified productivity equation without added controls, where each factor is expressed

in labor units. Elasticities of capital k̃, raw materials m̃, and electricity intensity ẽ are

of acceptable magnitudes. Water-use has a negative elasticity due to a missing com-

mon trend as shown in Table 4. This fits a pattern where firms have learned to lower
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water-use while productivity improvements are taking place. Omitting the common

trend could be responsible for the wrong sign.

Table 3: Benchmark pooled OLS

Output (1) (2) (3) (4) (5) (6) (7)
Disruption= S Disruption= Sσ

Capital 0.10*** 0.10*** 0.10*** 0.10*** 0.11*** 0.10*** 0.10***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Raw Materials. 0.63*** 0.63*** 0.60*** 0.60*** 0.63*** 0.60*** 0.60***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Water -0.02*** -0.02*** -0.01 -0.01 -0.02*** -0.01 -0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Electricity 0.07*** 0.07*** 0.06*** -0.01 0.06*** 0.05*** -0.03
(0.01) (0.01) (0.01) (0.05) (0.01) (0.01) (0.06)

Electricity2 0.01* 0.01
(0.004) (0.01)

Disruption -0.20*** -0.18*** -0.54* -0.20*** -0.16*** -0.23
(0.02) (0.02) (0.28) (0.02) (0.02) (0.26)

Disruption × Electricity 0.14* 0.06
(0.09) (0.08)

Disruption × Electricity2 -0.013** -0.01
(0.01) (0.01)

Working capital 0.08*** 0.08*** 0.04*** 0.04***
(0.02) (0.02) (0.01) (0.01)

Age 0.23*** 0.23*** 0.01*** 0.01***
(0.032) (0.032) (0.001) (0.001)

Constant 3.81*** 3.82*** 4.07*** 4.28*** 3.79*** 3.47*** 3.70***
(0.08) (0.08) (0.09) (0.19) (0.08) (0.09) (0.22)

Obs 7,158 7,158 6,994 6,994 7,158 6,994 6,994
R-sq 0.80 0.81 0.82 0.82 0.80 0.82 0.82

Note: Robust s.e in parenthesis. Variables in log-labor units (except age).

Column (2) and (3) include additional control variables and a disruption dummy. The

coefficient on the power disruption dummy is negative and statistically significant in

both specifications. Shortage-firms have 14-18 percent lower labor productivity than

non-shortage firms depending on which disruption dummy is used. These results should

not be taken as evidence of a causal relationship since one or more of the left-hand side

variables could be correlated with unobserved productivity shocks. We use these results

as useful benchmarks to compare against alternative estimation strategies discussed

in section 4.1. Column (4) and (7) include squared electricity intensity ẽ2 and inter-

actions with the power disruption dummy. These additional coefficient estimates are

marginally significant when Sit is the power disruption dummy indicating a non-linear

relationship between productivity and power disruption working through the intensity

of power use.

The pooled OLS point estimates are slightly different from the FE estimates presented in
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Table 4. Particularly, some point estimates are smaller −consistent with the predictions

of simultaneity bias where observed inputs are correlated with unobserved shocks. The

possible reduction in attenuation bias is captured by slightly higher FE point estimates

of water β̃w and raw material use β̃m as shown in Table 4. Again, column 1 reports fac-

tor elasticities for the simplified productivity equation including firm and year dum-

mies, where each factor is expressed in labor units. Elasticities of capital k̃, raw materi-

als m̃, and electricity intensity ẽ are of acceptable sign and magnitudes.

Fixed effects estimates of β̃k are much lower than the OLS benchmark. There are three

equally plausible explanations for these low coefficients. First, FE estimates could be

picking up only short-run effects since filtering out firm specific effects removes long-

run variations in productivity. Higher OLS point estimates could mean a higher long-

run impact of capital k̃. Durlauf and Quah (1999) offer a somewhat similar explana-

tion. Second, it may be difficult to identify the marginal effect of capital using within-

producer time series variations if inputs such as labor and capital are fixed over a long

period of time (Collard-Wexler and De Loecker, 2016). Measurement error in capital is

the third possible explanation for smaller coefficients (Griliches and Hausman, 1986).

We used lagged investment per labor as an instrument for capital following the tradi-

tional error-in-variables structure. The basic assumption is that past investment is un-

likely to be correlated with the measurement error. Columns 5 - 8 summarize the IV

results. Although all elasticities still have the expected signs, the coefficient on work-

ing capital is no longer significant. Additionally, the coefficient on power disruption is

only significant in the preferred specification. Despite these differences, the IV estimates

imply much higher losses from power disruption as shown in Table A.4 and Figure A.1

(see Appendix). A standard Hausman test favors the IV estimates over the OLS (FE) esti-

mates. However, the IV estimates come with a substantial loss of information due to a

large number of observations with zero investment.

The power disruption dummies are negative, but significantly smaller than the OLS

estimates. The average productivity loss from power disruptions is about 5 - 6 percent

according to columns 2 and 3 compared to OLS average estimates of 17 - 18 percent in

Table 3. Column 4 and 8 extend the specification to include interaction terms between
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Table 4: Fixed effects and IV estimation

FE IV

Output (1) (2) (3) (4) (5) (6) (7) (8)
Disruption= S

Capital 0.07*** 0.07*** 0.07*** 0.07*** 0.14** 0.14** 0.13** 0.14**
(0.01) (0.01) (0.01) (0.01) (0.06) (0.06) (0.06) (0.06)

Raw Materials 0.65*** 0.65*** 0.62*** 0.62*** 0.60*** 0.60*** 0.58*** 0.57***
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

Water 0.02*** 0.02*** 0.02*** 0.02*** 0.001 0.002 0.002 0.002
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Electricity 0.06*** 0.06*** 0.07*** -0.07 0.04*** 0.04*** 0.05*** -0.04
(0.01) (0.01) (0.001) (0.05) (0.02) (0.02) (0.02) (0.07)

Electricity2 0.01*** 0.01
(0.004) (0.01)

Disruption -0.05*** -0.06*** -0.60** -0.04 -0.04 -1.01**
(0.02) (0.02) (0.26) (0.03) (0.03) (0.48)

Disruption × Electricity 0.16** 0.29**
(0.08) (0.14)

Disruption × Electricity2 -0.01** -0.02*
(0.01) (0.01)

Working Capital 0.04*** 0.04*** 0.06 0.06
(0.03) (0.03) (0.08) (0.08)

Constant 4.17*** 4.16*** 4.23*** 4.68*** 4.24*** 4.24*** 4.23*** 4.52***
(0.14) (0.14) (0.15) (0.21) (0.48) (0.48) (0.48) (0.56)

Obs. 7,158 7,158 6,994 6,994 2,397 2,397 2,372 2,372
R-sq. 0.72 0.72 0.73 0.73 0.67 0.67 0.67 0.68
Firms 2,360 2,360 2,331 2,331 981 981 976 976
Firm FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES
U-test (p-val) - - - 0.14 - - - 0.33

Note: Robust s.e in parenthesis. All continuous variables in log-labor units.
Lagged investment per-labor is used as an instrument for capital

the disruption dummy S, electricity intensity ẽ, and its square. The coefficient on the

intensity of power use is insignificant, but its square term is positive and significant (see

column 4). Intuitively, the marginal productivity loss due to power disruption increases

with power intensity ẽ. Both the power disruption dummy and interaction terms are

significant and indicate a possible non-linear relationship between productivity loss and

the intensity of electricity use. We see slightly different non-linear patterns in Table A.5

when Sσ is used as the disruption dummy (see Appendix) .

We plotted predictions from the non-linear model (column 4) in Figure 3 to get a sense

of the productivity loss from electricity disruptions at different intensities of power use

across the two models. The left panel compares firm productivity ỹ at each intensity of

power use ẽ with and without disruptions. This combination gives rise to the inverted

"U" shaped productivity loss curve shown in the right panel. Losses at each intensity of

use are computed as 1−exp(ỹjS− ỹj), where ỹjS and ỹj are productivity levels at intensity

j with and without power disruption. Table A.4 summarizes these losses at each inten-
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Figure 3: The productivity loss from electricity disruptions
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Note: These are marginal effects from Table 4 Column 4. The left panel plots a firm’s predicted

log labor productivity with and without power disruptions at different power use intensities

(x-axis INTENSITY=ẽ). The right panel plots the productivity differences with and without power

disruptions at each intensity level ln(Y
L
|S = 1)− ln(Y

L
|S = 0).

sity of use for the FE and IV estimates (see Appendix). The FE estimates yielded average

productivity losses of 6-7 percent at mean intensity use, 22-30 percent at low intensity,

and 16-22 percent at high intensity. The use of Sσit yields a different type of non-linear

loss curve (see Appendix Table A.5 and Figure 4).

These productivity loss curves offer alternative interpretations. The inverted ’U-shaped’

function, when ‘S’ is the power disruption measures, implies firms at the bottom end of

the intensity curve find it prohibitively costly to adopt coping mechanisms. The initial

investment in self-generation could be costly for smaller firms that are rationed out of

formal credit markets. These firms might instead rely on strategic shutdowns to mini-

mize the impact of disruptions. Large firms, by contrast, are likely to self-generate dur-

ing severe disruption episodes. Higher productivity losses for such firms might indi-

cate the high cost of self-generation. The downward sloping productivity loss func-

tion, when Sσit is the power disruption measures, offers a slightly different interpreta-

tion. Firms at higher intensities of power use face sharper losses due to disruptions than

firms at lower intensity since firms at lower intensity find it easier to cope with power
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Figure 4: Productivity loss from power disruptions
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Note: These are marginal effects from Table A.5 Column 3. The left panel plots a firm’s predicted

log labor productivity with and without power disruptions at different power use intensities

(x-axis INTENSITY=ẽ). The right panel plots the productivity differences with and without

power disruptions at each intensity level ln(Y
L
|Sσ = 1)− ln(Y

L
|Sσ = 0).

disruptions either by switching away from power-using technology or other means.

Firms with power intensive processes, contrastingly, might face large adjustment costs if

they are to switch to power saving technology.

Total factor productivity Losses

Labor productivity could overestimate productivity levels in large capital intensive

firms even if all firms operated in identical factor markets. It is, moreover, possible for

two firms to have different labor productivity levels while using the same production

technology if factor intensities differ because of different factor prices. The use of total

factor productivity minimizes these biases. We estimate the log-linearized production

function Eq4 ala Levinshohn and Petrin (2003) (LP) and Ackerberg et al. (2015) (ACF) to

back-out total factor productivity estimates3. The discussion in this section is centered

on TFP estimates with raw material demand as the control function.
3The estimation utilizes a Stata module by Rovigatti and Mollisi (2016).
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Appendix Table A.7 presents factor elasticity estimates from the two control function

approaches (LP and ACF). Columns 1 and 2 use raw-material demand as the control

function. The results show wide variance in estimated elasticities between both ap-

proaches. LP estimates of labor and capital elasticities−column 1−are about half the

values in the ACF alternative when raw materials are the control function (column 2).

Alternatively, we divided firms into 5 industry groups that might use reasonably sim-

ilar production technologies: chemical, glass and plastics (CGP); clothes and footwear

(CAF); food and beverages (FAB); machinery, motors and accessories (MMA); and pulp,

paper and publishing (PPP). Tables A.8−A.11 summarize industry group factor elas-

ticity estimates from the two approaches (see Appendix). Again, estimated elasticities

widely varied across industries and approaches. These variations serve as useful ro-

bustness checks.

We computed four alternative aggregate TFP estimates and four industry specific TFP

estimates from the first stage regressions summarized in Appendix Tables A.7−A.11.

Then, we use panel-quantile techniques in the second stage to quantify the impact of

power disruptions on these TFP estimates. Markov Chain Monte Carlo (MCMC) meth-

ods are used to estimate Eq.7 4. Since MCMC methods involve random sampling, we

do not obtain the same set of MCMC draws each time the procedure is carried out. We

compare quantile estimates from several iterations to preserve a fair degree of precision

in terms of Monte Carlo error (Liu et al., 2016).

Table 5 summarizes panel quantile regressions at the median of the productivity distri-

bution. The dependent variables in these regressions are TFP estimates across all indus-

try groups (in natural logs). For easy reference We call these estimates aggregate TFP. We

use 50,000 MCMC draws at each quantile in order to achieve a desired degree of preci-

sion for the credible intervals. Columns 1 - 3 use TFP estimates from LP and, similarly,

columns 4 - 6 use TFP estimates from ACF. The power disruption dummy point esti-

mates is nearly twice higher for ACF compared to LP estimates. Columns 1 - 3 indicate

an average productivity loss of 5-6 percent due to power disruptions, while losses are

nearly 9 percent of TFP for the ACF alternative.

4The procedure is carried out using a new Stata module by Powell et al. (2016).
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Table 5: Panel quantile regression (aggregate)

lnTFPLP lnTFPACF
(1) (2) (3) (4) (5) (6)

Disruption 0.06* -0.05** -0.05* 0.02 -0.09*** -0.09***
(0.03) (0.02) (0.03) (0.02) (0.03) (0.03)

Age×100 -0.43*** -0.30 -1.40*** -1.39***
(0.002) (0.003) (0.003) (0.003)

Working Capital 0.56*** 0.54*** 0.36*** 0.35***
(0.01) (0.04) (0.02) (0.02)

Obs 8,387 8,184 8,184 8,387 8,184 8,184
Firms 2,686 2,649 2,649 2,686 2,649 2,649
Proxy Raw Mat. Raw Mat. Raw Mat. Raw Mat. Raw Mat. Raw Mat.

Note: Results at median. Disruption= S. Bootstrapped s.e. in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Panel quantile regression (within-industry)

lnTFPLP lnTFPACF
(1) (2) (3) (4) (5) (6)

Disruption 0.05 -0.07*** -0.07*** -0.03* -0.02 -0.02
(0.04) (0.02) (0.02) (0.02) (0.01) (0.02)

Age×100 -0.70** -0.69** -0.53*** -0.50***
(0.003) (0.003) (0.001) (0.001)

Working Capital 0.52*** 0.52*** 0.04*** 0.04***
(0.02) (0.02) (0.01) (0.01)

Obs 8,378 8,176 8,176 10,149 9,935 9,935
Firms 2,684 2,647 2,647 2,995 2,958 2,958
Proxy Raw Mat. Raw Mat. Raw Mat. Raw Mat. Raw Mat. Raw Mat.

Note: Results at median. Disruption= S. Bootstrapped s.e. in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Similarly, Table 6 summarizes the results for within-industry firm TFP estimates at the

median of the distribution. Columns 1 - 3 report industry specific TFP losses estimates

from LP, while columns 4 - 6 report TFP losses due to disruption for ACF corrected

productivity estimates. Again power disruptions have similar effects on productivity

across the two measures, and the aggregate firm TFP estimates (see Appendix Figure A.5

for within industry productivity losses for the alternative power disruption dummy). Specif-

ically, the first three point estimates indicate an average productivity loss of 7 percent

due to power disruptions. These estimates are not substantially different from those ob-

tained when aggregate TFP measures were used.

Figure 5 maps marginal effects of power disruptions at different points in the produc-

tivity distribution. The left panel reports the marginal effect of power disruptions on

aggregate TFP estimates from column 3 of Table 5. Similarly, the right panel plots the
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relationship based on columns 6. Both panels offer the familiar inverted ’U’-shaped

productivity loss curve. Firms at lower productivity quantiles Q10 experience about 6

percent loss due to disruptions, while upper quantiles incur about 7-8 percent in TFP

losses due to these disruptions. Again, the shape of the loss curve changes with Sσit (see

Appendix Table A.14 and Figure A.5).

Figure 5: Productivity loss due to power disruptions (aggregate TFP)
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5.2 Do firms shutdown to avoid bigger losses?

Without self-generation, strategic plant shutdowns may be the remaining viable cop-

ing mechanism available to smaller firms that are rationed out of formal credit markets.

While temporary closure forestalls large losses, it might not eliminate costs incurred

due to spoilage of inputs, labor costs, equipment breakdown and others. Large firms, by

contrast, often have access to credit and can set-up their own generators and other facil-

ities that shield them from losses due to power disruptions. In this section, we analyzed

the relationship between observed shutdown incidents and power disruptions using

panel count-outcome models.

Figure 6 shows shutdown frequencies, where the plot is divided into four panels with

histograms summarizing plant shutdown episodes in four periods. The top-left panel
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Figure 6: Shutdown incidents vary by age
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shows plant shutdown episodes make up 37 percent of the full sample while frequency

varied by period. Also captured is the relationship between firm age and shutdown in-

cidents ’I’. As expected, younger firms shutdown more often than mature firms. Draw-

ing on this, we estimated an empirical model described in section 4.2 using two panel-

count data models: Negative Binomial (NB) and Poisson models. Our response variable in

NB regressions is the ’months of shutdown’ Iit over a firm’s observed age. We control

for overdispersion by defining the "incident" rate rit as the ratio Iit
Age . Firm age is used

as the exposure variable because younger firms tend to experience bouts of inactivity in

the process of setting up their business that may have very little to do with factor mar-

ket distortions (e.g. trial production).

Table 7 and Table A.12 (Appendix) summarize results from the two sets of regressions.

Poisson regression models for count-date are inherently heteroskedastic as the variance

of the distribution moves in tandem with the mean. This feature poses a problem for the

estimation of standard errors. Specifically, the standard errors of these quasi maximum

likelihood estimations tend to underestimate true variability in the estimator and often

lead to inflated t-statistics. Following recommended practice, bootstrapped standard

errors are reported.

Table 7, columns 1 - 6 are random effects NB regressions, while Columns 7 - 12 are con-
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ditional fixed effects NB regressions. The results consistently show a positive and sig-

nificant relationship between power disruptions and shutdown incidents. On average,

firms are likely to shutdown operations for 1.4 - 2 months in response to power disrup-

tions. These results remain strong after controlling for a history of unexploited capac-

ity and lagged productivity. Firms that had large unexploited capacity in the past are

more likely to shutdown than those that operated at full capacity. Shutdown incidents

increased by about 1.3 months when unexploited capacity in the past year was 33%

higher5. Shutdown periods are much higher when unexploited capacity is larger. The

results for the Poisson alternative offer similar conclusions (see Appendix Table A.12)

These results show a positive and significant relationship between power disruptions

and shutdown incidents. Firms are likely to shutdown for 1.4 - 1.5 months in response

to power disruptions. Again firms with histories of idle-capacity are more likely to shut-

down. Specifically, shutdown incidents in the current period increased by about 1.3

months in response to a 33 percent higher under-utilized capacity in the prior year. Pro-

ductivity levels again are not useful predictors of shutdown episodes. This too is consis-

tent across models and productivity concepts.

Differenced panel data models often have served as alternatives to count-data mod-

els. In the same tradition, we examined whether change in activity periods A, where

A = 12−I , varied with power disruption both across models and productivity concepts.

Appendix Table A.13 summarizes key results from a differenced OLS model. Again

these results consistently show a negative and significant effect of power disruptions

on activity months. Power disruptions are likely to compel firms to shutdown for nearly

1 months. The results remain consistent when lagged second differences of productivity

and excess capacity are used.

5A 33% increase in underutilized capacity is equivalent to 1 natural-log point increase in Df . From see
Eq11, the response in months is exp(γs).
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6 Concluding remarks

Frequent power disruptions impose significant welfare loss in developing countries.

Such distortions could have debilitating effects on nascent manufacturing sectors and

stifle industrial development. This paper examined the productivity cost of power dis-

ruptions in Ethiopian manufacturing firms and their response to this perennial problem

during 2000-2009. We used two alternative power disruption measures: one based on

survey responses and the other on power consumption shocks.

Our estimates showed average productivity losses of 4 - 10 percent due to power dis-

ruptions. Firms with high intensities of electricity use suffered higher productivity losses

than firms at the middle of the power use distribution depending on the measure of

power disruption. We found similarly non-linear productivity losses at different quan-

tiles along the productivity distribution. Specifically, firms with intensive power use

suffered higher productivity losses than those at the median of the power use distribu-

tion. Similarly, power disruptions caused higher productivity loss at higher TFP quan-

tiles than those at the median of the distribution.

We offered alternative explanations for higher productivity losses at upper productiv-

ity quantiles. First, productive firms exposed to power disruptions are likely to self-

generate during severe disruptions. Higher productivity losses, therefore, might be due

to high self-generation costs (Reinikka and Svensson, 2002). Second, firms with power

intensive processes might face large capital adjustment costs if they want to switch to

power saving technology. As a result, they end up absorbing some productivity losses.

Third, firms are indirectly affected through local supply chain disruptions, especially

to power intensive intermediate goods. This could result in decisions to lower capacity

utilization.

Firms shield themselves against greater losses including by temporarily shutting-down

plants. The evidence shows average factory closures ranging from 1.4 - 2 months in re-

sponse to power disruptions. We find no relationship between plant shutdown deci-

sions and productivity cohorts. This implies productive firms facing major power dis-

ruptions are as likely to rely on strategic shutdown as less productive ones.
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These results have clear policy implications. Broadly beneficial effects aside, maintain-

ing an efficient power supply ensures productive firms remain productive. Not only

does it shield firms from having to lock up resources in unproductive activities. It also

limits involuntary coping mechanisms like variable capacity utilization or provisionally

suspending operations to minimize losses. Therefore, the policy imperative for main-

taining adequate, and efficient power supply is clear.

No two countries are exactly alike and variations introduced by cross-country differ-

ences are often useful to ensure generalizability. Absent comparable cross-country firm

level panel data, country level analyses drawing on highlighted similarities in Sub-

Saharan Africa is a convenient way to provide useful approximations. Additionally, the

study can be an instructive input to future meta-analysis on the subject.
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Appendices

Table A.1: Unreliability of utility services to manufacturing firms

SSA†
(2010-2017)

Ethiopia
(2015)

Firms experiencing electrical outages (%) 78.7 80.0
Number of electrical outages in a typical month 8.50 8.20
Average duration of a typical outage (Hours) 5.80 5.80
Average losses due to electrical outages (% annual sales) †† 8.30 6.90
Domestic shipping product loss (% total shipping) 2.00 1.20
Percent of firms experiencing water insufficiencies 1.80 2.70

†SSA average for latest available survey data between 2010-2017.

††Simple average across firms.

Source: Enterprise Surveys. World Bank Group.

A Unbalanced panel results

Table A.2: Electricity cost as a share of total industrial cost

2005 2006 2007 2008 2009

Food & Beverage 0.12 0.06 0.08 0.06 0.05
Textile 0.12 0.11 0.11 0.12 0.12
Apparel 0.02 0.02 0.16 0.18 0.18
Leather Tanning & footwear 0.02 0.03 0.03 0.03 0.04
Wood Products 0.24 0.23 0.18 0.09 0.17
Paper & Paper Products 0.05 0.06 0.05 0.05 0.06
Chemicals 0.04 0.04 0.03 0.03 0.03
Rubber & Plastics 0.09 0.06 0.06 0.04 0.06
Glass & Non-metallic Minerals 0.46 0.58 0.61 0.57 0.62
Basic Iron, Steel, & Casting 0.02 0.01 0.01 0.09 0.09
Metal Products 0.04 0.04 0.04 0.04 0.03
Machinery & appliances 0.01 0.01 0.01 0.01 0.02
Motor vehicles & accessories 0.03 0.03 0.01 0.02 0.03
Furniture 0.02 0.02 0.02 0.03 0.02

Total 0.11 0.10 0.11 0.10 0.12

Table A.3: Correlation between Sσ and possible reasons for lower power consumption

Shortage Electricity Raw material Machine parts Customers Working capital Machine breakage

Electricity 1
Raw material 0.01 1
Machine parts -0.03 -0.12 1
Customers 0.00 -0.27 -0.07 1
Working capital 0.00 -0.32 -0.09 -0.20 1
Machine breakage -0.02 -0.16 -0.04 -0.10 -0.12 1
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Table A.4: Estimated productivity losses from Table 4

FE marginal effects: Col (4) IV Marginal effects: Col (8)

Contrast σε χ2 pval
Productivity
Loss

Contrast σε χ2 pval
Productivity
Loss

Disruption at ẽ
(1 vs 0) 2 -0.36 0.12 8.38 0.00 -0.30 -0.45 0.23 10.27 0.00 -0.52
(1 vs 0) 3 -0.25 0.08 10.87 0.00 -0.22 -0.34 0.15 13.73 0.00 -0.42
(1 vs 0) 4 -0.17 0.04 15.95 0.00 -0.16 -0.25 0.08 20.37 0.00 -0.32
(1 vs 0) 5 -0.11 0.02 21.82 0.00 -0.11 -0.19 0.05 28.80 0.00 -0.23
(1 vs 0) 6 -0.08 0.02 15.42 0.00 -0.07 -0.15 0.04 23.98 0.00 -0.16
(1 vs 0) 7 -0.07 0.02 11.69 0.00 -0.06 -0.14 0.03 16.13 0.00 -0.13
(1 vs 0) 8 -0.08 0.02 12.87 0.00 -0.07 -0.15 0.04 11.14 0.00 -0.12
(1 vs 0) 9 -0.11 0.04 8.59 0.00 -0.11 -0.18 0.07 5.45 0.02 -0.15
(1 vs 0) 10 -0.17 0.07 5.79 0.02 -0.16 -0.24 0.13 3.39 0.07 -0.21
(1 vs 0) 11 -0.25 0.12 4.67 0.03 -0.22 -0.32 0.21 2.74 0.10 -0.29

Joint 37.12 0.00 47.18 0.00

Note: Productivity lost due to power disruptions at each power use intensity ẽ

Figure A.1: Productivity loss from electricity disruptions
(Table 4, IV model: Col 8)
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Table A.5: Fixed Effects and IV Estimation (with Sσ)

FE IV

(1) (2) (3) (4) (5) (6)
Disruption= Sσ

Capital 0.06*** 0.07*** 0.06*** 0.14** 0.13** 0.13**
(0.000) (0.000) (0.000) (0.019) (0.027) (0.029)

Raw Materials 0.65*** 0.63*** 0.62*** 0.60*** 0.58*** 0.57***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Water 0.02*** 0.02*** 0.02*** 0.00 0.00 0.00
(0.005) (0.002) (0.001) (0.941) (0.858) (0.811)

Electricity 0.07*** 0.07*** 0.08 0.05** 0.06*** 0.15
(0.000) (0.000) (0.265) (0.017) (0.007) (0.061)

Electricity2 0.00 -0.01
(0.936) (0.271)

Disruption 0.01 0.02 0.67** 0.01 0.03 0.98***
(0.461) (0.278) (0.014) (0.746) (0.409) (0.004)

Disruption×Electricity -0.18** -0.29**
(0.052) (0.011)

Disruption× Electricity2 0.01 0.02**
(0.156) (0.027)

Working Capital 0.04*** 0.04*** 0.07 0.06
(0.003) (0.003) (0.120) (0.127)

Constant 4.05*** 3.69*** 3.66*** 4.04*** 3.37*** 3.06***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Obs. 7,158 6,994 6,994 2,464 2,439 2,439
R-sq. 0.72 0.73 0.73 0.68 0.68 0.67
Firms 2,360 2,331 2,331 981 976 976
Firm FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Note: Robust s.e in parenthesis. All continuous variables in log-labor units.
Lagged investment per-labor is used as an instrument for capital

Table A.6: Estimated productivity losses from Table A.5

FE marginal effects: Col (3) IV Marginal effects: Col (6)

Contrast σε χ2 pval
Productivity
Loss

Contrast σε χ2 pval
Productivity
Loss

Disruption at ẽ
(1 vs 0) 2 0.05 0.12 0.16 0.69 0.05 0.17 0.16 1.1 0.3 0.18
(1 vs 0) 3 -0.07 0.07 0.88 0.35 -0.07 -0.02 0.10 0.1 0.8 -0.02
(1 vs 0) 4 -0.17 0.04 17.24 0.00 -0.16 -0.17 0.07 6.8 0.0 -0.16
(1 vs 0) 5 -0.25 0.03 96.27 0.00 -0.22 -0.28 0.06 26.2 0.0 -0.25
(1 vs 0) 6 -0.32 0.02 203.92 0.00 -0.27 -0.35 0.05 48.2 0.0 -0.29
(1 vs 0) 7 -0.36 0.02 239.19 0.00 -0.30 -0.38 0.05 68.1 0.0 -0.31
(1 vs 0) 8 -0.39 0.04 95.56 0.00 -0.32 -0.36 0.06 42.1 0.0 -0.30
(1 vs 0) 9 -0.39 0.08 27.39 0.00 -0.32 -0.30 0.10 10.0 0.0 -0.26
(1 vs 0) 10 -0.38 0.13 8.94 0.00 -0.32 -0.21 0.16 1.6 0.2 -0.19
(1 vs 0) 11 -0.35 0.20 3.21 0.07 -0.30 -0.07 0.25 0.1 0.8 -0.07

Joint 283.31 0.00 68.6 0.0

Note: Productivity lost due to power disruptions at each power use intensity ẽ
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Table A.7: Aggregate production functions

LP ACF LP ACF
y (1) (2) (3) (4)

l 0.29*** 0.67*** 0.37*** 0.35***
(0.01) (0.02) (0.07) (0.02)

k 0.16*** 0.30*** 0.07*** 0.10***
(0.02) (0.01) (0.02) (0.02)

e 0.17*** 0.22***
(0.02) (0.02)

m 0.60*** 0.64***
(0.01) (0.01)

Obs 8,372 8,372 8,372 8,372
Firms 2,684 2,684 2,684 2,684
Proxy Raw Mat. Raw Mat. Electricity Electricity

Note: LP =Levinsohn-Petrin estimator; ACF=Ackerberg-Caves-Fraser correction

Table A.8: Industry level production functions (LP)

CGP CAF FAB MMA PPP
y (1) (2) (3) (4) (5)

l 0.21*** 0.24*** 0.34*** 0.27*** 0.34***
(0.03) (0.02) (0.03) (0.02) (0.05)

k 0.10*** 0.10** 0.14*** 0.24*** 0.17***
(0.04) (0.04) (0.03) (0.03) (0.06)

e 0.18*** 0.15*** 0.16*** 0.20*** 0.19***
(0.04) (0.04) (0.03) (0.04) (0.05)

Obs 1,757 1,069 2,386 2,308 843
Firms 619 273 728 861 201
Proxy Raw Mat. Raw Mat. Raw Mat. Raw Mat. Raw Mat.

Notes: CGP−Chemicals, Glass and Plastics; CAF−Cloth and Footwear;
FAB−Food and Beverages; MMA−Machinery, Motors & Accessories;

PPP−Pulp, paper and printing products.

Table A.9: Industry level production functions (ACF)

CGP CFA FAB MMA PPP
y (1) (2) (3) (4) (5)

l 0.63*** 0.57*** 0.69*** 0.75*** 0.84***
(0.06) (0.01) (0.08) (0.01) (0.01)

k 0.43*** 0.30*** 0.30*** 0.27*** 0.29***
(0.07) (0.03) (0.03) (0.03) (0.02)

e 0.28*** 0.18*** 0.26*** 0.27*** 0.14***
(0.04) (0.04) (0.04) (0.04) (0.03)

Obs 1,757 1,069 2,386 2,308 843
Firms 619 273 728 861 201
Proxy Raw Mat. Raw Mat. Raw Mat. Raw Mat. Raw Mat.

38



Table A.10: Industry level production functions (LP)

CGP CFA FAB MMA PPP
y (1) (2) (3) (4) (5)

l 0.10 0.27*** 0.27*** 0.30*** 0.44***
(0.13) (0.05) (0.09) (0.04) (0.08)

k 0.05* 0.08*** 0.07** 0.08*** 0.06**
(0.03) (0.03) (0.03) (0.03) (0.03)

m 0.55*** 0.65*** 0.65*** 0.58*** 0.60***
(0.02) (0.02) (0.02) (0.01) (0.03)

Obs 1,757 1,069 2,386 2,308 843
Firms 619 273 728 861 201
Proxy Elec. Elec. Elec. Elec. Elec.

Table A.11: Industry level production functions (ACF)

CGP CFA FAB MMA PPP
y (1) (2) (3) (4) (5)

l 0.38*** 0.26*** 0.40*** 0.33*** 0.45***
(0.04) (0.04) (0.03) (0.02) (0.02)

k 0.09** 0.08*** 0.08*** 0.13*** 0.04
(0.04) (0.02) (0.02) (0.02) (0.03)

m 0.60*** 0.68*** 0.68*** 0.58*** 0.62***
(0.02) (0.01) (0.01) (0.02) (0.02)

Obs 1,757 1,069 2,386 2,308 843
Firms 619 273 728 861 201
Proxy Elec. Elec. Elec. Elec. Elec.

Figure A.2: Within-industry productivity loss due to power disruptions
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Table A.13: Alternative to count models−Pooled OLS

A (1) (2) (3) (4) (5)

Disruption -0.46*** -0.40*** -0.57*** -0.56*** -0.57***
(0.09) (0.13) (0.08) (0.08) (0.08)

∆DF -0.31*** -0.36*** -0.32*** -0.31*** -0.33***
(0.07) (0.09) (0.07) (0.07) (0.07)

S ×∆DF -0.40** -0.27 -0.32* -0.31* -0.32*
(0.18) (0.30) (0.18) (0.18) (0.18)

∆yl 0.47***
(0.06)

∆ lnTFPLPm 0.38***
(0.08)

∆ lnTFPACFm 0.24***
(0.09)

∆ lnTFPLPe 0.34***
(0.10)

∆ lnTFPACFe 0.17*
(0.09)

Constant 0.16*** 0.14*** 0.08*** 0.09*** 0.08***
(0.03) (0.03) (0.03) (0.03) (0.03)

Obs. 5,532 5,532 5,253 5,253 5,257
R-sq. 0.05 0.04 0.03 0.03 0.03
Firms 1801 1698 1698 1698 1698

Note: Disruption = S. Clustered s.e in parenthesis.
∆DF = change in underutilized capacity;
∆yl = first differenced output per labor

Table A.14: Panel quantile regressions (Using ACF)

Aggregate Within-Industry

(1) (2) (3) (4)
lnTFPA lnTFPA lnTFPI lnTFPI

Disruption 0.18* -0.05*** -0.04*** -0.04***
(0.02) (0.01) (0.01) (0.01)

Age×100 -1.01** -1.00 -1.00** -1.00*
(0.00) (0.00) (0.00) (0.00)

Working Capital 0.36** 0.05** 0.03** 0.01
(0.02) (0.01) (0.01) (0.01)

Obs 8,184 9,943 9,935 9,943
Firms 2,649 2,960 2,958 2,960
Proxy Raw Mat. Electricity Raw Mat. Electricity

Robust s.e. in parentheses, *** p<0.01, ** p<0.05
Disruption = Sσ.
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Figure A.3: Within-industry productivity loss due to power disruptions
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B Balanced panel results

Table A.15: Fixed Effects and IV Estimation (balanced panel)

FE IV

(1) (2) (3) (4) (5) (6) (7) (8)
Disruption= S

Capital 0.05** 0.05** 0.05** 0.05** 0.06 0.06 0.07 0.06
(0.022) (0.022) (0.023) (0.022) (0.117) (0.119) (0.118) (0.119)

Raw Mat. 0.62*** 0.62*** 0.60*** 0.60*** 0.59*** 0.59*** 0.57*** 0.57***
(0.033) (0.033) (0.036) (0.037) (0.048) (0.049) (0.044) (0.045)

Water 0.02* 0.02* 0.02** 0.02** 0.01 0.01 0.01 0.01
(0.009) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010)

Electricity 0.07*** 0.07*** 0.07*** -0.10 0.06** 0.05** 0.06** 0.01
(0.020) (0.019) (0.020) (0.104) (0.027) (0.028) (0.028) (0.114)

Electricity2 0.01 0.00
(0.009) (0.008)

Disruption -0.03 -0.04 -1.20*** -0.03 -0.04 -1.51***
(0.029) (0.030) (0.431) (0.038) (0.038) (0.559)

Disruption×Electricity 0.39*** 0.48**
(0.141) (0.186)

Disruption×Electricity2 -0.03*** -0.04**
(0.011) (0.015)

Working Cap. 0.03 0.04 0.03 0.03
(0.026) (0.027) (0.070) (0.070)

Constant 4.58*** 4.58*** 4.33*** 4.81*** 5.06*** 5.00*** 4.65*** 4.80***
(0.354) (0.354) (0.501) (0.553) (1.110) (1.124) (1.549) (1.708)

Obs 1,607 1,607 1,567 1,567 904 904 895 895
R-sq. 0.82 0.82 0.83 0.83 0.81 0.81 0.82 0.82
Firms 212 212 212 212 191 191 191 191
Firm FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES
U-test (p-val) - - - 0.78 - - - 0.33
Balanced YES YES YES YES YES YES YES YES

Note: Robust s.e in parenthesis. All continuous variables in log-labor units.
Lagged investment per-labor is used as an instrument for capital

Table A.16: Estimated productivity losses from Table A.15

FE marginal effects: Col (4) IV Marginal effects: Col (8)

Contrast σε χ2 pval
Productivity

Loss
Contrast σε χ2 pval

Productivity
Loss

Disruption at ẽ
(1 vs 0) 2 -0.59 0.20 8.89 0.00 -0.45 -0.76 0.24 10.08 0.00 -0.53
(1 vs 0) 3 -0.36 0.12 9.14 0.00 -0.30 -0.47 0.14 11.70 0.00 -0.37
(1 vs 0) 4 -0.19 0.06 8.27 0.00 -0.17 -0.25 0.07 11.44 0.00 -0.22
(1 vs 0) 5 -0.07 0.04 3.37 0.07 -0.07 -0.10 0.06 3.39 0.07 -0.10
(1 vs 0) 6 -0.02 0.04 0.44 0.51 -0.02 -0.03 0.06 0.35 0.56 -0.03
(1 vs 0) 7 -0.03 0.03 1.16 0.28 -0.03 -0.04 0.05 0.58 0.45 -0.04
(1 vs 0) 8 -0.11 0.04 6.62 0.01 -0.10 -0.11 0.05 4.98 0.03 -0.10
(1 vs 0) 9 -0.24 0.09 7.80 0.01 -0.21 -0.26 0.11 5.96 0.01 -0.23
(1 vs 0) 10 -0.43 0.16 7.54 0.01 -0.35 -0.49 0.21 5.57 0.02 -0.39
(1 vs 0) 11 -0.69 0.25 7.36 0.01 -0.50 -0.78 0.34 5.39 0.02 -0.54

Joint 14.64 0.00 22.68 0.00

Note: Productivity lost due to power disruptions measured at each power use intensity ẽ

43



Figure A.4: Productivity loss from electricity disruptions
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Note: Table A.15, FE model: Col 4. The left panel plots a firm’s predicted log labor pro-

ductivity with and without power disruptions at different power use intensities (x-axis

INTENSITY=ẽ). The right panel plots the productivity differences with and without power

disruptions at each intensity level ln(Y
L
|S = 1)− ln(Y

L
|S = 0).

Table A.17: Fixed Effects and IV estimation (balanced panel)

FE IV

(1) (2) (3) (4) (5) (6) (7) (8)
Disruption= Sσ

Capital 0.05** 0.04** 0.05** 0.05** 0.06 0.06 0.06 0.06
(0.022) (0.022) (0.022) (0.022) (0.117) (0.115) (0.114) (0.114)

Raw Mat. 0.62*** 0.62*** 0.60*** 0.60*** 0.59*** 0.59*** 0.57*** 0.58***
(0.033) (0.033) (0.036) (0.037) (0.048) (0.049) (0.044) (0.045)

Water 0.02* 0.02* 0.02** 0.02** 0.01 0.01 0.01 0.01
(0.009) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010)

Electricity 0.07*** 0.09*** 0.09*** 0.10 0.06** 0.06** 0.07** 0.24**
(0.020) (0.022) (0.023) (0.146) (0.027) (0.030) (0.032) (0.122)

Electricity2 -0.00 -0.01
(0.012) (0.008)

Disruption 0.07** 0.07** 0.55 0.03 0.04 0.85**
(0.033) (0.033) (0.430) (0.044) (0.043) (0.396)

(0.000) (0.000)
Disruption×Electricity -0.10 -0.21

(0.147) (0.143)
Disruption×Electricity2 0.00 0.01

(0.012) (0.013)
Working Cap. 0.04 0.04 0.03 0.03

(0.027) (0.027) (0.070) (0.070)
Constant 4.58*** 4.49*** 4.20*** 4.15*** 5.06*** 5.00*** 4.63*** 4.02**

(0.354) (0.342) (0.497) (0.642) (1.110) (1.064) (1.509) (1.593)

Obs 1,607 1,607 1,567 1,567 904 904 895 895
R-sq. 0.82 0.82 0.83 0.83 0.81 0.81 0.82 0.82
Firms 212 212 212 212 191 191 191 191
Firm FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES
Balanced YES YES YES YES YES YES YES YES

Note: Robust s.e in parenthesis. All continuous variables in log-labor units.
Lagged investment per-labor is used as an instrument for capital

44



Table A.18: Estimated productivity losses from Table A.17

FE marginal effects: Col (4) IV Marginal effects: Col (8)

Contrast σε χ2 pval
Productivity

Loss
Contrast σε χ2 pval

Productivity
Loss

Disruption at ẽ
(1 vs 0) 2 0.09 0.19 0.22 0.64 0.09 0.28 0.17 2.79 0.09 0.33
(1 vs 0) 3 0.00 0.11 0.00 0.98 0.00 0.13 0.10 1.78 0.18 0.14
(1 vs 0) 4 -0.08 0.06 1.39 0.24 -0.07 0.01 0.06 0.02 0.89 0.01
(1 vs 0) 5 -0.15 0.05 10.42 0.00 -0.14 -0.09 0.05 2.72 0.10 -0.09
(1 vs 0) 6 -0.21 0.04 25.19 0.00 -0.19 -0.16 0.05 10.05 0.00 -0.15
(1 vs 0) 7 -0.27 0.05 34.83 0.00 -0.24 -0.21 0.05 15.47 0.00 -0.19
(1 vs 0) 8 -0.32 0.07 18.51 0.00 -0.28 -0.23 0.09 7.49 0.01 -0.21
(1 vs 0) 9 -0.37 0.14 7.21 0.01 -0.31 -0.23 0.15 2.28 0.13 -0.21
(1 vs 0) 10 -0.40 0.23 3.18 0.07 -0.33 -0.20 0.25 0.66 0.42 -0.18
(1 vs 0) 11 -0.43 0.34 1.61 0.20 -0.35 -0.15 0.37 0.16 0.69 -0.14

Joint 38.52 0.00 15.79 0.00

Note: Productivity lost due to power disruptions measured at each power use intensity ẽ

Figure A.5: Productivity loss from electricity disruptions
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Note: Table A.17, FE model: Col 4. The left panel plots a firm’s predicted log labor pro-

ductivity with and without power disruptions at different power use intensities (x-axis

INTENSITY=ẽ). The right panel plots the productivity differences with and without power

disruptions at each intensity level ln(Y
L
|Sσ = 1)− ln(Y

L
|Sσ = 0).
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